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hemistry experiments performed
directly on a blockchain virtual computer†

Magnus W. D. Hanson-Heine *a and Alexander P. Ashmoreb

Blockchain technology has had a substantial impact across multiple disciplines, creating new methods for

storing and processing data with improved transparency, immutability, and reproducibility. These

developments come at a time when the reproducibility of many scientific findings has been called into

question, including computational studies. Here we present a computational chemistry simulation run

directly on a blockchain virtual machine, using a harmonic potential to model the vibration of carbon

monoxide. The results demonstrate for the first time that computational science calculations are feasible

entirely within a blockchain environment and that they can be used to increase transparency and

accessibility across the computational sciences.
Distributed ledger technology has become an area of signicant
interest since the release of the rst blockchain based crypto-
currency, Bitcoin, in 2008.1 Since then blockchains have been
used to increase transparency, immutability, and resistance to
censorship in many areas outside of nance, including
improving the reliability of medical trials,2 increasing energy
efficiency,3 and allowing transparent and censorship resistant
computation.4 The development of blockchain computation
opens up the possibility of running computational science
experiments. However, physical simulations have not previously
been performed directly on blockchain virtual machines, and
the rst simulation of this kind is presented here.

Open public blockchains aim to create an electronic ledger
with a provably tamperproof record of data that is available for
anyone to review or add to in perpetuity without the possibility of
censorship by a third party. This is carried out principally using
a cryptographic hashing function that maps variable length input
data to a xed-length output called a hash. Any change to the
input results in an unpredictable change to the hash, and blocks
of newly appended data are required to contain a hash of the
previous block so that revisions will invalidate the hash of the
subsequent block and allow changes to be identied and removed
automatically using a process known as “proof-of-work”.1 The
details of how proof-of-work operates tomaintain these properties
have been discussed elsewhere.1,4

Several studies now indicate that a signicant amount of the
scientic literature cannot be replicated across a wide range of
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disciplines. In 2015 Aarts et al. examined reproducibility in the
psychological scientic literature and found just over a third of
the reproduced studies yielded statistically signicant results
compared to 97% of the original publications, with replication
rates of roughly half in cognitive psychology and roughly
a quarter in social psychology.5 A 2016 study of the economics
literature by Camerer et al. found that ca. 39% of the sampled
studies could not be replicated,6 and a 2018 study found that ca.
38% of social and behavioural science papers could not be
replicated even when sampled exclusively from the journals
Nature and Science.7 A 2008 meta-analysis by Fanelli also indi-
cated that roughly 2% of the scientists surveyed had admitted to
fabricating, falsifying or modifying data or results at least once,
with roughly a third admitting to “other questionable research
practices”,8 further emphasising the importance of replication.

Although reproducibility rates are expected to be higher in
the computational sciences where simulations made up of
a nite set of operations carried out on a deterministic
computer allow for bit-for-bit replication, several publications
have indicated that replication difficulties persist in elds as
diverse as computational chemistry,9 harmonic analysis,10 and
neuroscience.11,12 Computational replication is oen hindered
by a lack of access to the original output data, input les, so-
ware, hardware, and workow, which can be difficult to main-
tain over extended periods of time.13 Reliably storing and
accessing data can also be complicated by scientic censor-
ship.14 Many rejections in peer-reviewed journals are due to
quality control. However, there is evidence that some journal
editors and referees can be hostile to work that challenges their
current beliefs,15–22 which can delay or even prevent researchers
from gaining access to peer-reviewed archiving services. In
extreme cases, governments have also been known to remove or
restrict access to the data provided by peer-reviewed
journals.23–25
This journal is © The Royal Society of Chemistry 2020
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In 2015 the Ethereum network became the rst instance of
a blockchain acting as a virtual computer capable of performing
general computation.4 Blockchain based computational science
experiments can in principle solve many of the problems dis-
cussed for physical simulations by providing an effectively
unchangeable record of the computational environment,
including the exact piece of soware used, a complete record of
the associated computational steps, and open access for review
and replication. However, computational science experiments
using blockchains have not previously been performed. So-
ware has not yet been developed to facilitate this kind of
calculation, blockchains are not currently optimized for
running these types of calculation, and the computational
power of blockchains is still very limited compared to that of
most conventional computers.

In order to prove that physical simulations can be performed
using a blockchain, an atomistic molecular dynamics simula-
tion was performed for the carbon monoxide molecule over a 40
fs time scale with a harmonic potential used to model the
carbon–oxygen molecular bond. Soware compatible with the
Ethereum blockchain was written in the Solidity programming
language in order to run a diatomic molecular dynamics
trajectory with a variation of the velocity Verlet algorithm used
to integrate Newton's equations of motion in atomic units.26

The simulation was executed for 400 time steps of 0.1 fs with an
initial bond length of 120 pm. The model used an equilibrium
bond length parameter of 112.8 pm and a force constant of
1855 Nm�1, together with the masses of 12C and 16O assigned to
the atoms, in order to model carbon monoxide. An equivalent
simulation was written using the C# programming language,
and executed on a local machine for comparison.

The molecular dynamics trajectories in Fig. 1 show that
simulations of this kind can be performed entirely within
a blockchain environment, and that doing so produces an
identical output to local execution on a conventional machine
within user specied precision of 1 � 10�10 a0. The details of
this precision threshold, both algorithms, and their outputs can
be found in the ESI.† The simulation that was carried out on the
Ethereum network was also recorded on the blockchain in real
time. The addition of both the code and simulation output into
blocks of data on the blockchain happened as part of the
process of running the simulation, and these entries can be
Fig. 1 Molecular dynamics trajectories showing bond length variation
over time for (a) the trajectory coded in C# and run on a local
computer, and (b) the rescaled trajectory coded in Solidity and run on
the Ethereum blockchain.

This journal is © The Royal Society of Chemistry 2020
used to track the provenance of the data for review and repli-
cation studies. The hashes and block numbers corresponding
to these data on the Ethereum blockchain are included in the
ESI† in addition to the discussion below, and can be used to
both access the data and validate that the simulation record
remains unchanged.

Timing when experiments occur can also be important for
a number of reasons. When similar discoveries are made by
independent researchers, the claims to the discoveries are oen
adjudicated based on when the specic observations or calcu-
lations were made, with famous examples including the
controversy between Leibniz and Newton over who invented
calculus. Knowing the order in which experiments were carried
out is also useful when analyzing methods of hypothesis testing
and conclusion formation that can differ depending on the
order in which observations happen. An important property of
many blockchains, including Ethereum, is therefore the crea-
tion of an internal chronology. New blocks are appended
regularly, and the designed immutability of old data means that
the position which calculations have in the blockchain acts as
an automatic time stamp that can be used to verify the order in
which they were performed. The computational complexity of
solving the hashing function needed to append data is also
commonly modied to give a regular time interval between
blocks that can be used to approximate timings between
different blockchains.1,4 In this case a preliminary trajectory of
10 time steps (1 fs) was run on the Ethereum blockchain prior to
the main production run. The two trajectories have been
recorded in blocks 9 360 161 and 9 360 178, respectively. This
information provides an effective time stamp showing the order
in which these simulations were performed. The output data
and blockchain address of the preliminary simulation are also
given in the ESI,† and the transaction and block details for both
simulations are shown in Fig. 2.

The complexity and length of these simulations are currently
limited by the capacity of the available blockchains. The Ether-
eum block for the production simulation was generated in ca.
11 s compared to a ca. 135 ms execution time for the C# simu-
lation when executed on a standalone desktop machine running
with a i7-4790k CPU and 32 GB of 1333 MHz DDR3 RAM. Each
simulation was also recorded in a single block so as to avoid the
need for manual interaction with the blockchain during their
execution. While the exact computational power of the Ethereum
network is variable, the network has a xed limit to themaximum
amount of computation that can be performed as part of gener-
ating a single block. This computational limit is measured in
units known as gas, and is currently set at 10 000 000 gas at the
time of writing. A more detailed description of the relationship
between gas and computational operations can be found in the
ESI† and associated resources. However, at this time we were
unable to signicantly increase the complexity of the simulation
beyond the level reported. By comparison, large scale distributed
computational science resources operating without distributed
ledger technology can have signicant computational
throughput and storage requirements, with the well known
example of the Folding@Home protein folding network report-
edly calculating over 1 � 1018 operations per second earlier this
Chem. Sci., 2020, 11, 4644–4647 | 4645
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Fig. 2 Transaction and block data for the 1 fs preliminarymolecular dynamics trajectory (top panel) and the 40 fs productionmolecular dynamics
trajectory (bottom panel).
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year. Signicant advancements in blockchain computer science
and developments in combining “on-chain” and “off-chain”
calculation data are therefore necessary before blockchain
calculations can become a routine method for performing
computational experiments.

Conclusions

These results show that simulations of this kind are possible
and that there can be signicant benets to using blockchains
for computational science. The ability to run computational
experiments with the properties outlined is expected to have an
increasing impact across the computational sciences as the
capacity of these blockchains continues to scale, and current
plans to introduce blockchain database sharding to the Ether-
eum network are expected to produce a greater than 1000 fold
increase in the computational throughput in the near future.
Furthermore, running hybrid computational experiments that
use blockchain based calculation and storage for certain parts
of an experiment, and conventional off-chain computers for
others, may allow some of these advantages to be introduced
selectively at a signicantly reduced computational cost.
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