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Large-scale targeted exploration of metal–organic frameworks (MOFs) with characteristics such as specific

surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly

important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/

phobic character) or their physicochemical stability. We report here the development of algorithms to

break down the overarching family of MOFs into a number of subgroups according to some of their key

chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC)

software, we introduce new approaches to allow researchers to browse and efficiently look for targeted

MOF families based on some of the most well-known secondary building units. We then classify them in

terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry

(i.e. functional groups) and chirality. This dynamic database and family of algorithms allow

experimentalists and computational users to benefit from the developed criteria to look for specific

classes of MOFs but also enable users – and encourage them – to develop additional MOF queries

based on desired chemistries. These tools are backed-up by an interactive web-based data explorer

containing all the data obtained. We also demonstrate the usefulness of these tools with a high-

throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC

software, will guide future exploration of MOFs and similar materials, as well as their design and

development for an ever-increasing range of potential applications.
Developed two decades ago, metal–organic frameworks (MOFs)
have attracted an enormous attention in the eld of porous
materials.1–7 Owing to their chemical diversity and structural
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variety, MOFs have been intensely explored to target industrial
challenges including gas storage8–12 and separation,13–17 catal-
ysis,18–20 chemical sensing,21–23 biomedical imaging as well as
biomolecule encapsulation and drug delivery.24–29 Because of
their synthetic exibility, the number of reported MOF mate-
rials has increased dramatically in the past decade.

Given their interest and the vast amount of research done in
this area, the nature of MOFs has been under intense debate for
some years, creating a philosophical debate that can be linked to
Wittgenstein's Tractatus, i.e. the identication of the relationship
between language and reality and the denition of the limits of
science.30 At this point, several research groups have developed
different MOF databases based on hypothetical or experimental
materials in order to study the domains of applicability of
MOFs.31–34 Mostly used for gas adsorption and separation, the
experimental materials databases focused on porous MOFs
present in the Cambridge Structural Database (CSD)35 at the time
of their publication. This effort to compile MOF structures
resulted in outstanding tools for their screening and study but
had some issues related to their regular update. To solve this
problem, we described in the past a complete collection of MOF
Chem. Sci., 2020, 11, 8373–8387 | 8373
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materials in the CSD, providing users access to all the existing
MOF materials through a single real-time updating resource. As
of January 2020, a staggering 99 075 MOFs exist in the CSD MOF
subset (2020.0 CSD release),1 fully integrated into ConQuest,36 the
primary structural search soware developed by the Cambridge
Crystallographic Data Centre (CCDC).

MOF databases in conjunction with molecular simulations
have proven to be extremely useful for the exploration of
structure–property landscapes and screening of MOFs to nd
optimal materials. This can be exemplied by the efforts of the
United States Materials Genome Initiative, aiming to accelerate
the way materials are developed and deployed to market.37 In
spite of the enormous advances implemented in high-
throughput simulations (HTS) and data mining, no standard
convention exists on how MOFs can be classied based on their
important chemical and structural anatomy. Indeed, previous
studies focused on the computational geometric analysis of
structures such as surface area, pore size and void fraction. This
is clearly useful for performing brute-force HTS for gas
adsorption and/or separation in the entire structural phase
space, giving a birds-eye point of view on property–performance
relationships. Despite being of huge interest for experimental-
ists, large-scale targeted exploration of MOFs with specic
characteristics such as a given chemical functionality, or
a family of specic metal-cluster, has not been widely explored
so far. A MOF identication scheme was recently developed to
enable rapid data searches amongst the existing databases.38

The open soware decomposes the structure and topology of
a given MOF using standard cheminformatics formats to assign
a unique identier to the MOF. In this process, interesting
information can be extracted from MOF databases, such as
most common linkers, polymorphs and topologies. The neces-
sity for such capabilities results from the MOF community's
growing knowledge on the advantages and challenges of MOFs,
which has enabled them to focus their research interests on
certain chemistries deemed relevant to their practice – an
excellent example is the recognition of the outstanding stability
of Zr-MOFs. By breaking down the big family of MOFs into
smaller hierarchical categories of materials that exhibit similar
features, researchers would benet from a clearer evaluation on
how theMOF landscape is structured in terms of what materials
have already been synthesized. Precise identication of
different classes of materials, as opposed to brute-force
screening, can also signicantly improve the way they are
studied for different applications.

As part of the CCDC's efforts to categorize crystalline mate-
rials, we report here the classication of MOFs according to
some of their key features and their evolution over time since
they were rst synthesized. Although the methods presented
here do not represent a standardized approach to the classi-
cation of MOFs, we believe these simple tools can help MOF
researchers navigate through the data available and highlight
the necessity to establish such standards. For easier data
exploration, we compiled all the obtained information and built
an interactive data visualization website at http://
aam.ceb.cam.ac.uk/mof-explorer/CSD_MOF_subset.
8374 | Chem. Sci., 2020, 11, 8373–8387
A CSD-integrated toolbox for the
exploration of the CSD MOF subset

In our previous work, we released a set of scripts for the removal
of bound and unbound solvents, useful for processing the
structural data before further calculations. To enable easy data
exploration of the CSD MOF subset, we present here two addi-
tions to the CSD toolbox consisting of: (i) ConQuest and CSD
Python API search queries and methods for specic types of
MOFs and (ii) a new script for the determination of framework
dimensionality. This toolbox uses the CCDC soware package
and can therefore be applied to the CSD MOF subset directly.
First, we categorize MOFs into some of the most well-known
secondary building units (SBU) and functional groups,
providing the possibility of looking for specic families of MOFs
within the CSD using a combination of the CSD Python API and
the Draw function in ConQuest. The latter enables users to dene
specic structural criteria corresponding to their target type of
structures. We provide an example of methods used for such
a targeted search later on in this paper. We also include here
a specic group of chiral MOFs, identied with the CSD Python
API. Second, we investigate the dimensionality of MOF networks
using an in-house script. This algorithm generates the smallest
box containing the smallest repeating unit of each structure. The
latter is then expanded and a new smallest-containing box is
created. The dimensions of the initial box and the last box are
then compared to determine in which directions the structure
has expanded. The script was tested on 1/5th of 52 787 structures
(i.e. 11 515). The results were compared to those obtained with
Zeo++,39 an open-source soware that is able to determine
framework dimensionality based on atom connectivity. 30% (i.e.
3663) of the results disagreed, which led to the visual inspection
of 2157 of these structures.We found that our in-house script was
correct in 93% of the cases where there was a disagreement.
Based on these comparisons and checks, we estimated our
predictions to be overall 97% accurate. The results obtained with
these tools are presented later on in this paper, and further
details of these tools are available in the ESI.† These new features
– all integrated in the CSD – will allow users to have access to
some of the most widely studied classes of MOFs in a single
resource and offer a unique platform to boost the applicability of
MOFs for a wide range of uses from gas storage/separation to
asymmetric catalysis and enantiomer separation. Researchers
can use the algorithms developed here to exploit the most recent
MOF subset in the CSD release and maintained by the CCDC
every quarter.1 The principles outlined here are also customizable
if need be; therefore, we encourage users to develop similar
algorithms for new families of MOFs according to their interests,
where the structures can be downloaded for computational
studies.
Textural properties of MOFs and their
evolution

The structural characterization discussed here is focused on the
porous MOFs from the CSD MOF subset version 5.37.1 From
This journal is © The Royal Society of Chemistry 2020
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a total of 55 547 non-disordered structures in the non-disordered
MOF subset, we excluded a number of MOFs from the structural
analysis due to presence of partial occupancy issues (583 MOFs)
and those containing missing framework hydrogens (2177
MOFs), leaving 52 787 structures. 8253 materials were found to
be porous according to previously described criteria, i.e.
a nitrogen probe sized molecule with a radius of 1.86 Å can
access the pores for geometric surface area calculations.1

Fig. S1–S3 and Table S1 of the ESI† show the CSD refcodes and
more detailed information on the excluded MOFs. Fig. 1 shows
distributions of the geometric properties of MOFs and their
evolution from 1995 to 2015; ESI† shows an animated version.
While very few MOFs were known until the early 21st century,
the dramatic increase in the number of structures from 2000 to
2015 is evidence of how the remarkable characteristics of MOFs
enable the exploration of a wide range of physical properties in
porous materials. Most MOFs are concentrated in regions with
pore sizes < 10 Å and surface areas < 2000 m2 g�1, possibly due
to the use of relatively inexpensive and commercially available
short linkers such as terephthalic acid and the fact that this
range of pore size is optimal for many gas storage and separa-
tion applications. As new synthesis methods of MOFs are
designed every day, the introduction of longer linkers, more
sophisticated SBUs and new topologies have continued
increasing during the past decade.40
Identification of target MOF families

We used ConQuest in the CSD MOF subset to identify MOFs
with the desired SBUs; ConQuest offers the user a wide range of
Fig. 1 Histograms comparing geometric properties for all the porous
diameter (LCD), (b) pore limiting diameter (PLD), (c) void fraction, (d)
animated version of these graphs can be found in the ESI.† All family-prop
be found online at http://aam.ceb.cam.ac.uk/mof-explorer/CSD_MOF_s

This journal is © The Royal Society of Chemistry 2020
exible search options based on the metal centers, organic
linkers or SBUs. We developed search criteria for six prototyp-
ical MOF families well studied in the literature: Zr-oxide nodes
(e.g. UiO-66), Cu–Cu paddlewheels (e.g. HKUST-1), ZIF-like, Zn-
oxide nodes, IRMOF-like, and MOF-74/CPO-27-like materials.
We also devised search criteria to identify MOFs containing
common functional groups such as alkyls, alkoxys, halogens as
well as polar functionalities, allowing to discriminate on the
surface chemistry and therefore on the hydrophilic/phobic
nature of the MOFs. We anticipate that these criteria intro-
duce guidelines for MOF researchers to perform quickly tar-
geted MOF searches, not only for the above classes of MOFs and
surface chemistry but also for additional ones; criteria can be
customized in ConQuest, as explained below, to look for new
MOF chemistries.

Intuitively, our initial approach to look for specic MOF
families was to fully draw and search for each SBU in ConQuest.
Interestingly, this approach resulted in fewer than expected
MOF hits in each category. This is because, when dealing with
innite polymeric structures, ConQuest carries out its searches
on the smallest repeating unit based on the crystallographic
symmetry, which may be different from the desired SBU, and
therefore missing out MOFs where the full metal cluster is not
represented. In other words, complete metal cluster informa-
tion is only “assembled” in full when the unit cell is requested.
To overcome this challenge regarding cluster representation, we
developed a series of criteria to ensure that even partially rep-
resented MOF secondary building units are included in our
search. Fig. 2 summarizes the criteria developed for the iden-
tication of each MOF family. We used a step-by-step approach,
MOFs in the CSD MOF subset from 1995 to 2015. (a) Largest cavity
density, (e) gravimetric surface area, (f) volumetric surface area. The
erty relationships of the 8253 porous MOFs presented in this work can
ubset.

Chem. Sci., 2020, 11, 8373–8387 | 8375
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where we started from the simplest search for a MOF family and
then gradually tuning the search criteria by including or
excluding certain bonds and connections in the metal cluster.
At each step, the resulting materials were constantly inspected
until all unwanted structures were removed and target MOFs
were identied. The green and red diagrams included in Fig. 2
represent search queries in ConQuest that are respectively
labeled as “must-have” and “must not have” queries. A criterion
for a target MOF family is either one single “must-have” query,
such as IRMOF-like structures, or a combination of “must-have”
and “must not have” queries. When several “must-have” queries
are represented separately, they correspond to an OR statement,
and therefore only one of the green diagrams is required to be
present in each search hit (see for example the Zr-oxide-based
family in Fig. 2). When several “must-have” queries are repre-
sented in the same dotted box, they correspond to an “AND”
statement, and therefore each search hit should contain all the
green diagrams (see MOF-74/CPO-27-type in Fig. 2).

We showcase here the derivation of the four search criteria
for the family of Cu–Cu paddlewheel MOFs, which are a good
example because they are usually not fully represented in
ConQuest; Fig. S4–S17† show the derivation of criteria for other
MOF families. Fig. 2a represents the diagram of one complete
paddlewheel and its connection to the linker via the two oxygen
atoms. However, there are multiple cases where only half of the
paddlewheel is represented. These structures are found using
Fig. 2b diagram, which contains only a section of the paddle-
wheel. We omitted the oxygen atoms from the linker, as we
found that keeping these atoms returns fewer target structures.
Fig. 2 Criteria developed for the identification of MOF families in the C
connection to the organic linkers. The target MOF families are zirconium
well as Cu–Cu paddle-wheeled materials. (a–d) Diagrams used to look
and (d) means the structures inside should be considered as one sing
structures. See ESI† for more details on each MOF family.

8376 | Chem. Sci., 2020, 11, 8373–8387
In this case, the two copper atoms are now bonded, corre-
sponding to the rotational axis of the paddlewheel. More
structures were found using the search criterion shown in
Fig. 2c diagram, which is in turn comprised of two parts. The
upper part brings in structures in which the represented pad-
dlewheel is “broken”. However, other Cu-based structures with
linear linkers are also included; this is avoided by adding the
lower part, which represents the connection between the metal
atoms and the linkers. The upper part of Fig. 2d diagram is
similar to the diagram in Fig. 2a, without the oxygen atoms from
the linkers bonded to the Cu atoms. Together with the lower
part of the search criterion, the diagram from Fig. 2d captures
structures where the paddlewheel and the metal-linker
connections are represented separately in ConQuest. Fig. S10†
shows the structure hits. All in all, the four “must-have” queries
result in 1426 structures, some of which are not of the target
type. To lter out these unwanted structures, we included
another set of “must not have” criteria according to specic
undesired structures (Fig. S11†). The combination of the “must-
have” and the “must not have” criteria leads to a total of 1015
MOFs containing Cu–Cu paddlewheel building blocks.

In order to extend a targeted search, we encourage MOF
researchers to access these groups of MOFs and use the
“combine queries” function in ConQuest for browsing and
search analysis of other desired structures in the CSD MOF
subset. Looking at the selected families shown in this work,
Fig. S28† shows the comparison of the geometric properties and
the number of structures in each MOF category. Combined
together, Zn-oxide and IRMOF-like materials account for 3187
SD MOF subset based on specific secondary building units and their
oxide, MOF-74/CPO-27-like, ZIF-like, zinc oxide and IRMOF-like, as

for structures containing Cu–Cu paddlewheels. The dotted box for (c)
le query. The red diagrams are queries used to eliminate undesired

This journal is © The Royal Society of Chemistry 2020
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structures, followed by 1015 for Cu–Cu paddlewheels, 274 for
ZIFs, 108 for CPO-27-like structures and 77 for Zr-oxide struc-
tures in the CSD 5.37 version from May 2016.
Identification of surface functionalities
in MOFs

Functionalization plays a crucial role in ne-tuning the chem-
ical and physical properties in MOFs. Rational incorporation of
chemical functionalities has been extensively employed using
various pre- or post-synthetic engineering techniques as well as
in computer models of MOFs for a breadth of applications
including carbon capture,41,42 gas separation and sensing,43–45

catalysis,46,47 light harvesting48 and optical luminescence.49 We
have considered a number of distinct functional groups cate-
gories such as polar functional groups (–NH2, –NO2, –CN,
–COOH, –OH), alkoxys (methoxy, ethoxy, propyloxy), alkyls
(methyl, ethyl, propyl and alkyls containing more than 4 carbon
atoms) and halogens (–F, –Cl, –Br). Fig. 3 shows the combina-
tion of ConQuest queries used, together with the CSD Python
API scripts, to target these functionalized MOFs. The use of the
CSD Python API makes it possible to ensure that the search
fragments are only present in the main framework and not part
of a solvent. The Python script is available in the ESI; Fig. S28–
S32† show the frequency of occurrence as well the geometric
properties for all MOFs with the functional groups described
above.
Identification of chiral MOFs

Many of the target subsets of MOFs explored in this work are
closely related to adsorption-based applications, which also
guide the criteria to design the queries to identify these subsets.
Thus, the list of 55 547 structures in the CSD MOF subset
narrows down to 8253 porous MOFs. Similarly, considering
other type of applications from a wider range of areas, we can
tune these queries according to a new set of criteria and design
a different subset suitable for these purposes. As an example of
this, precise knowledge of existing chiral MOFs and their
structural properties facilitates the identication and engi-
neering of MOF chirality for niche catalytic and enantio-
separation applications.14,50–52 Given the exibility provided by
CSD Python API scripts, we also included chirality of MOFs.
Here, we dened a chiral MOF when it presents either chiral
atoms in the structure or a chiral crystal packing. We found
4504 structures containing S/R-chiral atoms and 6859 structures
in Sohncke-chiral space groups; combinatorial searches of
chiral-ligand MOFs in chiral space groups gave 2010 structures.
It should be noted that we focused on R/S chirality and therefore
structures with e.g. metal lambda/delta or axially-chiral struc-
tures were not accounted for. Fig. 4 shows the physical and
geometric properties for 1911 chiral structures with non-zero
surface area values. This study brings some interesting histor-
ical insights. The group of chiral porous MOFs is included in
the 8253 porous MOF subset and comprises around a 23% of
the latter. As a result, the distribution of geometrical properties
This journal is © The Royal Society of Chemistry 2020
is similar, and the majority of chiral structures synthesized so
far contain small pores of < 10 Å and surface area values of <
2000 m2 g�1. However, non-porous structures are only �5% of
the whole group of chiral MOFs, which suggests the fact that
researchers were actually looking for porous chiral structures.
This is connected to the fact that more of 90% of chiral MOFs
were synthesized aer the 2000s, whenMOFs started growing as
a eld, to explore their potential for catalytic applications and
enantiomeric resolution.
Porous network connectivity and
framework dimensionality

Knowing the porous network connectivity or dimensionality
(also referred to as percolation) is important in determining
MOFs applicability in certain adsorption applications. For
example, 1D channeled MOFs have shown to be highly selective
in the separation of hydrocarbons due to favorable thermody-
namic or kinetic origins towards one component, depending on
channel size and shape.53–55 The diverse nature of building
units' linkage in MOFs results in variations of porous networks,
where the connectivity of a porous network is determined by
a geometric analysis of connecting pathways of porous
components, resulting in 1D channels and 2D or 3D networks.
Porous networks are normally sampled using mesh/grid-based
propagation techniques that map the void space into con-
nected components.56–59 To investigate the pore system acces-
sibility and dimensionality, we used Poreblazer,59 a freely
available set of tools for the structural characterization of
materials, to determine the geometrical parameters of the pore
networks for all 8253 porous structures in the MOF subset.
Fig. 5a shows the analysis, resulting in 86% 1D, 9% 2D and 4%
3D pore connectivity for these porous structures. The corre-
sponding refcodes are provided in the ESI.†

In addition to the pore network, framework dimensionality
is also critical for selecting an optimal MOF for a given appli-
cation. Whereas having a large landscape of structures helps to
set up a global point of view on property–performance rela-
tionships, the dimensionality of the structure will help to decide
which material is more practical. As previously explained, we
used our in-house developed script for the determination of the
framework dimensionality. The results for all 52 787 porous
and non-porous MOFs are included in Fig. 5a, where 40% of the
structures are 1D, 29% are 2D and 31% are 3D. The corre-
sponding refcodes are provided in the ESI.†
An insight into quality crystals of
different MOF families

When dealing with such a high amount of experimental data, it
is useful and interesting to have a better idea of the data quality.
A simple way of assessing the quality of crystal structures is to
analyze their crystallographic R-factors, available in the CSD
database and extractable via the CSD Python API. High R-
factors, typically above 10%, reect renement models that may
contain systematic errors.60 Fig. 5b shows the evolution of the R-
Chem. Sci., 2020, 11, 8373–8387 | 8377
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Fig. 3 Criteria developed to identify MOFs with common functionalities in the CSD MOF subset. (a) Polar groups (–NH2, –NO2, –CN, –COOH
and –OH). For the –CN case, the red box represents queries which target dicyanides that are chosen to be eliminated. This dicyanide search is
obtained via a combination of one “must-have” query and two “must not have” queries. The green diagram is thus an overall negative and the red
diagrams are double negatives; (b) alkoxys (methoxy, ethoxy, propyloxy); (c) alkyls (methyl, ethyl, propyl); (c0) alkyls (with more than 4 carbon
atoms on the left) and (d) halogens (–F,–Cl,–Br), and structureswith perfluoroalkane groups. The variable bonds are all the same type for queries
within the grey dotted box: single, double, aromatic or delocalized. For the three queries outside of the grey dotted box, the variable bonds are
either aromatic or delocalized. See ESI† for more details on each functional group.
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factors of the MOF materials from 1960 to 2015; Fig. S34 and
S35† show the characterization of the physical and geometric
properties for all MOFs and the corresponding families vs. R-
factors. Although the eld of MOFs is generally considered to
have started in the late 1990s (ref. 61 and 62) – as reected by
the increasing number of structures on Fig. 5b, scientists have
been working on coordination polymers since the late 1950s,
and even before. However, since the denition of MOFs is still
debated today,1,63,64 it is not straightforward to tell which
structure truly is the rst MOF. The oldest structure in the CSD
MOF subset dates back to 1940 and consists of a sodium
formate (NAFORM).65 The general opinion would hardly
8378 | Chem. Sci., 2020, 11, 8373–8387
consider this a MOF nowadays, although it still marginally ts
the criteria required for being part of the CSD MOF subset. The
most ‘MOF-like’ 3D coordination polymer structure from the
early days must be ADINCU by Saito and coworkers from 1959,66

which is widely recognized by the community. This work was
followed by Hoskins and Robson (JARMEU) and then by the
groups of Yaghi and Kitagawa. We have, therefore, started our
timeline in 1960. Despite the fact that the number of structures
with R-factors higher than 10% has increased over the last
decade, reaching 0.7% of theMOF subset in 2013, the mean and
the median R-factor values have remained xed at around 5%,
and 99% of the structures have R-factors lower than 12%. To
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Histograms of the geometric properties of 1911 chiral structures with non-zero gravimetric surface area in the CSD MOF subset. (a)
Largest cavity diameter, (b) pore limiting diameter, (c) void fraction, (d) density, (e) gravimetric surface area, (f) volumetric surface area.
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understand the evolution, it is worth noting the technological
advances in crystal structure determination between the 1960s
and today. Until the 1970s, the mean values for most structures
are above 10%, while in the 1980s, the R-factors signicantly
dropped to below 10% despite the increase in more complex
and large structures being synthesized.67

The development of MOF families such as the ones intro-
duced above enables data analyses that provide an overview of
the properties dedicated to these smaller subsets. As an
example, Fig. 5c explores the quality of MOF structures – via
their R-factors – by looking at their family (e.g. IRMOF-like, ZIF,
etc.), crystal system, symmetry and density. For each family,
structures are divided into their crystal systems and a boxplot
shows the distribution of their R-factors. The crystal systems are
arranged in decreasing order of symmetry: cubic, hexagonal,
trigonal and tetragonal systems considered as “high symmetry”,
and orthorhombic, monoclinic and triclinic considered as “low
symmetry”. Each point representing a structure is then colored
according to its density. The property-landscape provided here
shows for example that some families crystallize in specic
crystal systems (see CPO-27/MOF-74 and Zr-oxide MOFs),
whereas others crystallize in all crystal systems, with different
distributions. For instance, IRMOF-like structures tend to
crystallize mainly in cubic or hexagonal systems and show
higher R-factors in these systems. In general, the data presented
here suggests that for all the families, low-density MOFs tend to
form high symmetry structures – in accordance with the anal-
ysis of Øien-Ødegaard and co-workers.60 From the general
overview given in Fig. 5c, it is possible to focus on more specic
aspects of R-factors for each family. For example, the boxplots in
Fig. S36† show the distribution of R-factors among each crystal
system for each family; those in Fig. S38† show the distribution
This journal is © The Royal Society of Chemistry 2020
of R-factors among high and low symmetry structures for each
family.

An articial way of “correcting” the experimental values ob-
tained from X-ray diffraction patterns is to mask the solvent. To
explore the effect of solvent masking on the quality of the crystal
structure data, we nally compared the role of the structure
renement soware SQUEEZE68 in the distribution of R-factors.
SQUEEZE enables users to identify and include the contribution
of disordered solvent in the calculated structure factors upon
determination of the crystal structure. Fig. S39† shows boxplot
representation of the R-factors for the different MOF families,
comparing the values on structures that have had their solvent
masked through SQUEEZE and those that have not gone
through this process. Although it might seem simple to assume
that the use of SQUEEZE will lead to lower R-factors, there is not
a clear trend to support this statement. One of the major diffi-
culties when considering solvent masking and R-factors is how
to determine what will produce the best structure for your
purposes; a slightly lower R-factor structure that has had
SQUEEZE applied, or a higher R-factor structure with an
attempt to model all the disorder positions of the framework
and/or guests.

It should be remembered that, although the R-factor is
a convenient single metric to assess the quality of crystal
structures, it simply measures the agreement between the
rened model and the experimental data. The R-factor does not
take into account how chemically and physically meaningful the
resulting structure is, whether any use of solvent masking is
appropriate or whether there are large residual electron density
peaks. A more thorough analysis of the data quality in the MOF
subsets will be addressed as part of future work.
Chem. Sci., 2020, 11, 8373–8387 | 8379
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Fig. 5 Analysis of MOFs included in the CSD. (a) Histograms of framework and channel/pore dimensionalities characterized for the 52 787
structures. (b) Non-cumulative evolution of R factors of the MOF subset from 1960 to 2015. Blue: boxplots of R-factors per year. Percentiles
used: 1% (lower dash symbol), 25% (lower cross symbol), 50% (dash in the box), 75% (upper cross symbol), 99% (upper dash symbol). A black line
connects the means across all the boxes; the orange curve shows the percentage of structures added to the database per year. The orange area
under the orange curve highlights the number of structures with an R-factor higher than 10%. (c) Distribution of R-factors and density across
different MOF families and crystal systems of low or high symmetry.
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High-throughput simulation of
hydrogen uptake at room temperature
and high pressure

To demonstrate the usefulness of the methods and analysis
presented in this paper, we included their application into
hydrogen storage, using an HTS based on grand canonical
Monte Carlo (GCMC) simulations. Cost-effective and high
8380 | Chem. Sci., 2020, 11, 8373–8387
capacity hydrogen storage remains a challenge for the wide-
spread use of fuel cell applications. Although hydrogen has
a higher gravimetric energy density than most other fuels, its
volumetric energy density is one of the lowest.69 The main
challenge is thus to store enough hydrogen in a compact space.
The US Department of Energy has set a target of 30 g L�1 of
volumetric capacity by 2020 in order to ultimately reach 50 g
L�1.70 Among the possible storage solutions being currently
researched, adsorption in porous materials is a promising one.
This journal is © The Royal Society of Chemistry 2020
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As current on-board containers operate at high pressures (700
bar for Toyota fuel cell vehicles) and room temperature,71 we
predicted the adsorption uptake at 298 K over a range of low to
high pressures of 200, 500 and 900 bars. Although high-
throughput screening has been widely performed on MOFs
for hydrogen storage, very little work published results at these
conditions.72 In addition, the classication presented in this
paper enables interesting visualizations regarding the perfor-
mance of different classes of MOFs, thereby either further
conrming previous observations with the amount of data
available in the CSD MOF subset or presenting new ones. Using
the methods described above, readers can also create their own
classication and map it to their screening results.

From the previously obtained 52 787 structures, we selected
13 738 structures with pores large enough for a hydrogen
molecule to navigate through. To further prepare the structures
for the HTS with hydrogen, we eliminated any remnant struc-
tures with non-missing hydrogen atoms but hydrogen-related
disorder (see Methods section), which led to 6355 structures
on which we performed the screening. Fig. 6a–c shows the
volumetric uptake (mass of hydrogen over volume of frame-
work) versus the gravimetric uptake (mass of hydrogen over total
system mass) of these structures at the three considered pres-
sures. Each circle represents a MOF. The colors highlight the six
different families of MOFs chosen in this paper, as described
above, whereas grey circles represent the structures that do not
t in this classication; Fig. 6d–f and g–i highlight the pore
dimensionality and surface chemistry, respectively, of the
structures. The size of each circle represents the largest cavity
diameter (LCD) of the corresponding structure. The corre-
sponding gravimetric uptake in an empty tank is represented
with a dashed line. A dynamic representation of the simulations
can be found at http://aam.ceb.cam.ac.uk/mof-explorer/
H2_HTS. Similar to our previous work,45,73,74 this allows the
visualization of hydrogen gravimetric and volumetric uptakes
with respect to different structural properties such as void
fraction, LCD, pore-limiting diameter (PLD), isosteric heat of
adsorption, and surface area to better understand their role.
More importantly, it allows the multidimensional visualization
of the generated data in an interactive way, where, each data
point (i.e. each MOF) can be individually identied and tracked
into the CSD and the CCDC website.

The empty tank reference shows that, for pressures higher
than 200 bar and at room temperature, theMOFs do not provide
any improvement in terms of volumetric uptake. This analysis
shows that room temperature and high pressure are not the way
forward for efficient hydrogen storage in porous materials
unless new radical ideas are implemented. Nevertheless, the
trends obtained still unveil valuable insights; we will henceforth
focus on the information gained from mapping our classica-
tion to the screening results.

Fig. 6a–c shows that the highest uptakes, especially gravi-
metric, are obtained for Cu–Cu paddlewheel, CPO-27/MOF-74-
like and IRMOFs structures, whereas other Zn-oxide-type
structures tend to have lower performance. Zr-MOFs, known
to have large chemical stability among MOFs, show moderate
gravimetric uptakes but competitive volumetric values. When
This journal is © The Royal Society of Chemistry 2020
looking at the pore connectivity, the trends reproduce those
from the MOF families found here (Fig. 6d–f). In particular, Cu–
Cu paddlewheel MOFs form 3D-pore networks whereas CPO-27/
MOF-74 form 1D channels and therefore the highest uptakes
are for 3D and 1D MOFs. Fig. 6g–i show that alkyl, alkoxy and
polar groups are oen present in high uptakes, whereas struc-
tures containing alkyl groups have a slightly lower volumetric
uptake. Fig. S40† shows in more detail the nature of the func-
tional groups in these cases: –CH3, –OH and –OCH3 are the
functional groups present in the best-performing structures.
Fig. S41 and S42† provide similar information with regard to the
structures' crystal systems and the metal atoms they contain.
Fig. S42† is particularly interesting when combined with
Fig. 6a–c, as they suggest the best-performing CPO-27/MOF-74-
type structures – which are among the overall best-performing
ones – are frameworks containing magnesium atoms due to
its lighter character. This is in agreement with studies on the
role of magnesium in better hydrogen adsorption in MOFs.69 All
in all, the structure with the best volumetric and absolute
uptake is a Cu–Cu-paddlewheel, 3D-pore networked unfunc-
tionalized MOF, BAZGAM (Fig. 6a–c), which has been identied
previously in the literature for its exceptional performance at 77
K and 100 bar (reported values of 34.3 g L�1 and 19.3 wt% H2).72

At room temperature and 900 bar, its uptake values are 42.7 g
L�1 and 25.1 wt% H2.

While Fig. 6 highlighted the characteristics of the best-
performing structures, Fig. 7 gives more quantitative insights,
through statistical analyses, of these observations; Fig. S43†
provides similar boxplots in terms of gravimetric uptake. Fig. 7a–
c, d–f and g–i show boxplots representations of the volumetric
uptake for each of the MOF families, the percolation and the type
of surface chemistry present, respectively. Fig. 7a–c show that
CPO-27/MOF-74-like, Cu–Cu-paddlewheels, IRMOFs and Zr-oxide
MOFs perform better at all three different pressures. In addition,
they adsorb hydrogen more easily as the pressure increases: the
amount of hydrogen adsorbed in ZIFs and Zn-oxide-type struc-
tures quadruples from ca. 5 to 20 g L�1 as the storage pressure
increases from 200 to 900 bar, whereas the amount adsorbed in
CPO-27/MOF-74-like, Cu–Cu-paddlewheels, Zr-oxide and IRMOFs
structures increases from ca. 7 to 30 g L�1, reaching 32 g L�1 in
IRMOFs, over the same range of pressures. Interestingly, Fig. 7d–f
show that 3D pore-network structures have, on average, higher
volumetric uptake than 2D-channeled structures, which in turn
have higher volumetric uptake than 1D-channeled structures. In
addition, the difference in performance increases as the storage
pressure increases: 3D-channeled structures have in average a 40,
48 and 53% higher uptake at 200, 500 and 900 bar, respectively,
than 1D-channeled structures. Fig. 7g–i shows that structures
containing halogen groups perform better overall, and the spread
of volumetric uptake of structures containing alkyl groups is
wider as the pressure increases. Fig. S40† provides a breakdown
of each functional group, showing that structures containing –Br,
–F and –OCH2CH3 groups stand out as having the highest volu-
metric uptakes.

Previous similar work that screened MOFs for hydrogen
storage focused on the relationship between their geometrical
properties (such as pore volume75 or void fraction69) and
Chem. Sci., 2020, 11, 8373–8387 | 8381
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Fig. 6 Characterization of the 3D MOFs screened for hydrogen storage. Volumetric uptake vs. absolute uptake wt% H2 at room temperature at
200, 500 and 900 bar. Each circle represents a MOF structure. The sizes of the circles represent the LCD in all plots. The dashed line corresponds
to the volumetric uptake obtained in an empty tank. (a–c) Families of the screened structures; structures that have not been assigned a family are
colored in grey in the background. The highlighted structure BAZGAM is shown in the inset at 900 bar. (d–f) Percolation of the screened
structures. Structures containing 1D, 2D and 3D pore channels are respectively represented in yellow, blue and purple. (g–i) Functional groups
identified in the screened structures. Structures that have no particular functional groups identified are colored in grey in the background. Full
hydrogen adsorption data can be found online at http://aam.ceb.cam.ac.uk/mof-explorer/H2_HTS.
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performance. In our case, we have mapped out the behavior of
the different classes of MOFs outlined in this paper, thus
providing a clearer picture of the CSDMOF subset landscape. In
particular, we have identied the volumetric and gravimetric
storage limits for different families of MOFs, thus offering more
insights into which MOF space is more promising or lacking.

In addition to the structure–property relationships that can be
uncovered from combining simulation data and the structural
data available via the CSD and the developed subsets, the tools
developed here allows a better understanding of the evolution of
the MOF eld. Fig. 8a shows the evolution of the hydrogen
volumetric uptakes at room temperature and 500 bar for the 3D
8382 | Chem. Sci., 2020, 11, 8373–8387
MOFs included in the CSD over the years. Each circle represents
a MOF; their size corresponds to their LCD and the colors indi-
cate their R factors. The yellow line traces the best-performing
structure throughout time. Interestingly, the biggest jumps in
terms of volumetric uptake – reaching 19.4 and 25.2 g L�1 –

happened in 1983 and 1989, with structures BOMCUB76 and
JARMEU,77 respectively, when only a few fairly good quality
structures were submitted. Fig. 8b and c show the snapshots of
these two structures: BOMCUB being an oxalate complex
synthesized by Siar and coworkers; and JARMEU being an
innite polymeric framework consisting of three dimensionally-
linked rod-like segments synthesized by Hoskins and Robson.
This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Quantitative characterization of the 3DMOFs screened for hydrogen storage boxplots of volumetric uptake of H2 at room temperature at
200, 500 and 900 bars versus (a–c) families of the screened structures, (d–f) percolation of the screened structures and (g–i) functional groups
identified in the screened structures. The jittered points in the background give an idea on the number of structures considered for each boxplot.
The markers represent the minimum, first quartile, median, third quartile, and maximum values, respectively. Outliers are represented by black
data points. The dashed line corresponds to the volumetric uptake obtained in an empty tank.
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The number of structures then signicantly increased in the late
1990s, with slightly higher R factors and higher LCDs. Starting
from the 2000s, the R factors and LCDs become more varied and
the highest volumetric uptake reaches a maximum of 28.8 g L�1.

Outlook

The coordination geometry of inorganic units and the diverse
nature of MOF linkers have given rise to the emergence of thou-
sands of diverse MOF materials with currently over 99 000 struc-
tures present in the CSD MOF subset. Here, we developed
a customized set of criteria to identify specic families of MOFs as
a powerful tool to classify them and speed up the way MOFs are
being investigated for different applications. The computational
This journal is © The Royal Society of Chemistry 2020
tools and the interactive online data explorers provided in this
work will allow MOF researchers to browse and look for targeted
MOF categories based on secondary building units, chirality,
surface chemistry as well as geometrical properties including pore
and framework dimensionality. Through CCDC's structure search
program ConQuest, the principles we supplied here allow users to
search for and identify new MOF families and functionalities
based on any of the diverse pool of MOF building blocks. We also
show the usefulness of these tools with a high-throughput
screening for hydrogen storage at room temperature using grand
canonical Monte Carlo simulations. On the one hand, the inter-
active website allowed the visualization of the multidimensional
inuence of different parameters and the identication of each
data point in the CSD, together with the original publication of the
Chem. Sci., 2020, 11, 8373–8387 | 8383
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Fig. 8 (a) Evolution of the structure with the highest hydrogen volumetric uptake at room temperature and at 500 bars in the CSD over the years.
Each circle represents a structure. The size indicates the LCD, the color the corresponding R-factor. Each new best performing structure is
highlighted with a yellow circle and the yellow line tracks the best performing structure over the years. (b) Snapshot of a supercell of BOMCUB.
The counter-ions and water molecules were removed from the snapshot for clarity. (c) Snapshot of a supercell of JARMEU.
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structure. On the other hand, the statistical analysis quanties the
impact of the structural descriptors on the performance. We
expect that this work will guide experimentalists and theoretical
researchers to probe the chemistry of MOFs for transformative
advances in their applications.
Methods
MOF explorer for 5D exploration of structural properties

All family-property relationships of the 8253 porous MOFs pre-
sented in this work can be found online at http://
aam.ceb.cam.ac.uk/mof-explorer/CSD_MOF_subset. Hydrogen
adsorption data can be found online at http://
aam.ceb.cam.ac.uk/mof-explorer/H2_HTS. Users can explore
the structural features and adsorption performance of porous
MOFs interactively with any one of up to 18 variables plotted in 5
dimensions. Since data has been gathered for multiple MOF
families and types, this leads to thousands of unique plots that
can be generated according to the user's interest. MOF can be
searched for and ltered by name, or by selecting them from the
graph, allowing the user to track particular MOFs' characteristics.
Structures preparation for high-throughput hydrogen uptake
simulations

3D structures were selected from the CSD version 5.37 using the
Python API script described above. All structures had their
8384 | Chem. Sci., 2020, 11, 8373–8387
unbound solvent removed using the CSD Python API scripts
published previously. Structures containing Cu–Cu paddle-
wheels and CPO-27/MOF-74-like structures had their bound
solvent removed using the same scripts. Missing hydrogens
were added using the add_hydrogen function in the CSD Python
API. Any additional hydrogen-related disorder was removed by
using the ‘non-disordered’ lter in ConQuest, following the
protocol described recently to differentiate between the ‘non-
disordered’ lter and the non-disordered MOF subset.78 A PLD
of 2.8 Å, corresponding to the lowest s of the hydrogen atom
across different force elds, was used to eliminate structures
with lower PLDs.
Grand canonical Monte Carlo simulations

The GCMC simulations were performed in the multi-purpose
code RASPA.79 We used an atomistic model of each structure
where the framework atoms were kept xed at their crystallo-
graphic positions. We used the standard Lennard-Jones (LJ) 12-
6 potential to model the interactions between the framework
and uid atoms. In addition, a Coulomb potential was used for
uid–uid interactions. The parameters for the framework
atoms were obtained from Dreiding Force Field (DFF)80 and,
when not available, from the Universal Force Field (UFF),81

whereas the hydrogen molecule was modeled by placing
a single LJ sphere at the center of mass (see provided RASPA
les in the ESI†).82 The Lorentz–Berthelot mixing rules were
This journal is © The Royal Society of Chemistry 2020
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employed to calculate uid-solid LJ parameters, and LJ inter-
actions beyond the cutoff value of 12.8 Å were neglected. The
simulation box for each structure is dened so that the cell
lengths are larger than twice the cutoff distance. 30 000 Monte
Carlo cycles were performed, the rst third of which were used
for equilibration and the remaining steps were used to calculate
the ensemble averages. Monte Carlo moves consisted of inser-
tions, deletions and displacements. In a cycle, N Monte Carlo
moves are attempted, where N is dened as the maximum of 20
or the number of adsorbates in the simulation box. To calculate
the gas-phase fugacity we used the Peng–Robinson equation of
state.83
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Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. Paik
Suh and J. Reedijk, Pure Appl. Chem., 2013, 85, 1715.

64 S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-
Martinez, S. Kitagawa, L. Ohrstrom, M. O'Keeffe, M. P. Suh
and J. Reedijk, CrystEngComm, 2012, 14, 3001–3004.

65 W. H. Zachariasen, J. Am. Chem. Soc., 1940, 62, 1011–1013.
66 Y. Kinoshita, I. Matsubara, T. Higuchi and Y. Saito, Bull.

Chem. Soc. Jpn., 1959, 32, 1221–1226.
67 N. L. Strutt, D. Fairen-Jimenez, J. Iehl, M. B. Lalonde,

R. Q. Snurr, O. K. Farha, J. T. Hupp and J. F. Stoddart, J.
Am. Chem. Soc., 2012, 134, 17436–17439.

68 A. Spek, Acta Crystallogr. C, 2015, 71, 9–18.
69 Y. J. Colón, D. Fairen-Jimenez, C. E. Wilmer and R. Q. Snurr,

J. Phys. Chem. C, 2014, 118, 5383–5389.
70 O. o. E. E. R. Energy, Materials-Based Hydrogen Storage,

https://www.energy.gov/eere/fuelcells/materials-based-
hydrogen-storage, accessed 25/08/2019, 2015.

71 B. M. Connolly, D. G. Madden, A. E. H. Wheatley and
D. Fairen-Jimenez, J. Am. Chem. Soc., 2020, 142(19), 8541–
8549.

72 A. Ahmed, S. Seth, J. Purewal, A. G. Wong-Foy, M. Veenstra,
A. J. Matzger and D. J. Siegel, Nat. Commun., 2019, 10, 1568.

73 P. Z. Moghadam, T. Islamoglu, S. Goswami, J. Exley,
M. Fantham, C. F. Kaminski, R. Q. Snurr, O. K. Farha and
D. Fairen-Jimenez, Nat. Commun., 2018, 9, 1378.

74 P. Z. Moghadam, S. M. J. Rogge, A. Li, C.-M. Chow, J. Wieme,
N. Moharrami, M. Aragones-Anglada, G. Conduit,
D. A. Gomez-Gualdron, V. Van Speybroeck and D. Fairen-
Jimenez, Matter, 2019, 1, 219–234.
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