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Double annulation of ortho- and peri-C—H bonds
of fused (hetero)arenes to unusual oxepino-
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Direct difunctionalization of chemically distinct ortho- and peri-C—H bonds of fused hetero(arenes) is
illustrated through an unusual one-pot domino {[4 + 2] & [5 + 2]} double annulation with alkynes for the
first time. This process is viable under Ru(i)-catalysis using a sulfoximine directing group and builds four
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bonds [(C-C)-(C-N) and (C-C)-(C-0)] in a single operation. Such synthetic manifestation offers access

to uncommon [6,7]-fused oxepino-pyridine skeletons. DFT calculations provide mechanistic insight into
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Introduction

Diversity oriented synthesis provides efficient access to complex
molecular architectures that are present in natural products,
pharmaceuticals, agrochemicals, and advanced-materials.* This
approach has sustained the development of novel therapeutic
agents or probes for molecular biology, based on the resilient
interaction of heterocycles with biological systems.>* Contin-
uous efforts have therefore been directed towards the concep-
tion of straightforward synthetic methods for the construction
of complex heteroarenes.? In this regard, transition-metal (TM)
catalyzed annulations of C-H bonds of (hetero)arenes with
alkynes have proven invaluable.*® In particular, the TM-
catalyzed direct functionalization or annulation of the ortho-
C(2)-H bond of fused (hetero)arenes with alkynes are successful
with acid/amide directing groups (DGs) via 5/7-membered
metallacycle (Fig. 1A-I).> With -OH, -NHR/, and -SR” DGs, the
reactivity is shifted towards the peri-C(8)-H bond through 5/7-
membered metallacycle (Fig. 1A-II).°* On the other hand, the
activation of the peri-C(8)-H bond of fused (hetero)arene
carboxylic acid derivatives [e.g. 1-naphthoic acid] is much more
challenging and underdeveloped, due probably to the
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this double annulation of naphthoic acid derivatives with alkynes and corroborate the participation of
a ruthena-oxabicyclooctene intermediate, which is responsible for the rare 7-membered ring formation.

involvement of a strained [6,6,6]-fused metallacycle (Fig. 2A).”
Insertion of an alkyne would not even funnel such C-H activa-
tion step, as it would lead to an even more strained [6,6,8]-fused
metallacycle (Fig. 2A). Thus, the molecular rigidity and confor-
mational strain have hampered the development of such
annulations at the peri-C(8)-H bond to form 7-membered fused
compounds (Fig. 2A).%°

Recent domino one-pot double annulation of o/0’-C-H
bonds of (hetero)arenes with alkynes have led to [6,6]-fused
heteroaryls.'®** Although important issues of regio- and che-
moselectivity, cumbersome mixtures due to incomplete
conversion, catalytic viability, etc., could be addressed,” such
domino double C-H annulations were not extended to the
formation of [6,7]-fused heteroarenes. To make such synthetic
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Fig. 1 Background: Annulation of ortho-C(2)-H & peri-C(8)-H bond
of 1-naphthalene derivatives with alkynes.
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A. annulation of peri-C(8)-H bond of 1-naphthoic acid derivatives
(unexplored)
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C-H activation:

involves a strained [6,6,6]-fused metallacycle
annulation:

involves an unstable [6,6,8]-fused metallacycle

B. This work: double annulation of both ortho- & peri-C—H bonds
of fused-(hetero)arenes
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Fig. 2 Multiple annulation of (hetero)arenes.

plan feasible, we hypothesized a Ru-catalyzed double annula-
tion of 1-naphthoic acid derivatives with alkynes.

We believed the reaction would be initiated by N-aided C(2)-
H activation and annulation with the alkyne to first form an
angularly [6,6,6]-fused benzo[A]isoquinolinol. As peri-C-H
bonds of fused-arenes are susceptible to electrophilic substi-
tution, we anticipated an O-directed ruthenation of the prox-
imal peri-C(8)-H bond to provide Int-Z (Fig. 2B). Finally, second
alkyne incorporation to Int-Z and reductive elimination would
build the unusual [6,7]-fused oxepino-pyridine motif (Fig. 2B).
This one-pot domino double annulation uses the methylphenyl
sulfoximine (MPS)-DG."”” Thus, the sequential activation of
ortho- and peri-C-H bonds and annulation results in the
formation of N- and O-enabled 6- and 7-membered rings on
fused (hetero)arenes by generating four bonds (C-C & C-N and
C-C & C-0) in a single operation (Fig. 2B).

Results and discussion

This one-pot [4 + 2] & [5 + 2] annulation was developed under
Ru-catalysis using N-[1-naphthoyl]methylphenyl sulfoximine
(1a) and 4-octyne (2a). The optimization studies are detailed in
Table 1. The oxepino-pyridine 3aa was detected in 8% yield
using {[RuCly(p-cymene)], (5.0 mol%), AgSbFs (20 mol%),
NaOAc (1.0 equiv.)} as catalytic system, in CICH,CH,Cl (DCE) at
120 °C for 24 h (entry 1). The cleavage of the sulfoximine motif
presumably helps the formation of 3aa.** In general, metal
acetates facilitate Ru-mediated C-H activation through CMD
(concerted metalation deprotonation), and also act as oxidant
in the regeneration of the active catalyst.* Accordingly, the
double annulation was slightly improved when the reaction was
conducted in the presence of the redox active bases Mn(OAc),,
AgOAc, and Zn(OAc), 2H,0 (entries 2-4), while Cu(OAc),-H,0
was found more promising as it delivered 3aa in 35% yield

This journal is © The Royal Society of Chemistry 2020
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Table 1 Optimization of reaction conditions®

npy  [RuCla(p-cymene)],
OO (5 mol %)
H . || additive 1(20 mol %) np
SOPRVe e 1O A

H additive 2 (1.0 equiv)

-

MPS™~0 "Pr solvent, 120°C, 24h "
1a 2a
Additive 1

Entry (20 mol%) Additive 2 (1.0 equiv.) Solvent Yield 3aa” (%)
1 AgSbFg NaOAc DCE 8

2 ” Mn(OAc), DCE 12
3 ” AgOAc DCE 15
4 ” Zn(0Ac), - 2H,0 DCE 11
5 ” Cu(OAc),-H,0 DCE 35
6 KPF, ” DCE <5¢
7 NaPF, ” DCE 6

8 AgBF, ” DCE 30
9 AgSbF, " MeCN <5¢
10 v - Toluene 7
11 ” ” TCE 22
12 ” ” 1,4-Dioxane 41
13?  AgSbF Cu(OAc),-H,0 1,4-Dioxane 68
14°  AgSbF¢ Cu(OAc),-H,0 1,4-Dioxane 77
15 AgSbF, — 1,4-Dioxane <5°
16 — Cu(OAc),-H,0 1,4-Dioxane <5°

1 O DG DG 1y Oy NHNH Hig O,
H NHMe, 1(0%); H O nN
NHTSs, Il (0%); OO O H o
NH,, Il (22%); H

NHOH, IV (15%); V (7%) VI (26%)

¢ Conditions: 1a (0.3 mmol), 2a (0.9 mmol), [RuCl,(p-cymene)],
(5.0 mol%), additive-1 (20 mol%), additive-2 (0.3 mmol), solvent (2.0
mL) at 120 °C. ?Isolated yield. **H NMR conversion. ¢ [RuCl,(p-
cymene)], (10 mol%), AgSbF, (40 mol%) was used. ¢ 2a (1.2 mmol),
[RuCly(p-cymene)], (10 mol%), AgSbFs (40 mol%), Cu(OAc), -H,O (1.5
equiv.) was used. DCE = CICH,CH,Cl, TCE = 1,1,2,2-tetrachloroethane.

(entry 5). Additives such as KPF,, NaPF,, or AgBF, instead of
AgSbF, were not beneficial (entries 6-8). The reaction efficiency
was low when conducted in MeCN, toluene or TCE (entries 9-
11). The domino diannulation in 1,4-dioxane provided 3aa in
41% yield (entry 12). The yield of 3aa was significantly improved
to 68% when 10 mol% of Ru-catalyst and 40 mol% of AgSbF,
were used (entry 13). Finally, the catalytic conditions
comprising [Ru(p-cymene)Cl,], (10 mol%), AgSbF, (40 mol%),
and Cu(OAc),-H,0 (1.5 equiv.) in 1,4-dioxane at 120 °C for 24 h
were found optimum (entry 14), producing 3aa in 77% yield.
Control experiments revealed that the silver salt and the acetate
base were crucial (entries 15 and 16).**

To validate the role of DGs in this one-pot domino {[4 + 2] &
[5 + 2]} double annulation strategy, various DG-enabled 1-
naphthyl bearing amides (I-VI) were subjected to the annula-
tion with 2a under the optimized conditions (bottom of Table
1). The substrates having NH-Me (I) and NH-tosyl (II) DGs
proved unreactive, whereas, simple 1-naphthylamide (III)
underwent this domino annulations with 2a producing 3aa in
poor yield.® The N-oxidizable group protected amides [IV (with
N-O bond), V, and VI (with N-N bond)] provided 3aa in 15%,

Chem. Sci., 2020, 11, 10770-10777 | 10771
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7%, and 26% yield, respectively. Thus, the MPS-DG was found
most effective for the construction of the [6,7]-fused oxepino-
pyridine skeleton.™

The generality of this annulation among fused (hetero)are-
nes exhibiting peri-C-H bonds and unactivated alkynes was
explored under the optimized catalytic conditions (Scheme 1).
The annulation of naphthalene derivatives 1a-1, bearing either
electron-donating (Me, OMe, OEt), labile halo (F, Cl, Br),
electron-withdrawing (CO,Me, COMPS), arene (Ph, pyrene), and
OBn substituents at position 4, 5, or 6, with 2a, was successful in
producing the respective 6,7-fused oxepino-pyridine 3aa-la in
45-87% yield. The tolerance of modifiable functionalities (i.e. F,
Cl, Br, CO,Me, COMPS) offers the possibility of further func-
tionalization. The core structure of 3ha and 3ja were elucidated
by X-ray crystallographic analysis.'*** Likewise, this double-
annulation of 1a with the other internal alkynes 5-decyne (2b)
and 3-hexyne (2¢) delivered 3ab (79%) and 3ac (80%), respec-
tively. Moreover, the gram scale synthesis of 3ac (1.15 g) with
recovery of PhSOMe (0.44 g) showed the robustness of the catalytic
system and the transformable nature of the MPS group.®® Polyarene
bearing scaffolds, for example: phenanthrene (1m), pyrene (1n),
and perylene (10), delivered 3ma, 3nb and 3oa, albeit in
moderate yield.

Importantly, benzothiophene derivative 1p smoothly reacted
with 2b to afford 3pb in 82% yield. Indole-3-carboxylic acid
derivatives 1q-s were used in this double annulation with 2b
and 2a. The respective complex heteroarenes 3qb, 3rb, and 3sa
were reliably accessed. The common N-protecting groups benzyl
and MOM did not prevent the reaction. The yields are moderate
in these cases, but the construction of these molecular scaffolds
with three heteroatoms (i.e. S-N-O, N-N-O) in a 5,6,7-fused system
is remarkable. Notably, the current synthetic plan was successful in
making 8 bonds (4 C-C, 2 C-N, and 2 C-0) in a single operation;
thus, an extended m-conjugated system 4a with two oxepino-
pyridine motifs was made. The reaction of 1a with diphenyla-
cetylene provided polycyclic amides through linear dia-
nnulation.">"* On the other hand, the reaction of a thioalkyne or
an ynamide with 1a produced complex mixtures (Scheme 1).
Lastly, the terminal alkyne phenylacetylene underwent dimer-
ization under the optimized oxidative condition.

The site-specific introduction of a novel functionality on an
unreactive site of a complex motif has tremendous significance
to the field of complex molecule synthesis and is often termed
as late stage functionalization (LSF).** In particular, LSF
through C-H functionalization is very useful in drug discovery
and draws significant attention from the scientific community.
Accordingly, a range of biologically relevant motifs moulded
with MPS-bearing naphthalene-1-carboxylic acid (5a-g) were
synthesized and were independently subjected to the optimized
reaction conditions with 2a and 2c¢ (Scheme 2). Thus, the
desired  oxepino-pyridines  6aa-fB-citronellol, = 6bc-cam-
phorsultam, 6ca-(—)-boreneol, 6ec-cholesterol, 6fc-estrone, and
6gc-lithocholic acid were constructed without any structural
(chemical and stereochemical) changes of the complex archi-
tecture.™ The poor-to-moderate synthetic yields are due to low
conversions. Isolation of unreacted precursors justifies the
mass balance of the transformation.
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Scheme 1 Synthesis of 6,7-oxepinol2,3-b]pyridine. Reactions were
carried out with 1 (0.3 mmol) and 2 (1.2 mmol). ?*Gram scale: 1a (1.54 g,
5.0 mmol); PhS(O)Me (63%) was isolated. °Reactions were carried out
in DCE. “2a (1.8 mmol).

This journal is © The Royal Society of Chemistry 2020
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L [RuCly(p-cymene)], ERM
R (10 mol %)
OO / AgSbFg (40 mol %)
+ .
H R 7 Cu(OAc),'H,0 (1.5 equiv)
H 1,4-dioxane, 120 °C, 24 h
MPS”Y0 T g 2

BRM = biologically relevant motif

R ="Pr, 2a; Et, 2¢

6aa, 18%7
R-citronellol

6bc, 40%
camphorsultam

cholesterol Et Et

6fc, 23%?

6ca, 32%?
(-)-borneol

6da, 33%7
testosterone 0

Me,Q

6gc, 31%7

estrone Et Et lithocholic acid

Scheme 2 Double annulation of MPS-bearing naphthalene-1-carboxylic acid moulded in biologically relevant motifs. Reactions were carried
out with 5 (0.3 mmol), 2 (1.2 mmol), [RuCly(p-cymene)l» (10 mol%), AgSbFe (40 mol%), 1,4-dioxane (2.0 mL) at 120 °C for 24 h. “Isolation of

unreacted precursors (20—-55%).

Encouraged by the broad range of oxepino-pyridines deriva-
tives obtained (Schemes 1 and 2), the title reaction was next
envisaged with two different alkynes. However, the difference in
reactivity, regio- and chemoselectivity with different alkynes led
to unexploitable annulation mixtures.”” To make this chal-
lenging unsymmetrical transformation viable, a two-step annu-
lation sequence was tested. Accordingly, benzo[%]isoquinolinone
7a (0.5 mmol, 75%) was accessed from 1a and 2a when the
reaction was carried out in presence of AcOH under Ru-catalysis
(Scheme 3, Conditions A). Presumably the acid suppresses the
second annulation through proto-demetallation."* Next, the
annulation of 7a with 1,2-diaryl alkynes (2d-g) led to the
respective [6,7]-fused oxepino-pyridines (8ad-ag) in moderate
yields (Scheme 3). The structure of 8ae was unambiguously
confirmed by X-ray crystallography.**** A deuterium scrambling
study and competition experiments were then performed to gain
some mechanistic insight into this annulation (Scheme 4).

Exposing 1a to the optimized conditions in presence of
CD3;CO,D (2.5 equiv.) resulted in D-incorporation at C2 (65%)
and C8 (62%) positions (eqn (1)). Similarly, 55% of deuterium
incorporation occurred at C8 in an identical experiment with 7a
(eqn (2)). Therefore, activation of both the ortho- and peri-C-H
bonds of MPS-enabled-1-naphthylamide is reversible. The
competitive annulation of an equimolar mixture of 1c¢ and 1f
with 2a led to a 2 : 1 ratio of 3ca and 3fa; thus, an electron-rich
arene reacts faster than an electron-poor one (eqn (3)).

In general, the m-conjugated polyfused heteroarenes show
interesting photophysical properties. Thus, the absorption and

This journal is © The Royal Society of Chemistry 2020

emission spectra of oxepino-pyridines 3nb, 30a, 3pb, 3qb, 3sa,
4a, and 8ae were measured in dichloromethane (1 x 10~°).** Of
note, compounds 3nb and 3ob show emission maxima at 436-
512 nm with broad bandwidths and weak intensities.**

The mechanism of the title reaction has been studied
computationally, employing the Gaussian 09 software
package.'” Following a recent report, optimizations were carried

"Pr
1a 4+ // Ru-cat. Ru-cat.
np condition A condition B l
i

r\

2a 7a, 75%

Ar
____________ pr SN0 /A
. Ar—=——Ar E ”| i
| Ar=CgHs, 2d ! 5
: p-'BuCSSHi, 2 ! 7~ Ar = CgHs, 8ad; 39%°
' p-OMeCH,. 2F! p-'BuCgH,, 8ae; 52%?
; Z o 5249’ : p-OMeCgH,, 8af; 35%°
1 P 6714, !

p-FCgHg, 8ag; 55%

Scheme 3 Unsymmetrical double-annulation of arenes with different
alkynes. Conditions A: 1 (0.5 mmol), 2a (1.0 mmol), [RuCly(p-cymene)l,
(5.0 mol%), AgSbFg (20 mol%), AcOH (4.0 mmol), DCE (2.5 mL) at
120 °C for 20 h. Conditions B: 7a (0.3 mmol), 2 (0.45 mmol), [RuCly(p-
cymene)l, (7.5 mol%), AgSbFg (30 mol%), Cu(OAc),-H,O (0.3 mmol),
KH,PO,4 (0.6 mmol), 1,4-dioxane (2.0 mL) at 120 °C for 20 h. ?Isolation
of unreacted mono-annulation product (30-45%).

Chem. Sci., 2020, 11, 10770-10777 | 10773
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Scheme 4 Deuterium scrambling and competition studies.

out with the M06 functional, the 6-31G(d,p) basis set for all
main group elements, and the LANL2DZ+f (ECP)*® basis set for
Ru. Single point calculations were conducted at the MO06/6-
311++G(d,p)-SDD+f(ECP) level of theory. Solvation energies were
obtained at the single point level using SMD approach for 1,4-
dioxane. The discussed values are solvent-corrected Gibbs free
energies at 393.15 K in kcal mol™" (AG;e3). The molecular
system A [1a, 2-butyne (2.0 equiv.), [RuOAcL]" (L = p-cymene),
AcO™ ] was used as a reference for the free energies (Fig. 3).
Thus, A contains two acetates to ensure two deprotonation of

C-H metalation Ligand exchange

[Ru(OAc)L]*
AcO”
Me———Me

Fig. 3 Free energy profile (AGses, kcal mol™2), part 1 (first annulation).
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1a. The complexation of the putative active species [RuOAc(p-
cymene)]” with 1a at first provides B with a release of
20.5 kecal mol™'. Next, C-H metalation occurs through TSgc
lying 11.9 kecal mol ' above B to provide metallacycle C
(—23.6 keal mol ™). Elimination of acetic acid and insertion of
2-butyne delivers the alkyne-complex E (more stable than C by
2.6 kecal mol ™). Alkyne insertion does not yield the proposed
metal-alkenyl complex F/, but rather its valence isomer F, which
is a metallacyclopropene as witnessed by the distortion of the 7-
membered ring and by the short Ru-C distance of 1.85 A. The
formation of F is slightly endergonic by 0.3 kcal mol ' that
requires 14.9 kcal mol ' of free energy of activation (TSgg).
Then, intramolecular nucleophilic addition to the N=S bond
gives the annulation intermediate G (see arrows in F'). The
conversion of F to G is the rate-determining step with a barrier
25.0 keal mol ™" (19.6 kcal mol ™" from B), which is consistent
with the temperature of the reaction (120 °C). Although the
resulting complex G is less stable than F by 3.2 kcal mol ™", the
acetate aided dissociation of [Ru(OAc)L]" promotes sponta-
neous elimination of PhSOMe from the free ligand to give H,
located as low as —69.0 kcal mol~" on the energy surface. The
liberation of PhSOMe, the conjugation of the anion, and the
strong H-bond in H assist the loss of the sulfur moiety.
Finally, protonation of H by AcOH produces pyridine I or the
pyridone species J. In line with the experimental observations, J
is significantly more stable. The mechanistic insight directed
towards the second annulation for the construction of pyridine-
fused 7-membered oxepine ring is depicted in Fig. 4. The
complexation of H (at —69.0 kcal mol™ ') with [Ru(OAc)L]"
exergonic by 56.4 kcal mol™" and yields K at —125.4 kcal mol .
Intermediate K shows a H-bond between the acetate ligand and

Alkyne Annulation Elimination
insertion
TSk
-0.9
RDS | 19,6 keal/imol
i —
ot 22.7 \\ . G
-25.9
O O\\ g
N "Me
R“\L

AcO
metal -cyclopropene A

intermediate
PhSOMe

[Ru(OAc)L]*

o‘\ Ph

g’
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Fig. 4 Free energy profile (AGzgs, kcal mol ™), part 2 (second annulation).

the peri-H of the naphthalene moiety. The Ru-C bond is short
(2.36 A), due to the coordination of Ru to the ipso-carbon and
makes the peri-H acidic. The C-H metalation of the pre-
organized complex K provides L (at —137.5 kcal mol™* on the
energy surface). This step requires 6.5 kcal mol " free energy of
activation (TSk.). Next, the substitution of acetic acid with
second alkyne equivalent is endergonic by 10.9 kcal mol ™' to
afford N (—126.6 kcal mol '). Of particular interest, the
formation of 7-membered ring does not arise from the reductive
elimination of a simple 8-membered metallacycle (0”). Instead,
at the expense of 15.9 kcal mol " of free energy of activation, the
ruthena-oxabicyclooctene complex o, located at
—132.7 keal mol ™', is achieved from N via TSyo. Among the
Lewis depiction of O and O, the structure O is supported by the
Ru-C7* distance of 2.35 A and other geometrical parameters.
Its formation can be understood as an intramolecular [2 + 2]
cycloaddition between the alkyne and a Ru=C bond as shown
in N’ (a fictive valence isomer of N). This process eventually
avoids the participation of a highly strained phenanthrene-
containing 8-membered ring (0”). Then, the reductive elimi-
nation of O demands 25.2 kcal mol " free energy of activation to
give P. This process is slightly endergonic and is the rate-
determining step of this second annulation process. The
transfer of the RuL moiety from P to the precursor 1a produces
the desired [6,7]-fused oxepino-pyridine skeleton Q and chelate
R. This step is exergonic by 7.9 kcal mol~". Finally, as it is
generally accepted, one can then propose that complex R
transforms into B by Cu(OAc), mediated oxidation. Based on

This journal is © The Royal Society of Chemistry 2020

the experimental observations and insightful computational
data, the mechanism of this double annulation is sketched in
Fig. 5.*

The active Ru-catalyst {generated from [Ru(p-cymene)Cl,],,
AgSbFg, and AcO™} first coordinates to MPS and activates the
C(2)-H bond of 1a to form I (D in Fig. 3). The coordination of
alkyne to I and its migratory insertion leads to II (F in Fig. 3).

Cu(OAc), 1a

[Ru(OAc)LT*

(L= p—cymene;\

Fig. 5 Plausible catalytic cycle.
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Next, the intramolecular nucleophilic addition to the N=S
bond provides III (G in Fig. 3), which is the rate-determining
step of the mono-annulation. The acetate-aided expulsion of
[Ru(OAc)L]" and elimination of PhSOMe leads to pyridone
species IV (H in Fig. 3). Next, direct C(8)-H ruthenation of IV
affords V (M in Fig. 4). Then, alkyne insertion into V generates
the unusual ruthena-oxabicyclooctene complex VI (O in Fig. 4).
The reductive elimination of VI gives VII (P in Fig. 4) and is the
rate-determining step of the second annulation. Finally,
Cu(OAc), mediated transfer of RuL moiety to 1a liberates the
desired [6,7]-fused oxepino-pyridine skeleton.

Conclusion

In summary, we have developed an unprecedented Ru-catalyzed
sulfoximine-directed one-pot domino {[4 + 2] & [5 + 2]} double
annulation of 1-naphthoic acid derivatives with alkynes for the
synthesis of unique [6,7]-fused oxepino-pyridine motifs. This
transformation functionalizes both chemically distinct ortho-
and peri-C-H bonds of fused-hetero(arenes) through double
annulation, making four (C-C & C-N and C-C & C-O) bonds in
a single operation. In addition, two-step unsymmetrical annu-
lations with different alkynes are also shown. The detailed DFT
calculations endorse the participation of metal-cyclopropene
and ruthena-oxabicyclooctene intermediates. The construction
of biologically relevant drugs anchored oxepino-pyridine scaf-
folds, broad scope, and gram scale synthesis make the trans-
formation synthetically viable.
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