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Catalytic heme active sites of enzymes are sequestered by the protein superstructure and are regulated by
precisely defined outer coordination spheres. Here, we emulate these protective functions in the
porphyrinic metal-organic framework PCN-224 by post-synthetic acetylation and subsequent
hydroxylation of the Zrg nodes. A suite of physical methods demonstrates that both transformations
preserve framework structure, crystallinity, and porosity without modifying the inner coordination
spheres of the iron sites. Single-crystal X-ray analyses establish that acetylation replaces the mixture of
formate, benzoate, aqua, and terminal hydroxo ligands at the Zrg nodes with acetate ligands, and
hydroxylation affords nodes with seven-coordinate, hydroxo-terminated Zr** ions. The chemical
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reaction. By virtue of passivated reactive sites at the Zrg nodes, the acetylated framework oxidizes

DOI 10.1035/d0sc01796¢ cyclohexane with a yield of 68(8)%, 2.6-fold higher than in the hydroxylated framework, and an alcohol/
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Introduction

Nature widely employs the iron porphyrin, or heme, prosthetic
group to catalyze a remarkably diverse range of challenging
oxidative transformations, including C-H bond functionaliza-
tion." These reactions require the heme active site to form
highly reactive intermediates,” which must be enveloped by the
local protein environment in order to function.* Without
sequestration by the protein superstructure, molecular heme
complexes readily condense into oxo-bridged Fel' species.* In
addition to immobilization provided by the protein, its folding
pattern precisely regulates the chemical environment of the
heme. For example, structural and molecular dynamics anal-
yses of cytochrome P450, catalase, and peroxidase enzymes
suggest excess water is expelled from catalytic sites to control
hydrogen-bonding interactions, manage proton delivery, and
tune heme redox potentials.> Together, these design elements
have inspired synthetic chemists to pursue steric protection,®
second coordination sphere hydrogen-bonding,”
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macromolecular encapsulation,® and immobilization® strate-
gies in developing structural and functional models of heme
enzymes.

Metal-organic frameworks possess a number of traits well-
suited to the study of biomimetic heme chemistry. In partic-
ular, porphyrinic frameworks rigidly separate metalloporphyrin
units with atomic-level precision,'®** thus replicating the
sequestering role of proteins. Moreover, through judicious
selection of pore size, shape, and environment, solution-phase
substrates and reagents can readily diffuse into microporous
catalysts.’® Crucially, metal-organic frameworks can often be
prepared in single-crystalline form, which enables structural
characterization of the first coordination sphere at reactive
metal centers with atomic resolution. Indeed, researchers have
harnessed this feature to study unusual metal-ligand binding
modes” and to structurally elucidate intermediates in cata-
Iytic,*® photoinduced," and cooperative® reactions. Along these
lines, we have recently shown that four-coordinate metal-
loporphyrins within the Zr-based framework PCN-224 (ref. 13b)
can support reactive dioxygen****¢ and carbonyl** complexes
that otherwise elude structural characterization.

In the context of framework-based catalysis, precise
synthetic control of pore environment is vital because the pores
constitute the outer coordination spheres of catalytic metal
active sites. For instance, one challenge here is addressing non-
periodic defects, such as the replacement of a multitopic
structural linker with monotopic ligands that introduce anom-
alously reactive sites.** This linker replacement phenomenon is
especially prominent in PCN-224 and related Zr-based
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frameworks,"®?* where as few as half of the coordination sites at
the Zrs nodes bind structural linkers. Depending on the
synthesis conditions, non-structural ligands in Zr frameworks
have been variously identified as Brgnsted-acidic® pairs of aqua
and hydroxo ligands,"»* nucleophilic hydroxide counter-
anions,* or formate.”® Herein, we report the selective post-
synthetic acetylation and subsequent hydroxylation of the Zrg
nodes in free-base and heme-containing PCN-224. Using
cyclohexane hydroxylation as a model reaction, we find that
these treatments afford pore environments with contrasting
influences on the catalytic activity of the heme centers.

Results and discussion

In the absence of post-synthetic treatments, preparations of
PCN-224 (ref. 13b,14,15) result in a material best formulated as
(HoTCPP);3{Zrs04(OH), 7(HCO,), 3(CsH5CO,)3(H20)y}»
(H,TCPP*~ = tetraanion of 5,10,15,20-tetrakis(4-carboxyphenyl)
porphyrin, see Fig. S1 and Table S1t), which we refer to as “as-
synthesized PCN-224.” Here, the incorporation of benzoate and
formate ligands stems from the use of benzoic acid as the
modulator and decomposition of the solvent dimethylforma-
mide, respectively. Inspired by the wealth of post-synthetic
modifications that preserve crystallinity of metal-organic
frameworks,”® in addition to the incorporation of mono-
carboxylates into the Zrs nodes of NU-1000 (ref. 22b and d) and
Ui0-66,>>*” we initially treated as-synthesized PCN-224 with
a variety of carboxylic acids in an attempt to passivate the Zr,
clusters. However, we observed incomplete incorporation of
acetate ligands, and both acetic and trifluoroacetic acid led to
noticeable dissolution of the framework to give green solutions
of HgTCPP**. We therefore reasoned that PCN-224 is better
suited to electrophilic, non-acidic reagents. In support of this
hypothesis, treatment of as-synthesized PCN-224 with acetic
anhydride afforded the material (H,TCPP);{ZrsO4(OH),(CH,-
CO,)e}2, PCN-224" (1, see Fig. 1 and ESIt for synthetic details).
Importantly, the "H NMR spectrum of 1 digested in D,SO,/
dimethylsulfoxide-ds shows no detectable traces of formate or
benzoate, suggesting that acetic anhydride exchanges formate
and benzoate ligands for acetate (see Fig. S1}). Moreover, the
mole ratio of H,TCPP*™ to acetate is near the ideal stoichiom-
etry of 3 : 12, suggesting the terminal aqua and hydroxo ligands
are also replaced (see Table S17). The acetate ligands in 1 carry
out the esterification of methanol to form methyl acetate (see
Fig. S27). Thus, treatment of 1 with methanol at 60 °C, followed
by soaking in wet acetone, resulted in removal of acetate ligands
to afford (H,TCPP);{Zrs04(1-OH)4(OH)g}, (2, see Fig. 1). The 'H
NMR spectrum of digested 2 indicates that ~90% of the acetate
ligands are removed (see Fig. S11) and that methanol is not
readily incorporated (see Table S1t). Finally, heating 1 with
FeCl; and 2,6-lutidine in dimethylformamide, followed by
treatment with acetic anhydride,} affords 1FeCl (see Fig. 2 and
ESIT for experimental details), which in turn can be hydroxyl-
ated to afford 2FeCL

A suite of physical and spectroscopic methods demonstrates
that acetylation and hydroxylation at the Zrs nodes are chemi-
cally orthogonal to the first coordination sphere of the heme.
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Fig. 1 Treatment of as-synthesized PCN-224, which contains
a mixture of formate, benzoate, hydroxo, and aqua ligands, with acetic
anhydride affords acetylated six-connected Zrg nodes (1), as revealed
by single-crystal X-ray crystallography. Subsequent treatment of 1 with
methanol and water removes the acetate ligands to give Zrg nodes
with terminal hydroxo ligands (2). Green octahedra represent Zrg
clusters; red, blue, gray, and light blue spheres represent O, N, C, and H
atoms, respectively; H atoms, except those of terminal hydroxo
ligands, are omitted for clarity. The node structure of as-synthesized
PCN-224 is reproduced from ref. 14a; the formate and benzoate
ligands could not be crystallographically located.

The powder X-ray diffractograms show that bulk crystallinity is
retained by ligand substitution at the Zrg nodes (see Fig. S37).
UV-vis spectroscopy of 1 and 2 (see Fig. S47) versus 1FeCl and

Fig.2 Crystal structure of the metalloporphyrin unit in 1FeCl. Orange,
teal, red, blue, and gray spheres represent Fe, Cl, O, N, and C atoms,
respectively; H atoms are omitted for clarity. Selected interatomic
distances (A): Fe—Cl 2.23(2), Fe—N 2.084(6), Fe---N,4 plane 0.575(8).

This journal is © The Royal Society of Chemistry 2020
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2FeCl (see Fig. S51), in addition to trace metals analysis, indi-
cate that the metalloporphyrins are not demetalated and the
chloride ion remains bound to the heme. The zero-field *’Fe
Mossbauer spectra for 1FeCl and 2FeCl display broad, asym-
metric quadrupole doublets characteristic of high-spin, chloro-
ligated ferric hemes® and are identical to the spectrum for
(TPP)FeCl (H,TPP = 5,10,15,20-tetraphenylporphyrin, see
Fig. S6 and Table S2+).

The acetylation and hydroxylation of the Zrs nodes were
confirmed with single-crystal X-ray analysis. Structures of 1 and
1FeCl were both solved in the space group Im3m, with similar
unit cell parameters, as previously reported structures of PCN-
224 (ref. 13h,14,15) (see Table S3t for crystallographic details
and Fig. S7, S8t for ellipsoid plots). At the equatorial face of
each Zrg octahedron, the O atoms refine to two positions of near
50 : 50 occupancy, reflecting the stoichiometry of bridging oxo
versus hydroxo ligands (see Fig. S10%1). In addition, each Zrg
node coordinates six acetates (see Fig. 1), each either bridging
neighboring Zr** ions or chelating a single Zr** ion in a x> mode
(see Fig. S111). The X-ray structure of 2 reveals each Zrs node to
coordinate only six terminal hydroxo ligands, with no addi-
tional aqua ligands (see Fig. 1 and S9t), thus establishing seven-
coordinate Zr centers in 2. At 1.910(6) A, the short Zr-O distance
is consistent with Zr-OH bonds (see Table S47). To our knowl-
edge, this result provides the first structurally characterized
example of seven-coordinate Zr within a metal-organic frame-
work, which supports the spectral and density functional theory
investigations that suggest rigorous activation of Zr-based
frameworks can expose undercoordinated Zr atoms.?? Finally,
the X-ray structure of 1FeCl shows the expected square pyra-
midal Fe and confirms that the chloro ligand is not lost upon
acetylation (see Fig. 2).

Diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS) supports the assignment of terminal hydroxo ligands
in 2 and 2FeCl. The DRIFTS spectra for 1 and 1FeCl show the
expected uO-H stretches at 3620-3700 cm ™' (see Fig. 3; see
Fig. S127 for full spectrum), while the DRIFTS spectra for 2 and
2FeCl show higher-energy peaks between 3720-3800 cm .
These energies are in good agreement with the bridging and
terminal hydroxides of zirconia.”

Surface area measurements show that porosity is maintained
in these frameworks upon acetylation and subsequent hydrox-
ylation. The N, adsorption isotherms for desolvated 1, 2, 1FeCl,
and 2FeCl display uptakes characteristic of microporous
adsorbents (see Fig. S1271). Fitting the isotherms to the Bru-
nauer-Emmett-Teller (BET) equation afforded surface areas of
3586(15), 3638(16), 3011(9), and 3204(9) m> g~ for 1, 2, 1FeCl
and 2FeCl, respectively (see Fig. S$13-S16 and Table S57). These
experimental BET surface areas are in excellent agreement with
the N,-accessible surface areas calculated® from their corre-
sponding crystal structures (see Table S67). Notably, the BET
surface areas measured here are higher than the 2400-3000 m>
g~ of reported PCN-224 frameworks.'*”!*** The higher gravi-
metric surface areas may be attributed to the removal of
benzoate ligands, thereby decreasing crystal densities of the
frameworks, to our solvent exchange and activation procedure

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 DRIFTS spectra highlighting the »(O—H), »(uO—-H), and »(N-H)
modes in 1 (black), 2 (navy), 1FeCl (orange), and 2FeCl (red). The
absence of porphyrin N-H stretches indicates quantitative iron
insertion into 1FeCl and 2FeCl. The features between 3720-
3800 cm ™t are assigned to »(O—H) modes of terminal hydroxo ligands
at the Zrg clusters of 2 and 2FeCL.

(see ESIT for details), or to the improved phase purity afforded
by our PCN-224 preparations.

With the Zrg coordination environments well-established, we
subsequently probed the chemical ramifications of acetylation
and hydroxylation using catalytic cyclohexane oxidation as
a model reaction. While a number of metalloporphyrin-based
frameworks have successfully used olefin epoxidation to
demonstrate the accessibility of catalytic metal sites,* we
eschewed this strategy largely because molecular hemes are
already proficient in epoxidation catalysis.®>*> Furthermore,
mounting evidence implicates both metalloporphyrin-oxidant
adducts and metalloporphyrin oxo complexes as active inter-
mediates capable of epoxidizing olefins,*® which could poten-
tially complicate the interpretation of catalytic results. The
molecular complex (TPP)FeCl reacts with iodosylbenzene and
cyclohexane in a solution of CH,Cl, to produce a mixture of
cyclohexanol, cyclohexanone, and chlorocyclohexane in
a combined yield of 9(5)%, consistent with previous reports (see
Fig. 4 and Table S71).** In contrast, oxidation yields for 1FeCl
and 2FeCl are 68(8)% and 26(5)%, respectively. Assuming every
Fe atom in the frameworks participates in catalysis, these yields
correspond to turnover numbers of 14(2) and 5(1) for 1FeCl and
2FeCl, respectively (see Table S71). The improvement in oxida-
tion yields with 1FeCl and 2FeCl versus (TPP)FeCl arises from
the ability of PCN-224 to afford isolated, catalytically active
heme sites, and agrees well with the greater alkane hydroxyl-
ation yields observed for sterically encumbered molecular heme
complexes.®® On the basis of the oxidation yield of 68(8)%,

Chem. Sci., 2020, 11, 5447-5452 | 5449
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Fig. 4 Cyclohexane oxidation yields with iodosylbenzene. With the
acetylated framework 1FeCl as the catalyst, yields are 2.6-times larger
than with the hydroxylated framework 2FeCl. Error bars reflect one
standard deviation (n = 3); OAc™ = CH3zCOO™.

acetate exchange between 1FeCl and iodosylbenzene to form
(diacetoxyiodo)benzene® is likely slow.

While a number of framework-based manganese porphyrins
have been shown to oxidize unactivated C-H bonds in alka-
nes, %35 to our knowledge the present results represent only
the third example of such reactions with heme sites.'***¢
Previously, heme frameworks have been shown to oxidize
cyclohexane with tert-butylhydroperoxide and cis-decalin with 2-
tert-butylsulfonyliodosylbenzene (‘BuSO,PhIO). Among all re-
ported Fe and Mn porphyrin frameworks capable of oxidizing
cyclohexane, 1FeCl ranks fifth-highest based on overall yield,
and second-highest among frameworks that use iodo-
sylbenzene as the terminal oxidant (see Table S81). Notably, the
more active Fe and Mn frameworks all favor the formation of
cyclohexanone, with alcohol/ketone (A/K) ratios =< 0.81. An A/K
ratio of one or less implies a radical chain autoxidation mech-
anism, in which the role of the metal is to generate free radi-
cals.”” In contrast, 1FeCl favors the formation of cyclohexanol,
with an A/K ratio of 5.6(3) that is consistent with metal-based
oxidation.*” Of note, the selectivity of 2FeCl for cyclohexanol is
even greater (see Table S71). The lack of over-oxidized cyclo-
hexanone product may be due to the decreased activity of the
hydroxylated framework (see below).

Crucially, the cyclohexane oxidation yields of 1FeCl versus
2FeCl demonstrate that acetylation of the Zr, nodes improves
the catalytic activity by 2.6-fold (see Fig. 4). Several control
experiments suggest that acidic protons within the framework
pores impair the oxidative reactivity at the heme centers. For
instance, addition of methanol or acetic acid to catalytic reac-
tions with 1FeCl results in a 9- to 70-fold decrease in cyclo-
hexane oxidation yields (see Fig. 4). Addition of
tetrabutylammonium acetate to reactions with 2FeCl has no
significant impact on yields, suggesting that catalysis is
enhanced only if reactive proton sources are removed from the
Zres nodes, and not improved by acetate ions alone. Control

5450 | Chem. Sci, 2020, 11, 5447-5452
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experiments with the free-base framework 1 and FeCl; confirm
that the heme unit is responsible for catalysis (see Fig. 4).

A similar reactivity trend arises when ‘BuSO,PhIO,*® a more
soluble iodosylarene reagent, is instead used as the terminal
oxidant. Again, oxidation yields are highest with the acetylated
framework 1FeCl, a 30-fold increase relative to the hydroxylated
framework 2FeCl, and a 70-fold increase relative to (TPP)FeCl
(see Table S97). Notably, the yields with “BuSO,PhIO are
significantly lower than with iodosylbenzene. Since ‘BuSO,PhIO
is more soluble in CH,Cl,, it affords higher concentrations of
iodosylarene, and thus faster rates of metal-catalyzed dis-
proportionation.®**® Also, “BuSO,PhIO may be inactivated by the
Zrs nodes in PCN-224, as the reagent was recently demonstrated
to ligate molecular Zr, clusters.?*

Conclusions

The foregoing results demonstrate the facile and quantitative
acetylation and hydroxylation of the Zrs nodes in free-base and
heme PCN-224, with the former reaction giving significant
enhancement of C-H bond activation chemistry by virtue of
removing labile acidic protons within framework pores. These
results outline a path toward isolating and interrogating cata-
Iytically competent models of fleeting intermediates in heme
enzymes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the U. S. Army Research Office
(W911NF-14-1-0168/P00005) and made use of the IMSERC at
Northwestern University (NU), which received support from NSF
ECCS-1542205, the State of Illinois, and the International
Institute for Nanotechnology. The catalysis studies made use of
a gas chromatograph purchased by Prof. SonBinh T. Nguyen.
Surface area and DRIFTS measurements were performed at the
NU REACT Core (DE-FG02-03ER15457). Metals analysis was
performed at the NU Quantitative Bio-element Imaging Center.
We thank Mr Youwei Shu for experimental assistance.

Notes and references

1 Additional treatment with acetic anhydride after metalation in dime-
thylformamide is required to ensure the Zr, nodes remain quantitatively acety-
lated. We found that soaking 1 in neat dimethylformamide at ambient
temperature for 12 h replaces ~5% of the acetate ligands with formate. At 100 °C,
~50% of the acetates are replaced.

1 (a) M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson,
Chem. Rev., 1996, 96, 2841-2888; (b) Cytochrome P450:
Structure, Mechanism, and Biochemistry, ed. P. R. Ortiz de
Montellano, Springer US, Boston, MA, 3rd edn, 2005; (c)
T. L. Poulos, Chem. Rev., 2014, 114, 3919-3962.

2 (@) ]J. T. Groves, J. Chem. Educ., 1985, 62, 928-931; (b) ]. Rittle
and M. T. Green, Science, 2010, 330, 933-937; (c) C. M. Krest,

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc01796e

Edge Article

E. L. Onderko, T. H. Yosca, J. C. Calixto, R. F. Karp, J. Livada,
J. Rittle and M. T. Green, J. Biol. Chem., 2013, 288, 17074—
17081; (d) X. Huang and J. T. Groves, Chem. Rev., 2018,
118, 2491-2553; (¢) M. Guo, T. Corona, K. Ray and
W. Nam, ACS Cent. Sci., 2019, 5, 13-28.

3 (@) J. P. Klinman, Acc. Chem. Res., 2007, 40, 325-333; (b)
R. L. Shook and A. S. Borovik, Inorg. Chem., 2010, 49, 3646—
3660; (c) K. M. Lancaster, in Molecular Electronic Structures
of Transition Metal Complexes I, ed. D. M. P. Mingos, P. Day
and J. P. Dahl, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, vol. 142, pp. 119-153; (d) S. P. de Visser,
Chem.-Eur. J., 2020, 26, 5308-5327.

4 (a) A. B. Hoffman, D. M. Collins, V. W. Day, E. B. Fleischer,
T. S. Srivastava and J. L. Hoard, J. Am. Chem. Soc., 1972, 94,
3620-3626; (b) D.-H. Chin, G. N. La Mar and A. L. Balch, J.
Am. Chem. Soc., 1980, 102, 4344-4350.

5 (a) T. L. Oprea, G. Hummer and A. E. Garcia, Proc. Natl. Acad.
Sci. U. S. A., 1997, 94, 2133-2138; () P. Jones, J. Biol. Chem.,
2001, 276, 13791-13796; (¢) K. D. Dubey and S. Shaik, Acc.
Chem. Res., 2019, 52, 389-399.

6 (a) J. P. Collman, Acc. Chem. Res., 1977, 10, 265-272; (b)
J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo
and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884-2886; (¢)
J. T. Groves and T. E. Nemo, J. Am. Chem. Soc., 1983, 105,
6243-6248; (d) M. J. Nappa and C. A. Tolman, Inorg. Chem.,
1985, 24, 4711-4719; (e) B. R. Cook, T. J. Reinert and
K. S. Suslick, J. Am. Chem. Soc., 1986, 108, 7281-7286; (f)
D. Dolphin, T. G. Traylor and L. Y. Xie, Acc. Chem. Res.,
1997, 30, 251-259; (g) W. Liu and ]. T. Groves, Acc. Chem.
Res., 2015, 48, 1727-1735.

7 (@) G. E. Wuenschell, C. Tetreau, D. Lavalette and C. A. Reed,
J. Am. Chem. Soc., 1992, 114, 3346-3355; (b) C. K. Chang,
Y. Liang, G. Aviles and S.-M. Peng, J. Am. Chem. Soc., 1995,
117, 4191-4192; (¢) C.-Y. Yeh, C. J. Chang and
D. G. Nocera, J. Am. Chem. Soc., 2001, 123, 1513-1514; (d)
S. A. Cook and A. S. Borovik, Acc. Chem. Res., 2015, 48,
2407-2414.

8 (a)]. T. Groves and R. Neumann, J. Am. Chem. Soc., 1989, 111,
2900-2909; (b) R. Breslow, Acc. Chem. Res., 1995, 28, 146-153;
(¢) I. C. Reynhout, J. J. L. M. Cornelissen and R. J. M. Nolte,
Acc. Chem. Res., 2009, 42, 681-692.

9 (@) J. H. Wang, J. Am. Chem. Soc., 1958, 80, 3168-3169; (b)
P. Battioni, E. Cardin, M. Louloudi, B. Schoéllhorn,
G. A. Spyroulias, D. Mansuy and T. G. Traylor, Chem.
Commun., 1996, 2037-2038; (c¢) L. L. Welbes and
A. S. Borovik, Acc. Chem. Res., 2005, 38, 765-774.

10 Selected reviews of porphyrinic metal-organic frameworks:
(@) K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal,
S. Nakagaki, D. W. Smithenry and S. R. Wilson, Acc. Chem.
Res., 2005, 38, 283-291; (b) M. Zhao, S. Ou and C.-D. Wu,
Acc. Chem. Res., 2014, 47, 1199-1207; (¢) W.-Y. Gao,
M. Chrzanowski and S. Ma, Chem. Soc. Rev., 2014, 43,
5841-5866; (d) Z. Guo and B. Chen, Dalton Trans., 2015, 44,
14574-14583.

11 (@) B. F. Abrahams, B. F. Hoskins and R. Robson, J. Am.
Chem. Soc., 1991, 113, 3606-3607; (b) B. F. Abrahams,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 07 May 2020. Downloaded on 1/11/2026 4:41:38 PM.

(cc)

This journal is © The Royal Society of Chemistry 2020

12

13

14

15

16

17

18

View Article Online

Chemical Science

B. F. Hoskins, D. M. Michail and R. Robson, Nature, 1994,
369, 727-729.

A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen, J. Am.
Chem. Soc., 2009, 131, 4204-4205.

(a) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei and
H.-C. Zhou, Angew. Chem., Int. Ed., 2012, 51, 10307-10310;
(b) D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang,
Y.-P. Chen, D. J. Darensbourg and H.-C. Zhou, J. Am. Chem.
Soc., 2013, 135, 17105-17110; (¢) N. Huang, S. Yuan,
H. Drake, X. Yang, J. Pang, J. Qin, J. Li, Y. Zhang, Q. Wang,
D. Jiang and H.-C. Zhou, J. Am. Chem. Soc., 2017, 139,
18590-18597.

(@) J. S. Anderson, A. T. Gallagher, J. A. Mason and
T. D. Harris, J. Am. Chem. Soc., 2014, 136, 16489-16492; (b)
A. T. Gallagher, M. L. Kelty, J. G. Park, J. S. Anderson,
J. A. Mason, J. P. S. Walsh, S. L. Collins and T. D. Harris,
Inorg. Chem. Front., 2016, 3, 536-540; (¢) A. T. Gallagher,
C. D. Malliakas and T. D. Harris, Inorg. Chem., 2017, 56,
4654-4661; (d) A. T. Gallagher, J. Y. Lee, V. Kathiresan,
J. S. Anderson, B. M. Hoffman and T. D. Harris, Chem. Sci.,
2018, 9, 1596-1603.

(@) J. M. Zadrozny, A. T. Gallagher, T. D. Harris and
D. E. Freedman, J. Am. Chem. Soc., 2017, 139, 7089-7094;
() C.J. Yu, M. D. Krzyaniak, M. S. Fataftah,
M. R. Wasielewski and D. E. Freedman, Chem. Sci., 2019,
10, 1702-1708.

(@) F. Song, C. Wang, J. M. Falkowski, L. Ma and W. Lin, J.
Am. Chem. Soc., 2010, 132, 15390-15398; (b) D. J. Xiao,
J. Oktawiec, P. J. Milner and ]. R. Long, J. Am. Chem. Soc.,
2016, 138, 14371-14379; (¢) A. D. Cardenal, H. ]J. Park,
C. J. Chalker, K. G. Ortiz and D. C. Powers, Chem.
Commun., 2017, 53, 7377-7380; (d) C.-H. Wang, A. Das,
W.-Y. Gao and D. C. Powers, Angew. Chem., Int. Ed., 2018,
57, 3676-3681; (e) A. W. Stubbs, L. Braglia, E. Borfecchia,
R. J. Meyer, Y. Roman- Leshkov, C. Lamberti and M. Dinca,
ACS Catal., 2018, 8, 596-601; (f) W.-Y. Gao, A. D. Cardenal,
C.-H. Wang and D. C. Powers, Chem.-Eur. J., 2019, 25,
3465-3476.

(@) T. Sawano, Z. Lin, D. Boures, B. An, C. Wang and W. Lin, J.
Am. Chem. Soc., 2016, 138, 9783-9786; (b) M. L. Gonzalez,
J. A. Mason, E. D. Bloch, S. J. Teat, K. J. Gagnon,
G. Y. Morrison, W. L. Queen and J. R. Long, Chem. Sci.,
2017, 8, 4387-4398; (c) Z. Niu, X. Cui, T. Pham, P. C. Lan,
H. Xing, K. A. Forrest, L. Wojtas, B. Space and S. Ma,
Angew. Chem., Int. Ed., 2019, 58, 10138-10141.

(@) K. Ikemoto, Y. Inokuma, K. Rissanen and M. Fujita, J. Am.
Chem. Soc., 2014, 136, 6892-6895; (b) W. M. Bloch,
A. Burgun, C. J. Coghlan, R. Lee, M. L. Coote, C. J. Doonan
and C. ]J. Sumby, Nat. Chem., 2014, 6, 906-912; (c)
A. Burgun, C. J. Coghlan, D. M. Huang, W. Chen,
S. Horike, S. Kitagawa, J. F. Alvino, G. F. Metha,
C. J. Sumby and C. J. Doonan, Angew. Chem., Int. Ed., 2017,
56, 8412-8416; (d) M. T. Huxley, A. Burgun, H. Ghodrati,
C. ]J. Coghlan, A. Lemieux, N. R. Champness, D. M. Huang,
C.J. Doonan and C. J. Sumby, J. Am. Chem. Soc., 2018, 140,
6416-6425; (¢) R. ]J. Young, M. T. Huxley, E. Pardo,

Chem. Sci., 2020, 1, 5447-5452 | 5451


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc01796e

Open Access Article. Published on 07 May 2020. Downloaded on 1/11/2026 4:41:38 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

N. R. Champness, C. J. Sumby and C. J. Doonan, Chem. Sci.,
2020, 11, 4031-4050.

19 A. J. Blake, N. R. Champness, T. L. Easun, D. R. Allan,
H. Nowell, M. W. George, ]. Jia and X.-Z. Sun, Nat. Chem.,
2010, 2, 688-694.

20 (a) R. L. Siegelman, T. M. McDonald, M. 1. Gonzalez,
J. D. Martell, P. J. Milner, J. A. Mason, A. H. Berger,
A. S. Bhown and J. R. Long, J. Am. Chem. Soc., 2017, 139,
10526-10538; (b) P. J. Milner, R. L. Siegelman, A. C. Forse,
M. L. Gonzalez, T. Runcevski, J. D. Martell, J. A. Reimer
and J. R. Long, J. Am. Chem. Soc., 2017, 139, 13541-13553;
(¢) C. M. McGuirk, R. L. Siegelman, W. S. Drisdell,
T. Runcevski, P. J. Milner, J. Oktawiec, L. F. Wan, G. M. Su,
H. Z. H. Jiang, D. A. Reed, M. 1. Gonzalez, D. Prendergast
and J. R. Long, Nat. Commun., 2018, 9, 5133.

21 (@) M. Taddei, Coord. Chem. Rev., 2017, 343, 1-24; (b)
S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich and
R. A. Fischer, Adv. Mater., 2018, 30, 1704501; (c) D. Yang
and B. C. Gates, ACS Catal., 2019, 9, 1779-1798.

22 (a) J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon,
E. J. DeMarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen,
P. C. Stair, R. Q. Snurr, O. K. Farha and J. T. Hupp, J. Am.
Chem. Soc., 2013, 135, 10294-10297; (b) P. Deria,
J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury,
R. Q. Snurr, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc.,
2013, 135, 16801-16804; (¢) N. Planas, J. E. Mondloch,
S. Tussupbayev, ]J. Borycz, L. Gagliardi, J. T. Hupp,
O. K. Farha and C. J. Cramer, J. Phys. Chem. Lett., 2014, 5,
3716-3723; (d) P. Deria, W. Bury, ]J. T. Hupp and
O. K. Farha, Chem. Commun., 2014, 50, 1965-1968; (e)
S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang,
M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Angew. Chem.,
Int. Ed., 2015, 54, 14696-14700; (f) D. Yang, V. Bernales,
T. Islamoglu, O. K. Farha, J. T. Hupp, C. J. Cramer,
L. Gagliardi and B. C. Gates, J. Am. Chem. Soc., 2016, 138,
15189-15196.

23 (@) J. Jiang and O. M. Yaghi, Chem. Rev., 2015, 115, 6966
6997; (b) R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and
O. K. Farha, J. Mater. Chem. A, 2016, 4, 1479-1485; (c)
S. Ling and B. Slater, Chem. Sci., 2016, 7, 4706-4712.

24 C. A. Trickett, K. J. Gagnon, S. Lee, F. Gandara, H.-B. Biirgi
and O. M. Yaghi, Angew. Chem., Int. Ed., 2015, 54, 11162~
11167.

25 D. Yang, M. A. Ortuiio, V. Bernales, C. J. Cramer, L. Gagliardi
and B. C. Gates, J. Am. Chem. Soc., 2018, 140, 3751-3759.

26 (a) K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40,
498-519; (b) S. M. Cohen, Chem. Rev., 2012, 112, 970-1000;
(¢) J. D. Evans, C. ]J. Sumby and C. J. Doonan, Chem. Soc.

5452 | Chem. Sci., 2020, 1, 5447-5452

View Article Online

Edge Article

Rev., 2014, 43, 5933-5951; (d) S. M. Cohen, J. Am. Chem.
Soc., 2017, 139, 2855-2863.

27 R. Wei, C. A. Gaggioli, G. Li, T. Islamoglu, Z. Zhang, P. Yu,
O. K. Farha, C. J. Cramer, L. Gagliardi, D. Yang and
B. C. Gates, Chem. Mater., 2019, 31, 1655-1663.

28 J. R. Sams and T. B. Tsin, in The Porphyrins, ed. D. Dolphin,
Academic Press, New York, NY, 1st edn, 1979, ch. 9, vol. 4,
pp. 425-478.

29 (a) F. Ouyang, J. N. Kondo, K.-i. Maruya and K. Domen, J.
Phys. Chem. B, 1997, 101, 4867-4869; (b) K. T. Jung and
A.T. Bell, J. Catal., 2001, 204, 339-347.

30 D. Ongari, P. G. Boyd, S. Barthel, M. Witman, M. Haranczyk
and B. Smit, Langmuir, 2017, 33, 14529-14538.

31 Examples of olefin epoxidation by Fe porphyrin metal-
organic frameworks: (a) Z. Zhang, L. Zhang, L. Wojtas,
M. Eddaoudi and M. ]J. Zaworotko, J. Am. Chem. Soc., 2012,
134, 928-933; (b) C. Zou, T. Zhang, M.-H. Xie, L. Yan,
G.-Q. Kong, X.-L. Yang, A. Ma and C.-D. Wu, Inorg. Chem.,
2013, 52, 3620-3626.

32 J. T. Groves and T. E. Nemo, J. Am. Chem. Soc., 1983, 105,
5786-5791.

33 (a) W. Nam, M. H. Lim, H. ]J. Lee and C. Kim, J. Am. Chem.
Soc., 2000, 122, 6641-6647; (b) W. ]. Song, Y. J. Sun,
S. K. Choi and W. Nam, Chem.-Eur. J., 2006, 12, 130-137;
(¢) M. Guo, H. Dong, J. Li, B. Cheng, Y.-q. Huang,
Y.-q. Feng and A. Lei, Nat. Commun., 2012, 3, 1190; (d)
M. Guo, Y.-M. Lee, M. S. Seo, Y.-J. Kwon, X.-X. Li, T. Ohta,
W.-S. Kim, R. Sarangi, S. Fukuzumi and W. Nam, Inorg.
Chem., 2018, 57, 10232-10240.

34 A. D. Cardenal, A. Maity, W.-Y. Gao, R. Ashirov, S.-M. Hyun
and D. C. Powers, Inorg. Chem., 2019, 58, 10543-10553.

35 (@) M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank and
M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 12639-12641;
(b) O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen
and J. T. Hupp, J. Am. Chem. Soc., 2011, 133, 5652-5655; (c)
M.-H. Xie, X.-L. Yang, Y. He, J. Zhang, B. Chen and
C.-D. Wu, Chem.-Eur. J., 2013, 19, 14316-14321; (d)
W. Zhang, P. Jiang, Y. Wang, J. Zhang, J. Zheng and
P. Zhang, Chem. Eng. J., 2014, 257, 28-35.

36 D. Feng, H.-L. Jiang, Y.-P. Chen, Z.-Y. Gu, Z. Wei and
H.-C. Zhou, Inorg. Chem., 2013, 52, 12661-12667.

37 (a) M. W. Grinstaff, M. G. Hill, J. A. Labinger and H. B. Gray,
Science, 1994, 264, 1311-1313; (b) J. Kim, R. G. Harrison,
C. Kim and L. Que, J. Am. Chem. Soc., 1996, 118, 4373-
4379; (¢) A. Gunay and K. H. Theopold, Chem. Rev., 2010,
110, 1060-1081.

38 D. Macikenas, E. Skrzypczak-Jankun and J. D. Protasiewicz, J.
Am. Chem. Soc., 1999, 121, 7164-7165.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc01796e

	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metaltnqh_x2013organic frameworkElectronic...
	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metaltnqh_x2013organic frameworkElectronic...
	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metaltnqh_x2013organic frameworkElectronic...
	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metaltnqh_x2013organic frameworkElectronic...
	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metaltnqh_x2013organic frameworkElectronic...


