

Cite this: *Chem. Sci.*, 2020, **11**, 4204

All publication charges for this article have been paid for by the Royal Society of Chemistry

Received 25th February 2020
Accepted 31st March 2020

DOI: 10.1039/d0sc01138j
rsc.li/chemical-science

Introduction

Over the last decades, direct C–H bond activation has emerged as a powerful tool providing a wide variety of novel disconnections simplifying access to, and accelerating the synthesis of complex molecules.¹ Aryl olefins are synthetically important motifs, as useful intermediates in synthesis,² and also due to their widespread presence in bioactive molecules and pharmaceuticals.³ Consequently, large efforts have been devoted to the development of C–H olefination methodologies.⁴ While a large number of strategies have been developed for the olefination of C–H bonds *ortho* to a directing group,⁵ comparatively few exist for those in *meta* positions.⁶ To date, the only available ‘direct’ strategy for *meta*-olefination, involves the use of the U-shaped directing groups pioneered by the group of Yu (Scheme 1a).⁷ This approach has been used to perform *meta*-olefinations on derivatives of benzyl alcohols,⁸ *N*-methyl anilines,⁹ phenyl acetic acids,¹⁰ benzyl sulfonyl esters,¹¹ benzoic acids,¹² aromatic carbonyls¹³ and aryl boronic acids,¹⁴ using alkenes as coupling partners. The major drawback of this approach arises from the need to install the large U-shaped directing group, covalently bound, and its subsequent removal after the C–H olefination, as separate synthetic steps. In addition, stoichiometric toxic Ag(I)-salts are required as terminal oxidants in these oxidative couplings. A recent report has expanded the applicability of this strategy to the Rh(III)-catalysed *meta*-olefination of hydrocinnamic acid derivatives using alkynes as coupling partners (Scheme 1b).¹⁵ However, despite it being a redox neutral process, it still requires over

three equivalents of Ag(I)-salts as an additive. Furthermore, in addition to the main *meta*-olefination product, 5–10% of the sometimes difficult to separate *ortho* and *para* olefination products are typically obtained. Additionally, the U-shaped directing group strategy is only applicable to aromatics containing a group that can be easily derivatised.

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: igor.larrosa@manchester.ac.uk

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0sc01138j

Scheme 1 Comparison of the template approach and the traceless directing group relay strategy for the *meta* olefination of arenes.

Fluoroarenes are recurring structural motifs in pharmaceuticals, agrochemicals, organic materials and other biologically relevant compounds.¹⁶ Approximately 30% of pharmaceuticals and 40% of agrochemicals currently contain at least one fluorine atom, usually at the aromatic ring.¹⁶ Thus, the direct C–H functionalisation of monofluorobenzenes can provide straightforward access to valuable materials (Fig. 1).^{3b–d} While monofluoroarenes generally present low reactivity towards direct C–H olefination, a number of examples have been reported that use the arene as cosolvent to achieve *ortho*, *para*-selective olefination.¹⁷ Some pioneering methods for direct olefination using the fluoroarene as the limiting reagent have been reported by Yu *et al.*, but mixtures of *ortho*, *meta* and *para* substitution are obtained.¹⁸ However, *meta*-selective olefination has never been achieved. Importantly, the U-shaped directing group strategy cannot be applied to this class of substrates. We have previously shown that CO₂ can be used as a traceless directing group for the *meta*-selective arylation of phenols, fluorobenzenes and anisoles (Scheme 1c).¹⁹ The process relies on the easy carboxylation of these aromatic substrates, to install a temporary carboxylate directing group. The carboxylate can then direct the arylation before it is cleaved, in a tandem process, thus allowing a one-pot *meta*-arylation to proceed. However, the CO₂ traceless directing group approach has never been demonstrated on any other type of functionalisation. Herein we report the first example of a *meta*-olefination of fluorobenzenes (Scheme 1d). This ruthenium-catalysed process involves the *in situ* installation and removal of a carboxylate, from CO₂, uses alkynes as coupling partners and avoids the need for stoichiometric use of Ag(I)-salts.

Results and discussion

We have previously developed an optimised protocol for the lithiation/carboxylation of fluoroarenes suitable for combination in a one-pot process with a Pd-catalysed tandem arylation/protodecarboxylation, leading to the *meta*-arylation of fluoroarenes.^{19c} In 2016, three methods for the Ru-catalysed tandem *ortho*-olefination/protodecarboxylation of benzoic acids by hydroarylation of alkynes were reported by Hartwig and Zhao,²⁰ Ackermann²¹ and Gooßen.²² Miura and co-workers have also

Table 1 Optimisation of catalyst. Yields were determined by ¹⁹F NMR analysis using 1-bromo-4-fluorobenzene as an internal standard

			[Ru] (10 mol %), LiOAc (2.0 equiv), AcOH (3.0 equiv) DCE, 100 °C, 24 h, under N ₂	
	1a	2a	2.0 equiv	3aa
Entry	[Ru]			3aa (yield%)
1 ^a	Ru(<i>p</i> -cymene)(CO ₂ Mes) ₂			81
2 ^b	Ru(<i>p</i> -cymene)(CO ₂ Mes) ₂			60
3	Ru(<i>p</i> -cymene)(CO ₂ Mes) ₂			86
4	[Ru(<i>t</i> BuCN) ₆][BF ₄] ₂			0
5	[Ru(C ₆ H ₆)(OPiv) ₂]			25
6	[Ru(C ₆ Me ₆)(OAc) ₂]			93

^a Without LiOAc and AcOH. ^b Without AcOH.

reported numerous methods for the *ortho*-olefination/protodecarboxylation of benzoic acids using acrylates and styrenes as coupling partners.²³ We envisaged these methods could be ideally adapted to operate in combination with the directed *ortho*-metalation/carboxylation approach to furnish the desired *meta*-olefination of fluorarenes.

We started our investigation by probing the decarboxylative olefination of the fluorotoluic acid **1a** with diphenyl acetylene (**2a**), using Ackermann's protocol (Table 1, entry 1).²¹ To evaluate the effect of the installation of the carboxylic acid using *ortho*-lithiation during the desired one-pot process we tested the addition of 2 equiv. of LiOAc (entry 2), revealing a significant negative effect in reactivity. Gratifyingly, addition of 3 equiv. of AcOH efficiently reversed the effect of the presence of the Li-salt (entry 3), providing a method to ensure compatibility of the protocol with the carboxylation step. In previous work on Ru-catalysed *ortho*-arylation of polyfluorobenzenes we observed an inhibitory effect of coordinated *p*-cymene, leading to the development of the arene-free Ru-precatalyst [Ru(*t*BuCN)₆][BF₄]₂.²⁴ However, the use of this catalyst in the olefination reaction led to no product formation (entry 4), suggesting the η^6 -coordinated arene is essential for reactivity towards olefination. Accordingly, the weaker coordinating benzene-complex led to poor reactivity (entry 5), whereas the highly coordinating C₆Me₆-bearing Ru complex gave an improved yield, an effect which has previously been observed by Gooßen.²⁵

We then moved to optimize the full one-pot protocol, starting from *ortho*-fluorotoluene (**4a**, Table 2). Carboxylation of the fluoroarene was observed to occur in nearly quantitative conversion using *sec*BuLi at –78 °C for 30 min, followed by quenching with CO₂. Subsequent addition to the same flask of AcOH (3 equiv.), alkyne **2a** and 5 mol% Ru(C₆Me₆)(OAc)₂ in DCE led to the formation of the *meta*-olefinated product **3aa** in an excellent 85% yield (entry 1). The use of 4 equiv. or 5 equiv. of AcOH led to reduced yields (entries 2 and 3). Examination of other organic acids also led to lower yields (entries 4–6),

Fig. 1 Commercially available pharmaceuticals containing a *meta*-alkenyl fluoroarene.

Table 2 Optimisation of one-pot protocol. Yields were determined by ^{19}F NMR analysis using 1-bromo-4-fluorobenzene as an internal standard

Entry	Acid (equiv.)	4aa (yield%)
		2.0 equiv
1	AcOH (3)	85
2	AcOH (4)	75
3	AcOH (5)	72
4	PivOH (3)	1
5	<i>i</i> BuCOOH (3)	71
6	TFA (3)	5

revealing AcOH as the optimal acid to facilitate this one-pot process.

With the optimised conditions in hand, we investigated the generality of the process with regards to the fluoroarene core (Scheme 2). Substitution patterns in *ortho*, *meta* or *para* positions were all tolerated, albeit only the relatively small F-atom was compatible in *para* (**3ad**). When larger groups were installed in the *para* position such as Me and Cl, no reactivity could be observed (**3al** and **3am**). Furthermore, the reaction is in all cases completely selective towards mono-olefination and towards the *meta* position, with no traces of neither

Scheme 2 Scope in fluoroarene core. ^a10 mol% catalyst used.

bisolefination nor other regioisomers observed by NMR and GCMS analysis of the reactions, even for simple fluorobenzene (**3ab**). Both electron withdrawing groups (**3ac**, **3ad**, **3ag** and **3ah**) and donating groups (**3aa**, **3ae**, **3af** and **3aj**) were compatible with the procedure. Chloroarenes (**3ah**) were also tolerated with no traces of de-halogenated products. Biaryl and naphthyl-based aromatic systems were also suitable substrates (**3ai** and **3ak**).

Subsequently we investigated the scope with respect to the alkyne coupling partner (Scheme 3). Both electron donating (**3ba** and **3ca**) and electron withdrawing groups (**3da**, **3ea** and **3fa**) were reactive giving excellent yields. Heterocyclic moieties were also tolerated (**3ga**). While bisalkyl acetylenes were incompatible with the procedure (**3la**), unsymmetrical alkyl, aryl-acetylenes led to completely regioselective addition at the carbon adjacent to the alkyl group (**3ha** and **3ia**). Diesters and unsymmetrical ester, aryl-acetylenes were also tolerated offering a handle for further functionalisation (**3ja** and **3ka**) with ethyl phenyl propiolate preferentially forming the α -aryl ester (**3ja**). No product was observed when terminal acetylenes were used (**3ma**).

This new *meta*-olefination methodology can be easily scaled up with, for example, **3aa** being formed in 70% yield (1.10 g) without any changes to the protocol.

Scheme 3 Scope in acetylene. ^a10 mol% catalyst used.

Scheme 4 Plausible mechanism for the Ru catalysed *meta* olefination of fluoroarenes.

A plausible mechanism for this transformation is shown in Scheme 4, based on the mechanistic studies performed by Hartwig and Zhao.²⁰ *ortho*-Lithiation and carboxylation of fluoroarene 4 affords lithium benzoate 5. *ortho*-C–H activation of lithium benzoate 5 with ruthenium complex 6a affords cyclo-metallated complex 6b. Insertion of alkyne 2a into the Ru–C of 6b forms complex 6c, which can in turn decarboxylate to form the 5-membered metallocycle in complex 6d. Protonation of this complex with 2 equiv. of AcOH liberates the final product 3 and reforms complex 6a, thus closing the catalytic cycle.

Conclusions

In conclusion, we have developed the first example of a methodology for the *meta*-selective olefination of fluoroarenes. The natural *ortho*, *para*-reactivity of this class of substrates has been overcome by employing CO₂ as a traceless directing group, that can be installed, used to control reactivity and then seamlessly removed in a one-pot process. Good to excellent yields can be obtained with a variety of functional groups and substitution patterns in both fluoroarene and alkyne, and in all cases complete *meta*-regioselectivity is observed.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC, EP/L014017/2) and the Marie Skłodowska Curie actions (IF-656841 to MF) for funding.

Notes and references

- (a) R. H. Crabtree, *Chem. Rev.*, 1985, **85**, 245–269; (b) A. E. Shilov and G. B. Shul'pin, *Chem. Rev.*, 1997, **97**, 2879–2932; (c) J. A. Labinger and J. E. Bercaw, *Nature*, 2002, **417**, 507–514; (d) R. G. Bergman, *Nature*, 2007, **446**, 391–393; (e) D. Alberico, M. E. Scott and M. Lautens, *Chem. Rev.*, 2007, **107**, 174–238; (f) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2009, **48**, 5094–5115; (g) L. Ackermann, R. Vicente and A. R. Kapdi, *Angew. Chem., Int. Ed.*, 2009, **48**, 9792–9826; (h) C.-J. Li, *Acc. Chem. Res.*, 2009, **42**, 335–344; (i) J. Wencel-Delord, T. Dröge, F. Liu and F. Glorius, *Chem. Soc. Rev.*, 2011, **40**, 4740–4761; (j) C. S. Yeung and V. M. Dong, *Chem. Rev.*, 2011, **111**, 1215–1292; (k) M. Tobisu and N. Chatani, *Science*, 2014, **343**, 850–851; (l) M. Simonetti, D. M. Cannas and I. Larrosa, *Adv. Organomet. Chem.*, 2017, **67**, 299–399.
- Selected examples of aryl olefins as intermediates for the synthesis of bioactive molecules (a) T. Nishimata, Y. Sato and M. Mori, *J. Org. Chem.*, 2004, **69**, 1837–1843; (b) L. V. White, B. D. Schwartz, M. G. Banwell and A. C. Willis, *J. Org. Chem.*, 2011, **76**, 6250–6257; (c) C. Singh, M. Hassam, V. P. Verma, A. S. Singh, N. K. Naikade, S. K. Puri, P. R. Maulik and R. Kant, *J. Med. Chem.*, 2012, **55**, 10662–10673.
- Examples of aryl olefins in bioactive molecules (a) J. Joseph-Charles and M. Bertucat, *Anal. Chim. Acta*, 1993, **284**, 45–52; (b) D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen, G. Li, R. E. Schreck, T. J. Abrams, T. J. Ngai, L. B. Lee, L. J. Murray, J. Carver, E. Chan, K. G. Moss, J. Ö. Haznedar, J. Sukbuntherng, R. A. Blake, L. Sun, C. Tang, T. Miller, S. Shirazian, G. McMahon and J. M. Cherrington, *Clin. Cancer Res.*, 2003, **9**, 327–337; (c) S. Hirankarn, J. S. Barrett, N. Alamuddin, G. A. Fitzgerald and C. Skarke, *Clin. Pharmacol. Drug Dev.*, 2013, **2**, 379–386; (d) J. Qian, Y. Wang, J. Cao and J. Li, *J. Pharm. Biomed. Anal.*, 2013, **80**, 173–179.
- Selected reviews on C–H olefination of arenes (a) C. Nevado and A. M. Echavarren, *Synthesis*, 2005, **2**, 167–182; (b) V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach and A. V. Vasilyev, *Chem. Rev.*, 2016, **10**, 5894–5986; (c) W. Ma, P. Gandeepan, J. Li and L. Ackermann, *Org. Chem. Front.*, 2017, **4**, 1435–1467.
- Selected examples of *ortho* C–H olefination (a) G. Cai, Y. Fu, Y. Li, X. Wan and Z. Shi, *J. Am. Chem. Soc.*, 2007, **129**, 7666–7673; (b) L. Wang, S. Liu, Z. Li and Y. Yu, *Org. Lett.*, 2011, **13**, 6137–6139; (c) B. Liu, H.-Z. Jiang and B.-F. Shi, *J. Org. Chem.*, 2014, **79**, 1521–1526; (d) A. Deb, S. Bag, R. Kancherla and D. Maiti, *J. Am. Chem. Soc.*, 2014, **136**, 13602–13605; (e) G. Li, L. Wan, G. Zhang, D. Leow, J. Sprangler and J.-Q. Yu, *J. Am. Chem. Soc.*, 2015, **137**, 4391–4397.
- Selected reviews on *meta* selective C–H functionalisation (a) J. Yang, *Org. Biomol. Chem.*, 2015, **13**, 1930–1941; (b) J. Lie, S. De Sarkar and L. Ackermann, *Top. Organomet. Chem.*, 2015, **55**, 217–257; (c) A. Dey, S. Agasti and D. Maiti, *Org. Biomol. Chem.*, 2016, **14**, 5440–5453; (d) J. A. Leitch and C. G. Frost, *Chem. Soc. Rev.*, 2017, **46**, 7145–7153.

7 D. Leow, G. Li, T.-S. Mei and J.-Q. Yu, *Nature*, 2012, **486**, 518–522.

8 (a) S. Lee, H. Lee and K. L. Tan, *J. Am. Chem. Soc.*, 2013, **135**, 18778–18781; (b) S. Fang, X. Wang, F. Yin, P. Cai, H. Yang and L. Kong, *Org. Lett.*, 2019, **21**, 1841–1844.

9 R.-Y. Tang, G. Li and J.-Q. Yu, *Nature*, 2014, **507**, 215–220.

10 (a) M. Bera, A. Modak, T. Patra, A. Maji and D. Maiti, *Org. Lett.*, 2014, **16**, 5760–5763; (b) Y. Deng and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2015, **54**, 888–891.

11 (a) M. Bera, A. Maji, S. K. Sahoo and D. Maiti, *Angew. Chem., Int. Ed.*, 2015, **54**, 8515–8519; (b) M. Brochetta, T. Borsari, S. Bag, S. Jana, S. Maiti, A. Porta, D. B. Werz, G. Zanoni and D. Maiti, *Chem.-Eur. J.*, 2019, **25**, 10323–10327.

12 S. Li, L. Cai, H. Ji, L. Yang and G. Li, *Nat. Commun.*, 2016, **7**, 10443.

13 S. Xie, S. Li, W. Ma, X. Xu and Z. Jin, *Chem. Commun.*, 2019, **55**, 12408–12411.

14 A. F. Williams, A. J. P. White, A. C. Spivey and C. J. Cordier, *Chem. Sci.*, 2020, **11**, 3301–3306.

15 H.-J. Xu, Y.-S. Kang, H. Shi, P. Zhang, Y.-K. Chen, B. Zhang, Z.-Q. Liu, J. Zhao, W.-Y. Sun, J.-Q. Yu and Y. Lu, *J. Am. Chem. Soc.*, 2019, **141**, 76–79.

16 (a) P. Kirsch and M. Bremer, *Angew. Chem., Int. Ed.*, 2000, **39**, 4216–4235; (b) W. R. Dolbier, *J. Fluorine Chem.*, 2005, **126**, 157–163; (c) C. Isanbor and D. O'Hagan, *J. Fluorine Chem.*, 2006, **127**, 303–319; (d) F. Babudri, G. M. Farinola, F. Naso and R. Ragni, *Chem. Commun.*, 2007, 1003–1022; (e) M. Hird, *Chem. Soc. Rev.*, 2007, **36**, 2070–2095; (f) D. O'Hagan, *Chem. Soc. Rev.*, 2008, **37**, 308–319; (g) P. Jeschke, *Pest Manage. Sci.*, 2010, **66**, 10–27; (h) R. Berger, G. Resnati, P. Metrangolo, E. Weber and J. Hulliger, *Chem. Soc. Rev.*, 2011, **40**, 3496–3508; (i) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fuster, V. A. Soloshonok and H. Liu, *Chem. Rev.*, 2014, **114**, 2432–2506; (j) E. A. Ilardi, E. Vitaku and J. T. Njardarson, *J. Med. Chem.*, 2014, **57**, 2832–2842; (k) T. Fujiwara and D. O'Hagan, *J. Fluorine Chem.*, 2014, **167**, 16–29; (l) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa and H. Liu, *Chem. Rev.*, 2016, **116**, 422–518.

17 (a) K. S. Kanyiva, N. Kashihara, Y. Nakao, T. Hiyama, M. Ohashi and S. Ogoshi, *Dalton Trans.*, 2010, **39**, 10483–10494; (b) C.-H. Ying, S.-B. Yan and W.-L. Duan, *Org. Lett.*, 2014, **16**, 500–503; (c) L. G. Y. Chung, N. A. B. Juwaini and J. Seayad, *ChemCatChem*, 2015, **7**, 1270–1274.

18 (a) H. U. Vora, A. P. Silvestri, C. J. Engelin and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2014, **53**, 2683–2686; (b) P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao, S. Tao, P. T. W. Cheng, M. A. Poss, M. E. Farmer, K.-S. Yeung and J.-Q. Yu, *Nature*, 2017, **551**, 489–493.

19 (a) J. Luo, S. Preciado and I. Larrosa, *J. Am. Chem. Soc.*, 2014, **136**, 4109–4112; (b) J. Luo, S. Preciado, S. O. Araromi and I. Larrosa, *Chem.-Asian J.*, 2016, **11**, 347–350; (c) M. Font, A. R. A. Spencer and I. Larrosa, *Chem. Sci.*, 2018, **9**, 7133–7137.

20 J. Zhang, R. Shrestha, J. F. Hartwig and P. Zhao, *Nat. Chem.*, 2016, **8**, 1144–1151.

21 N. Y. P. Kumar, A. Bechtoldt, K. Raghuvanshi and L. Ackermann, *Angew. Chem., Int. Ed.*, 2016, **55**, 6929–6932.

22 L. Huang, A. Biafora, G. Zhang, V. Bragoni and L. J. Goofßen, *Angew. Chem., Int. Ed.*, 2016, **55**, 6933–6937.

23 (a) A. Maehara, H. Tsurugi, T. Satoh and M. Miura, *Org. Lett.*, 2008, **10**, 1159–1162; (b) S. Mochida, K. Hirano, T. Satoh and M. Miura, *Org. Lett.*, 2010, **12**, 5776–5779; (c) S. Mochida, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2011, **76**, 3024–3033.

24 M. Simonetti, G. J. P. Perry, X. C. Cambeiro, F. Juliá-Hernández, J. N. Arokianathar and I. Larrosa, *J. Am. Chem. Soc.*, 2016, **138**, 3596–3606.

25 A. Biafora, B. A. Khan, J. Bahri, J. M. Hewer and L. J. Goofßen, *Org. Lett.*, 2017, **19**, 1232–1235.

