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Regioselective B(3,4)—H arylation of o-carboranes
by weak amide coordination at room temperaturet
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Palladium-catalyzed regioselective di- or mono-arylation of o-carboranes was achieved using weakly
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o-Carboranes, icosahedral carboranes - three-dimensional
arene analogues - represent an important class of carbon-
boron molecular clusters." The regioselective functionalization
of o-carboranes has attracted growing interest due to its
potential applications in supramolecular design,” medicine,?
optoelectronics,* nanomaterials,” boron neutron capture
therapy agents® and organometallic/coordination chemistry.” In
recent years, transition metal-catalyzed cage B-H activation for
the regioselective boron functionalization of o-carboranes has
emerged as a powerful tool for molecular syntheses. However,
the 10 B-H bonds of o-carboranes are not equal, and the unique
structural motif renders their selective functionalization diffi-
cult, since the charge differences are very small and the elec-
trophilic reactivity in unfunctionalized o-carboranes reduces in
the following order: B(9,12) > B(8,10) > B(4,5,7,11) > B(3,6).®
Therefore, efficient and selective boron substitution of o-car-
boranes continues to be a major challenge.

Recently, transition metal-catalyzed carboxylic acid or
formyl-directed B(4,5)-H functionalization of o-carboranes has
drawn increasing interest, since it provides an efficient
approach for direct regioselective boron-carbon and boron-
heteroatom bond formations (Scheme 1a),” with major contri-
butions by the groups of Xie," and Yan," among others.”
Likewise, pyridyl-directed B(3,6)-H acyloxylations (Scheme
1b),"* and amide-assisted B(4,7,8)-H arylations™* (Scheme 1c)
have been enabled by rhodium or palladium catalysis, respec-
tively.'® Despite indisputable progress, efficient approaches
for complementary site-selective functionalizations of o-car-
boranes are hence in high demand.'” Hence, metal-catalyzed
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This strategy provided an efficient approach for the selective activation of B(3,4)-H bonds for
regioselective functionalizations of o-carboranes.

position-selective B(3,4)-H functionalizations of o-carboranes
have thus far not been reported.

Arylated compounds represent key structural motifs in inter
alia functional materials, biologically active compounds, and
natural products.” In recent years, transition metal-catalyzed
chelation-assisted arylations have received significant atten-
tion as environmentally benign and economically superior

a) Carboxylic acid or formyl-directed B(4,5)—H activation
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d) Amide coordination for regioselective B(3,4)—H arylation (this work)

0 B(3,4—H Activation o) o
' @82 L o
NR2R? AV rers NR?R?
1 7 1 1
H I R R

B(3,4)-diarylation B(3)-monoarylation

E Organometallic B-H Activation

other— BH| |

Regioselective Arylation

Room Temperature
Di/Mono Selectivity
unprecedented DFT studies

Scheme 1 Chelation-assisted transition metal-catalyzed cage B—H
activation of o-carboranes.

This journal is © The Royal Society of Chemistry 2020


http://crossmark.crossref.org/dialog/?doi=10.1039/d0sc01515f&domain=pdf&date_stamp=2020-10-12
http://orcid.org/0000-0003-0220-3250
http://orcid.org/0000-0001-7034-8772
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc01515f
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC011039

Open Access Article. Published on 05 May 2020. Downloaded on 2/16/2026 10:36:58 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

alternatives to traditional cross-coupling reactions.” Within our
program on sustainable C-H activation,* we have now devised
a protocol for unprecedented cage B-H arylations of o-carbor-
anes with weak amide assistance, on which we report herein.
Notable features of our findings include (a) transition metal-
catalyzed room temperature B-H functionalization, (b) high
levels of positional control, delivering B(3,4)-diarylated and
B(3)-monoarylated o-carboranes, and (c) mechanistic insights
from DFT computation providing strong support for selective
B-H arylation (Scheme 1d).

We initiated our studies by probing various reaction condi-
tions for the envisioned palladium-catalyzed B-H arylation of o-
carborane amide 1a with 1-iodo-4-methylbenzene (2a) at room
temperature (Tables 1 and S1}). We were delighted to observe
that the unexpected B(3,4)-di-arylated product 3aa was obtained
in 59% yield in the presence of 10 mol% Pd(OAc), and 2 equiv.
of AgTFA, when HFIP was employed as the solvent, which
proved to be the optimal choice (entries 1-5).2* Control experi-
ments confirmed the essential role of the palladium catalyst
and silver additive (entries 6-7). Further optimization revealed
that AgOAc, Ag,0, K,HPO,, and Na,CO; failed to show any
beneficial effect (entries 8-11). Increasing the reaction temper-
ature fell short in improving the performance (entries 12 and
13). The replacement of the amide group in substrate 1a with
a carboxylic acid, aldehyde, ketone, or ester group failed to

Table 1 Optimization of reaction conditions®

4-lodotoluene (2a) V!A\ o
H'@«O Pd(OAC), (10 mol %) . A e,
i mE  agditive (2.4 equiv)
Solvent
25°C, 16 h e
1 4aa

Entry  Additive  Solvent Yield of 3aa/%  Yield of 4aa/%
1 AgTFA PhMe 0 0
2 AgTFA DCE 0 o
3 AgTFA 1,4-Dioxane 0 0
4 AgTFA TFE 21 3
5 AgTFA HFIP 59 4
6 AgTFA HFIP 0 o
7 — HFIP 0 0
8 AgOAc HFIP 5 <3
o Ag0 HFIP <3 3
10 K;HPO, HFIP 0 0
1 Na,CO;  HFIP 0 0
12 AgTFA HFIP 53 i
13 AgTFA HFIP 42 3¢
14 AgTFA HFIP 71 <3¢
15 Ag,CO; HFIP 9 34
16 Ag,CO; HFIP 5 55/¢

% Reaction conditions: 1a (0.20 mmol), 2 (0.48 mmol), Pd(OAc), (10
mol%), additive (0.48 mmol), solvent (0.50 mL), 25 °C, 16 h, and
isolated yield. ” Without Pd(OAc),. © At 40 °C. ¢ At 60 °C. ° TFA (0.2
mmol) was added. / 1a (0.20 mmol), 2a (0.24 mmol), Pd(OAc), (5.0
mol%), and Ag,CO; (0.24 mmol). £ 2a was added in three portions
every 4 h. DCE = dichloroethane, TFE = 2,2,2-trifluoroethanol, HFIP
= hexafluoroisopropanol, and TFA = trifluoroacetic acid.
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Scheme 2 Cage B(3,4)-H di-arylation of o-carboranes.

afford the desired arylation product (see the ESIt). We were
pleased to find that the use of 1.0 equiv. of trifluoroacetic acid
(TFA) as an additive improved the yield to 71% (entry 14). To our
delight, replacing the silver additive with Ag,COj; resulted in the

0 Pd(OAC); (10 mol %) o
H_@/{ + Al AgTFA (2.4 equiv) Ar >
N(R?), TFA (1.0 equiv) N(R?)
H™ R HFIP, 25°C, 16 h Ar R
1a 2 3

R = Me 3ba: 51%
R=H 3bb:53%

3dd: 54% 3ea: 52%

3fa: 47%

CCDC 1983607 CCDC 1983615
3ea 3fa

L

CCDC 1983612

Scheme 3 Effect of substituents on B—H diarylation. ?At 50 °C.
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Scheme 4 Cage B(3)-H mono-arylation of o-carboranes.

formation of B(3)-H mono-arylation product 4aa as the major
product (entries 15-16).

With the optimized reaction conditions in hand, we probed
the scope of the B-H di-arylation of o-carboranes 1a with
different aryl iodides 2 (Scheme 2). The versatility of the room
temperature B(3,4)-H di-arylation was reflected by tolerating
valuable functional groups, including bromo, chloro, and eno-
lizable ketone substituents. The connectivity of the products
3aa and 3ab was unambiguously verified by X-ray single crystal
diffraction analysis.

Next, we explored the effect exerted by the N-substituent at
the amide moiety (Scheme 3). Tertiary amides 1b-1f proved to
be suitable substrates with optimal results being accomplished
with substrate 1a. The effect of varying the cage carbon

a) reactions with radical inhibitor

[o]
e
Ph

H

Radical Inhibitor (1.0 equiv)
2a (2.4 equiv)
Pd(OAc), (10 mol %)
AgTFA (2.4 equiv)
HFIP, 25°C, 16 h

1a

Radical Inhibitor

TEMPO 27%
1,4-Cyclohexadiene 52%

b) reaction in the dark
o 2a (2.4 equiv)
Pd(OAC); (10 mol %)
H NEt, AgTFA (2.4 equiv)
Ph

H HFIP, 25°C, 16 h
In The Dark
1a
¢) transformation of 4aa
2a (1.2 equiv)

DTS o Pd(OAc), (5 mol %)
H VA"; NEt, AgTFA (1.2 equiv)
Ph HFIP, 25°C, 16 h

M
4aa © 3aa: 79%

Scheme 5 Control experiments.
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substituents R" on the reaction’s outcome was also probed, and
both aryl and alkyl substituents gave the B-H arylation products
and the molecular structures of the products 3dd, 3ea and 3fa
were fully established by single-crystal X-ray diffraction.

The robustness of the palladium-catalyzed B-H functionali-
zation was subsequently investigated for the challenging cata-
lytic B-H monoarylation of o-carboranes (Scheme 4). The B(3)-
H monoarylation, as confirmed by single-crystal X-ray diffrac-
tion analysis of products 4aa and 4ai, proceeded smoothly with
valuable functional groups, featuring aldehyde and nitro
substituents, which should prove invaluable for further late-
stage manipulation.

To elucidate the palladium catalysts’ working mode, a series
of experiments was performed. The reactions in the presence of
TEMPO or 1,4-cyclohexadiene produced the desired product
3aa, which indicates that the present B-H arylation is less likely
to operate via radical intermediates (Scheme 5a). The palladium
catalysis carried out in the dark performed efficiently (Scheme
5b). Compound 4aa could be converted to di-arylation product

a) First B-H activation transition states at the B3 and B4 positions

TS1-B3
0.0 kcal mol!

TS1-B4
5.8 kcal mol!

b) Second B-H activation transition states at the B4 and B6 positions

TS2-B4 TS2-B6
0.0 kcal mol! 3.4 kcal mol™!
00000000

AgPdF NOCBH

Fig. 1 Computed relative Gibbs free energies in kcal mol™ and the
optimized geometries of the transition states involved in the B—H
activation at the PBEO-D3(BJ)/def2-TZVP+SMD(HFIP)//TPSS-D3(BJ)/
def2-SVP level of theory. (a) First B—H activation transition states at the
B3 and B4 positions. (b) Second B—H activation transition states at the
B4 and B6 positions. Irrelevant hydrogen atoms in the transition states
are omitted for clarity and the bond lengths are given in A

This journal is © The Royal Society of Chemistry 2020
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3aa with high efficiency, indicating that 4aa is an intermediate
for the formation of the diarylated cage 3aa (Scheme 5c).

To further understand the catalyst mode of action, we
studied the site-selectivity of the o-carborane B-H activation for
the first B-H activation at the B3 versus B4 position and for the
second B-H activation at the B4 versus B6 position using density
functional theory (DFT) at the PBE0-D3(BJ)/def2-
TZVP+SMD(HFIP)//TPSS-D3(BJ)/def2-SVP level of theory (Fig. 1).
Our computational studies show that the B3 position is
5.8 keal mol " more favorable than the B4 position for the first
B-H activation, while the B4 position is 3.4 kcal mol ' more
favorable than the B6 position for the second B-H activation. It
is noteworthy that here the interaction between AgTFA and
a cationic palladium(u) complex was the key to success, being in
good agreement with our experimental results (for more details,
see the ESIT).

A plausible reaction mechanism is proposed which
commences with an organometallic B(3)-H activation of 1a with
weak assistance of the amide group and assistance by AgTFA to
form the cationic intermediate I (Scheme 6). Oxidative addition
with the aryl iodide 2 affords the proposed cationic palladiu-
m(v) intermediate II, followed by reductive elimination to give
the B(3)-mono-arylation product 4aa. Subsequent B(4)-arylation
occurs assisted by the weakly coordinating amide to generate
the B(3,4)-di-arylation product 3aa. Due to the innate higher
reactivity of the B(4)-H bond in intermediate 4aa - which is
inherently higher than that of the B(6)-H bond - the B(3,6)-di-
arylation product is not formed.

In summary, room temperature palladium-catalyzed direct
arylations at cage B(3,4) positions in o-carboranes have been
achieved with the aid of weakly coordinating, synthetically
useful amides. Thus, palladium-catalyzed B-H activations
enable the assembly of a wealth of arylated o-carboranes. This
method features high site-selectivity, high tolerance for

NEt,
@WS + AgTFA
Pd'X, ”

X =AcO or TFA" 1a

CF3CO,H

FsC ]

Scheme 6 Proposed reaction mechanism.
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functional groups, and mild reaction conditions, thereby
offering a platform for the design and synthesis of boron-
substituted o-carboranes. Our findings offer a facile strategy
for selective activations of B(3,4)-H bonds, which will be
instrumental for future design of optoelectronics, nano-
materials, and boron neutron capture therapy agents.
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