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Recent advances in N-heterocyclic carbene-based
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In nature, a number of enzymes use thiamine diphosphate as a coenzyme to catalyze the pyruvate

decarboxylation. The resultant enamine, a so-called "Breslow intermediate,” is known to perform single

electron transfer to various electron acceptors. Inspired by this enzymatic catalysis, N-heterocyclic
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carbene (NHC)-catalyzed radical reactions have been developed. This minireview highlights the recent

progress and developments in NHC-based radical catalysis. This minireview is categorized according to

DOI: 10.1039/d0sc01538e

rsc.li/chemical-science transfer/radical-radical coupling.

1. Introduction

N-heterocyclic carbene (NHC) catalysis, which exhibits a charac-
teristic property to harness umpolung reactivity, has received
considerable attention as a powerful tool for organic synthetic
reactions. NHC catalysis through a two-electron reaction pathway
has been extensively studied.* The two-electron reaction process
can access umpolung reactivity of carbonyls as acyl anions,
enolates and homoenolates. On the other hand, NHC-catalyzed
radical reactions through a one-electron reaction pathway are
also known although the process remains challenging and much
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the reaction types; oxidation type reaction and carbon—carbon bond formation through single electron

less developed. In biological systems, there are a number of
enzymes utilizing thiamine diphosphate (ThDP, vitamin B1
derivative) as a coenzyme to catalyze the oxidative decarboxyl-
ation of pyruvate (Scheme 1).2 The resultant enamine, a so-called
“Breslow intermediate”,®> performs single electron transfer to
various electron acceptors such as lipoamides, flavin adenine
dinucleotide and Fe,S,.* The NHC-catalyzed radical reactions in
the single-electron transfer (SET) manifold have been introduced
in 2001.° The crystal structure of the free radical intermediate of
pyruvate ferredoxin oxidoreductase was disclosed. The redox and
electron transfer properties of Breslow intermediates have been
also studied by Fukuzumi and co-worker in late 1990s.® They
noted that a series of enolate form of Breslow intermediate
derived from a thiamine analogue and aldehyde in the presence
of excess amount of base, which has been alternatively called as
active aldehyde, has extremely low oxidation potential (Eox =
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Scheme 2 Redox properties of enolate form of Breslow intermediate.

—0.97 to —0.78 V vs. SCE) and small reorganization energy (A =
12.0 to 12.9 kcal mol ") (Scheme 2). These features make it
a strong reducing agent. Additionally, the resultant Breslow
intermediate-derived radical obtained by single electron oxida-
tion was a persistent one.

Inspired by the enzymatic catalysis and these early studies,
NHC-catalyzed radical reactions in organic synthesis have been
developed to date. Due to the nature of highly reactive radicals,
these reactions enabled the introduction of sterically bulky
substituents, which used to be difficult in the well-known NHC
catalysis involving a two-electron reaction pathway. This mini-
review highlights the recent progress and developments in the
NHC-based radical catalysis. This minireview is categorized
according to the reaction types; oxidation type reaction (Chapter
2) and carbon-carbon bond formation through SET/radical-
radical coupling (Chapter 3).

2. Oxidation type reaction

In 2008, Studer and co-workers reported the pioneering
example of the synthetic reaction through NHC-based radical
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Scheme 3 NHC-catalyzed oxidation of aldehydes to esters.

catalysis (Scheme 3).” The protocol enabled the oxidation of
aldehydes to esters. This process involves two continuous single
electron oxidations of Breslow intermediate by TEMPO to form
the corresponding azolium ketone. In 2010, the Studer group
used 3,3',5,5'-tetra-tert-butyldiphenoquinone as the stoichio-
metric oxidant instead of TEMPO.”>¢ In 2014, Chi and co-
workers reported the NHC-based radical catalysis for reductive
homo-coupling reaction of nitroethylenes (Scheme 4).* The
reaction goes through nitroalkene-derived radical anions under
SET process. In this process, the Breslow intermediate did not
participate in the bond formation, which just acted as an elec-
tron donor.

The Rovis group’ in 2014 and the Chi group in 2015 inde-
pendently reported asymmetric B-hydroxylation reactions of
enals using chiral triazolium NHC catalyst (Scheme 5). This
process involves the SET event between Breslow intermediate
and nitrobenzene or the derivative followed by radical recom-
bination between the resultant two radicals, a homoenolate-
centered radical and an oxygen-centered radical. Based on
this system, several radical B-functionalizations using enals
have been developed.' In 2015, the Rovis group reported the

.
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Scheme 5 NHC-catalyzed enantioselective B-hydroxylatioin of enals.

enantioselective synthesis of 3,4-disubstituted cyclopentanones
through dimerization of enals.'” In 2017, the Ye group reported
oxidative [3 + 2] annulation of dioxindoles and enals.*?

In addition to the use of TEMPO or nitroarenes as the SET
oxidant shown above, the Sun group and the Chi group indepen-
dently enabled the use of polyhalides as oxidants for the SET
process. In 2016, the Sun group reported dihalomethylenation of
enals. The process involves the radical addition between carbon-
centered trihalomethyl radical and dienolate intermediate
derived from enal and triazolium type NHC catalyst to form
carbon-carbon bond formation (Scheme 6).** In 2017, the Chi
group used polyhalides such as CCl, and C2Cl6 as oxidants in the
NHC-catalyzed functionalization of aldehydes or enals.* The
dienolate intermediate undergoes two SET processes with poly-
halides to produce the corresponding acyl triazolium intermediate.

In 2019, the Ye group reported the synergistic combination of
NHC catalysis with Ru photoredox catalysis for the y- and e&-

via

Y
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Scheme 7 y-Alkylation of enals with alkyl halides through synergistic
Ru photoredox/NHC catalysis.

alkylation of enals with alkyl halides bearing an electron-
withdrawing group such as cyano or ester to produce y-multi-
substituted-o,B-unsaturated esters (Scheme 7). The radical
addition of alkyl radical, which is generated from alkyl halide by
Ru photocatalysis, to dienolate intermediate derived from enal by
NHC catalysis produces homoenolate radical. The subsequent
SET event between the homoenolate radical and a radical cation
form of Ru photocatalyst affords an acyl azolium intermediate.

In 2016, the Chi group reported the reductive coupling of
nitrobenzyl bromides and activated ketones or imines using
aldehydes as a formal reductant (Scheme 8)."” The reaction
involves the generation of nitrobenzyl radical intermediates
from nitrobenzyl bromides followed by formal 1,2-addition. The
authors did not rule out the reaction pathway involving nitro-
benzyl anion generated from additional single electron reduc-
tion of the nitrobenzyl radical.

3. Carbon-carbon bond formation
through SET/radical—radical coupling

The NHC-catalyzed radical reactions described in Chapter 2
afforded the formal oxidized product through single electron
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Scheme 8 Reductive carbonyl coupling of nitrobenzyl bromides.
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Scheme 10 Radical intermediates in oxidative NHC catalysis.

oxidations of Breslow intermediate. On the other hand, the
direct radical-radical coupling of the persistent Breslow
intermediate-derived radical with carbon-centered radical
species has not been disclosed until quite recently.

In 2015, the Rehbein group re-evaluated the mechanism of
NHC-catalyzed intermolecular Benzoin condensation (Scheme
9)."® Thus, radical pairs that is derived from Breslow-
intermediate through SET process was observed and charac-
terized. In 2019, Bertrand and Martin elucidated the charac-
teristics of Breslow intermediate-derived radical species by EPR
spectra, DFT calculation and CV spectrometry (Scheme 10).*
Then, they implied the intermediacy of captodatively stabilized
radicals in NHC-catalyzed oxidative functionalization of alde-
hydes or enals using mild oxidants. These reports by Rehbein
and Bertrand hinted that Breslow intermediate-derived radical
could participate in radical-radical coupling for the bond
forming reaction.

In 2019, our group discovered that the persistent Breslow
intermediate-derived radical couples with transient alkyl radical
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Scheme 11 NHC-catalyzed decarboxylative alkylation of aldehydes.
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Acylalkylation of alkenes through NHC-catalyzed radical

in the carbon-carbon bond forming process (Scheme 11).2°**
This unprecedented radical-radical coupling is based on
kinetic phenomenon, persistent radical effect (PRE).?> This
achievement could definitely expand the scope of the NHC-
based radical catalysis. Specifically, thiazolium NHC catalysis
promoted the unprecedented decarboxylative coupling of aryl
aldehydes and tertiary or secondary alkyl carboxylic acid-
derived redox-active esters to produce aryl alkyl ketones. The
redox ester is a source of alkyl radical specie. In this report,
Breslow intermediate is presumed to have necessity of depro-
tonation by Cs,CO; base so that to reach enough reduction
potential for SET with redox ester.® Thus, an enolate form of
Breslow intermediate performs SET to a redox ester, and the
obtained Breslow intermediate-derived radical couples with an
alkyl radical. The protocol has wide substrate scope and
enabled the functionalization of pharmaceutical drugs and
natural products.

Our group applied the NHC-based radical catalysis into
three-component coupling using aldehydes, alkenes and
tertiary alkyl carboxylic acid-derived redox-active esters (Scheme
12).* The introduction of tertiary alkyl group and acyl group to
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Scheme 13 Synthesis of 3-ketocarbonyls through NHC-catalyzed
radical relay.
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Scheme 14 NHC-catalyzed deaminative alkylation of aldehydes.

carbon-carbon double bonds occurred with complete regiose-
lectivity. The radical relay process involves SET from the enolate
form of Breslow intermediate to a redox active ester and radical
addition of the resultant alkyl radical to an alkene followed by
radical-radical coupling. The key design of this radical relay
process is the proper match on reaction rates of several
competing radical reactions. Recently, this protocol was applied
to the synthesis of d-ketocarbonyls using tertiary o-bromo-
carbonyls instead of redox active esters (Scheme 13).>

In 2020, the Hong group enabled the use of redox active
Katritzky pyridinium salts instead of redox active esters in the
alkylation of aldehyde and the three-component alkylacylation
of alkene (Scheme 14).>® Katritzky salts can be directly reduced
by the enolate form of Breslow intermediate to generate a ketyl
radical and an alkyl radical and then radical-radical coupling
with two radical species proceeds to yield a ketone.

In 2019 and 2020, the Li group,*® the Wang group,*” and the
Yang and Wu group®® reported the acylfluoroalkylation of
alkenes based on our NHC-catalyzed three-component coupling
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reaction, respectively (Schemes 15 and 16). Togni I reagent or
perfluoroalkylbromide instead of redox ester is used as an
electron acceptor in the step of SET.

In 2020, the Scheidt group developed the synergistic merger
of NHC-based radical catalysis and Ir photoredox catalysis for
benzylation of acyl azoliums, which are prepared from carbox-
ylic acids, to form ketones (Scheme 17).>° In this case, benzyl
Hantzsch esters and acyl imidazoliums were used as precursor
of alkyl radical and acyl azolium, respectively. The combination
of NHC and Ir photoredox catalysis enabled a SET with the acyl
azolium, and the subsequent radical-radical coupling with an
alkyl radical allowed for the construction of a carbon-carbon
bond to furnish a ketone.

In 2020, the Hopkinson group reported a different type of
NHC-based radical catalysis. The synergistic cooperation of
NHC catalysis and light activation enables the annulation using

N
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Scheme 17 Conversion of carboxylic acids to ketones through
synergistic Ir photoredox/NHC catalysis.
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o-toluoylfluorides and trifluoroacetophenones (Scheme 18).*
The mechanistic studies and time-dependent DFT calculations
suggested that the direct excitation of acyl azolium, which is
derived from acyl fluoride and NHC, by UV irradiation could
create biradical-ketone-like photochemical reactivity. The
triplet excited state is applied to the photoenolization and the
subsequent Diels-Alder process to produce isochroman-1-one
derivatives. This process does not involve the radical-radical
coupling.

4. Conclusions

In this minireview, we summarized the NHC-catalyzed radical
reaction with two categories; oxidation type reaction (Chapter 2)
and carbon-carbon bond formation through SET/radical-
radical coupling (Chapter 3). In particular, the finding that the
persistent Breslow intermediate-derived radical couples with
transient alkyl radical in the carbon-carbon bond forming
process described in Chapter 3, opened the door to a new design
guideline for NHC organocatalysis. Although these NHC-
catalyzed radical reactions enabled the solution of various
problems in organic synthesis, significant future contributions
will be needed in terms of the development of stereoselective
and universal bond-formation reactions, the application to
biomolecules and the mechanistic studies by intermediate
analysis and theoretical calculations.
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