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Novel 107-electron cyclic amidines with excellent fluorescence properties were synthesized by a general
and efficient 6m-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and
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arylamines. The photophysical properties of cyclic amidine fluorophores have been studied in detail and

have shown good properties of a large Stokes shift, pH insensitivity, low cytotoxicity and higher
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Introduction

Small organic fluorophores have been used widely in biological
science and drug discovery due to their easy handling, high
sensitivity and minimal disruption to living systems." Although
a large variety of fluorescent small molecules have been devel-
oped, their core scaffolds are still limited to several types such
as prodan, fluorescein, coumarin etc.,> most of which usually
possess a m-conjugated system with an electron-donating and
an electron-withdrawing group located at the opposite position
of the fluorescent moiety (Fig. 1).> On the other hand, the ideal
fluorophores for living systems with good photophysical prop-
erties including a large Stokes shift, an applicable pH environ-
ment, good stability and low biological toxicity are in high
demand. Consequently, the development of small organic flu-
orophores with a new framework and good photophysical
properties is an appealing and challenging task.*

To develop a new fluorescent framework, we wondered
whether it is possible to incorporate an electron-donating and
an electron-withdrawing group at the adjacent position of a -
system. Considering the particularity of this structure, we tried
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photostability, which have great potential for biological imaging. Furthermore, this novel fluorophore was
successfully applied to the localization of the NK-1 receptor in living systems.

to choose m-system cyclic amidines as the core structure of
novel fluorophores, not only due to their potent fluorescence
properties,® but also due to the electronic specificity of amidines
(Fig. 1). However, how to incorporate an amidine into a -
system is a challenge, since the synthesis of such a scaffold is
limited and difficult. Moreover, it usually needs a variety of
cyclic amidines with structural diversity to study the fluores-
cence-structure relationship. Thus, it is necessary yet chal-
lenging to develop a simple and short synthetic route to access
various cyclic amidines.

N-Sulfonyl-1,2,3-triazoles have become an important class of
intermediates for accessing a wide variety of complex molecular
scaffolds.® Metal-bound imino carbenes, readily generated from
N-sulfonyl 1,2,3-triazoles, have found wide application in many
useful transformations, including cycloaddition, X-H insertion,
alkyl migration, sigmatropic rearrangement and some other
carbine induced reactions.*” In addition to imino carbenes, N-
sulfonyl-1,2,3-triazoles could also form active ketenimine
intermediates, which would readily undergo nucleophilic
additions at C2.* In particular, the ketenimines containing
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Fig. 1 Structural characteristics of traditional fluorophores and
amidines.
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Scheme 1 Related research and this work.

another electrophilic site would undergo double nucleophilic
addition with amines to give cyclic amidines (Scheme 1a).°
Moreover, ketenimines could also in whole or in part participate
in some cyclization reactions. For example, in the [1,5]-X sig-
matropic shift/6m-electrocyclic ring closure (67t-ERC), the whole
ketenimines (C=C=NTs) take part in the reaction to give
dihydroisoquinolines (Scheme 1b),%'° while part of the keteni-
mines (C=C) in the [2 + 2] cycloadditions reacts to give ami-
dines (Scheme 1c)." From these studies, we found that cyclic
amidines could be constructed by the intramolecular conjunc-
tion of a nitrogen atom to the C2 of the ketenimine. Accord-
ingly, we designed the intermediate A functionalized with an
adjacent imine and ketenimine. The imine bond (C=NAr) was
introduced for the formation of 6m-substrates suitable for ERC
and might react with part of the ketenimines to give cyclic
amidine products (Scheme 1d).

Results and discussion

With this reaction design in mind, we first investigated the
reaction of N-sulfonyl triazoles 1a with phenylamine 2a as the
model reaction in the presence of a catalyst at 120 °C in a sealed
tube for 2 h (Table 1). A low yield of 17% was observed in the
presence of a Cul catalyst (entry 1). We also examined some
other catalysts including Cu(OAc),, CuTc, Rh,(OAc),, Rh,(Oct),
and Pd(OAc),, and they gave yields ranging from 12% to 54%
(entries 2-6). Interestingly, when the reaction was conducted in
the absence of any catalyst, the reaction could give a significant
improvement of the yield to 83% (entry 7). Increasing the
reaction time to 4 h could further improve the yield to 91%
(entry 8), but further increasing the reaction time to 10 h
reduced the yield to 86% (entry 9). After screening several
solvents, CHCI; was found to be the optimum solvent for this
reaction (entries 8-13).

Under optimal conditions, the scopes of the reaction were
examined as shown in Scheme 2. We first examined the scope of
benzenamines with various substituents at different positions.
The reaction proceeded efficiently to afford the corresponding
cyclic amidines 3aa-3ar in good to excellent yields, though

This journal is © The Royal Society of Chemistry 2020
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Table 1 Optimization of the reaction conditions®

o
y a @
@C + PhNH; (1 zeq) cat. (5 mol %)
v Teohentt /£

NTs

N=y
1a 2a

Entry Cat. Solvent t (h) Yield” (%)
1 Cul CHCl, 2 17
2 Cu(OAc), CHCl, 2 26
3 CuTC CHCl; 2 46
4 Rh,(OAc), CHCl, 2 23
5 Rhy,(Oct), CHCl, 2 54
6 Pd(OAc), CHCIl; 2 54
7 — CHCl, 2 83
8 — CHCI, 4 91
9 — CHCl, 10 86
10 — Toluene 4 40
11 — DCE 4 77
12 — THF 4 30
13 — 1,4-Dioxane 4 44

¢ Conditions: 1a (0.10 mmol, 1.0 equiv.), 2a (0.12 mmol, 1.2 equiv.), the
catalyst (0.005 mmol, 5 mol%), and solvent (2.0 mL) in a sealed tube.
b Isolated yield.

higher reactivity was observed with electron-donating groups.
Significantly, the benzenamines with functional groups such as
azide, hydroxy and carboxyl groups were well tolerated to give
3as-3au, which could be modified easily for the purpose of
bioconjugate chemistry. Some other amines, including naph-
thyl amine, 2-aminopyridine and phenylhydrazine were also
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Scheme 2 Scope of the reaction. Conditions: 1 (0.10 mmol, 1.0
equiv.), 2 (0.12 mmol, 1.2 equiv.) and the solvent (2.0 mL) in a sealed
tube for 4 h at 120 °C. 1 mmol scale.
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Fig. 2 DFT calculations for the transformation of ketenimine A.

suitable substrates for the reaction, leading to the desired
products 3av-3ax in moderate yields. The structure of 3aw was
determined by X-ray crystallography.”> The scope of N-sulfonyl-
1,2,3-triazoles was subsequently investigated. The reaction took
place with moderate to excellent yields with substrates bearing
different substituents 3ba-3be.

Table 2 Spectral properties of fluorophores

View Article Online

Edge Article

To further understand the formation of cyclic amidine 3aa,
analysis by DFT calculations was performed. As shown in Fig. 2,
starting from ketenimine intermediate A, there are two path-
ways to proceed. By path a, the intermediate A could undergo
6m-electrocyclic ring closure (67t-ERC) via TS, g to give B (3aa);
while by path b, the intermediate A could undergo the first [1,5]-
H shift to form the intermediate C, followed by the 67-ERC via
TScp to afford the isoquinolone D. The energy for the forma-
tion of TSy 5 (AG = 7.2 keal mol ") is lower than that for the
TSc.p (AG = 30.2 kcal mol ™). Therefore, the intermediate A
favors path a to furnish the observed product 3aa.

With a series of 10m-electron cyclic amidines in hand, we
measured their photophysical properties including absorp-
tions, emissions, extinction coefficients, Stokes shifts and
quantum yields. As shown in Table 2, the maximum absorption
wavelengths (Amax) varied from 424 to 443 nm with moderate
extinction coefficients (2110-4364 M~ ' cm '), while the
maximum emission wavelengths (Zen,) varied from 525 to 552
nm with quantum yields from 1% to 23%. In addition, cyclic
amidines 3as-3au with functional groups exhibited similar
photophysical properties, which could be conveniently modi-
fied for further fluorophore tagging.

Compound Amax” (Nm) Aem” (NM) & M Tem™) Stokes shift (nm) (%)
Coumarin®?? 386 448 36 700 62 70
Fluorescein®?? 490 512 93 000 22 95
3aa 433 535 2110 102 17
3ab 432 527 3066 95 23
3ac 434 542 3613 108 14
3ad 434 538 3790 104 13
3ae 436 543 3588 107 11
3af 437 545 3440 108 12
3ag 434 538 3558 104 16
3ah 434 541 3430 107 17
3ai 434 535 3312 101 19
3aj 435 536 2770 101 15
3ak 435 540 3209 105 14
3al 436 542 3786 106 14
3am 435 543 3418 108 12
3an 433 536 4364 103 19
3a0 434 537 3874 103 18
3ap 432 525 2804 93 22
3aq 434 530 3917 9 18
3ar 433 539 3578 106 14
3as 435 535 2915 100 18
3at 434 538 3250 104 18
3au 434 536 2935 102 17
3av 434 532 3170 98 18
3aw 437 552 3099 115 1
3ax 425 528 3865 103 16
3ba 440 542 2285 102 09
3bb 443 550 3771 107 09
3be 443 547 2796 104 10
3bd 427 536 3853 109 17
3be 424 535 2458 111 12

“ Measured in CH;CN at 200 pM. ? Molar extinction coefficient. ¢ Absolute fluorescence quantum yield determined with an integrating sphere

system. 9 The structures of coumarin and fluorescein are shown in Fig. 1.
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A good fluorophore for living systems has good properties
including a remarkable Stokes shift, an applicable pH envi-
ronment, high photostability and low biological toxicity.
Keeping this in mind, we further examined these photophysical
properties (Fig. 3). Based on the absorption and emission
wavelengths in Table 2, all cyclic amidines exhibited remark-
able Stokes shifts of ~100 nm, which could minimize self-
absorption and provide better fluorescence imaging. We next
studied the effect of pH on cyclic amidine 3aa. The results
showed that the pH value of the environment ranging from 2.8-
11.4 had no effect on the emissive properties (Fig. 3c). In
addition, amidine 3aa showed excellent resistance to photo-
bleaching with only 3.4% fluorescence lost after one hour at the
wavelength of maximum excitation (Fig. 3d)."* Subsequently,
the impact of different solvent environments was investigated.
As shown in Fig. 3e, 3aa worked well in aqueous environments,
indicating that it could be used as a polarity probe. In addition,
the emission intensity could be maintained in aqueous solution
without loss after 24 h (see the ESIT). Moreover, cytotoxicity was
another important factor for its application in living systems.
We evaluated the cytotoxicity of 3aa by using CCK-8 assays for
HeLa cells, and it exhibited no significant cytotoxicity at
concentrations of up to 100 pM (Fig. 3f). These results demon-
strated that the novel amidine fluorophore has good properties
of a large Stokes shift, pH insensitivity, low cytotoxicity and
good photostability, which has great potential for biological
imaging.

Ligand-based probes®® have received extensive attention and
have extensive applications due to their high selectivity and
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Fig. 3 (a) The photophysical properties was examined using 3aa as
a representative. (b) Normalized absorbance (abs) and emission (em)
spectra of 3aain CH3zCN. (c) 3aa was prepared as a 1 mM stock solution
in DMSO and then diluted to a concentration of 10 uM with phosphate
buffers of different pH values prepared in advance. Emission spectra
were measured at 433 nm excitation. (d) Test of the photostability of
3aa (Aex = 433 nm) in CH3CN at 100.0 pM. (e) Emission spectra of 3aa
in various solvents at 20 uM. (f) Cell viability (%) was measured by using
CCK-8 assays, treated in the presence of 6.25-200 uM of 3aa using
WT Hela cells for 24 h at 37 °C.
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affinity in the visualization of receptor-ligand interactions and
drug evaluation. In order to evaluate the potential of cyclic
amidines for cell imaging, we synthesized a fluorescent probe 4
by conjugating cyclic amidine 3au with the hemokinin-1 (HK-1)
peptide (TGKASQFFGLM-NH,), which was highly selective to
the NK-1 receptor (Fig. 4a).*® The neurokinin-1 (NK-1) receptor,
as a member of the G-protein-coupled receptor (GPCR) family,
is located at the cell membrane. If a fluorescent ligand binds to
the NK-1 receptor, it would give fluorescence signals at the cell
membrane. To test whether fluorescent probe 4 could bind to
the NK-1 receptor, WT 22RV1 and NK-1-overexpressing 22RV1
cells were treated with 4 respectively. As Fig. 4 shows, green
fluorescence could only be observed in the cell membrane of
NK-1-overexpressing 22RV1, not in the cell membrane of WT
22RV1. Furthermore, the fluorescence could be blocked with

NHBoc

NHZ OtBu
SR J{ L, WL xwrut 40
OtE o \@

NHTrl
hemoklnln-1

/@/\/COOH 1) HATU, DIEA, DMF
CC'L 2) piperidine (20%) in DMF
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4 (3au-N-hemokinin-1)

4 (3au-N-hemokinin-1) Bright-field

Fig. 4 (a) Synthesis and structure of fluorescent ligand 4 (3au-N-
hemokinin-1). (b) WT 22RV1 cells and fluorescence images of 22RV1
cells treated with 4 (1 uM) at 37 °C for 30 min. (c) NK-1-overexpressing
22RV1 cells and fluorescence images of 22RV1 cells treated with 4 (1
uM) at 37 °C for 30 min. (d) NK-1-overexpressed 22RV1 cells treated
with the NK1R inhibitor aprepitant (1 uM) at 37 °C for 30 min and then
incubated with fluorescent ligand 4 (1 uM) for 30 min at 37 °C. Exci-
tation wavelength 488 nm and emission wavelength 520 nm.
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aprepitant, a selective NK-1 receptor antagonist, indicating that
the fluorescent ligand 4 was specifically bound to the NK-1
receptor. These preliminary results demonstrated that amidine
fluorophores could be used as potential bioprobes.

Conclusions

In summary, we have developed a general and efficient 67-
electrocyclic ring closure of ketenimine and imine starting from
N-sulfonyl triazoles and arylamines. The method provides
expeditious access to a variety of 107-electron cyclic amidines in
moderate to excellent yields. Through a fluorescence-structure
relationship study, we found that cyclic amidine fluorophores
have the advantages of large Stokes shifts, pH insensitivity, low
cytotoxicity and higher photostability. Furthermore, they can be
used efficiently in developing new fluorescent probes for
imaging in living systems.
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