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Highly enantioselective conjugate addition reactions of
arylboronic acids to 2-substituted chromones catalyzed

by palladium complexes with new chiral Pyridine-
Dihydroisoguinoline (PyDHIQ) ligands have been developed.
These reactions provide highly enantioselective access to
chromanones containing tetrasubstituted stereocenters. Various
arylboronic acids and 2-substituted chromones can be used

in the catalytic reaction to afford the chiral tetrasubstituted
chromanones in good yields and excellent enantioselectivities
(25 examples, up to 98% yields, up to 99% ee).
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Introduction

Optically active chromanone scaffolds having a stereocenter at
the C2 position are prominent structural motifs in natural
products, and possess numerous bioactivities (Scheme 1a).'
Chiral chromanones have been synthesized by various
methods,> such as intramolecular oxa-Michael additions,?
asymmetric conjugate additions,* asymmetric reductions,®> and
Mitsunobu cyclizations.® Nevertheless, much of the previous
research has focused on generation of trisubstituted rather than
tetrasubstituted stereocenters. Direct asymmetric trans-
formation to generate a tetrasubstituted oxygen-bearing ster-
eocenter at the C2 position of chromanone has remained rather
elusive. A sole exception was reported by the Kurth group,
wherein the enantioselective synthesis of chiral tetrasubstituted
spirocyclic chromanones was enabled via enamine-mediated
aldol/oxa-Michael tandem reactions.” To the best of our
knowledge, there have been no other examples demonstrating
the enantioselective construction of tetrasubstituted stereo-
centers at the C2 position of chromanones in a single step.
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the catalytic reaction to afford the chiral tetrasubstituted chromanones in good yields and excellent
enantioselectivities (25 examples, up to 98% yields, up to 99% ee).

Asymmetric conjugate addition reactions® can provide
a straightforward pathway to chiral C2-tetrasubstituted chro-
manones from relatively simple, achiral unsaturated acceptors
(i.e., 2-substituted chromones). In 2013, the Stoltz group dis-
closed that 2-methylchromone is not a suitable electrophile for
their well-established Pd(u)/PyOx**® catalyzed asymmetric
conjugate addition chemistry** (Scheme 1b).

Interestingly, the Stanley group later reported the racemic
version of such a conjugate addition of arylboronic acids to 2-
substituted chromones catalyzed by a Pd(u)/phenanthroline
complex in aqueous media’ (Scheme 1b). We envisioned that
palladium-catalyzed asymmetric conjugate addition to 2-
substituted chromones could be achieved by developing new
chiral N,N-ligands, which can be effective in Stanley's aqueous
conditions. We imagined that dihydroisoquinoline-based
ligands, having chiral imine moieties, could be potential
candidates. Herein, we report the first example of a palladium-
catalyzed asymmetric conjugate addition of arylboronic acids to
2-substituted chromones with newly developed chiral N,N-
ligands (Scheme 1c). This reaction provides highly enantiose-
lective synthetic access to chiral chromanones bearing tetra-
substituted stereocenters in a single step.

Results and discussion

We have previously reported chiral dihydroisoquinoline-based
N-heterocyclic carbene (NHC) ligands and (N,N) type diimine
ligands, which were synthesized via Bischler-Napieralski cycli-
zation." Following a similar synthetic protocol, a series of chiral
Pyridine-Dihydroisoquinoline (PyDHIQ) ligands were success-
fully prepared (Scheme 2). Electronic and steric properties of
PyDHIQ ligands can be easily modulated by varying

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Synthesis of chromanones by palladium-catalyzed conjugate addition to chromones.

substituents of the pyridine as well as the stereodifferentiating
groups of the chiral imine moiety ((S)-3a-3e).

With the chiral PyDHIQ ligands in hand, the asymmetric
conjugate addition reaction of phenylboronic acid to 2-methyl-
chromone was investigated by employing the PyDHIQ ligands,
Pd(TFA),, H,0 as a solvent, and NH,PF as an additive** (Table 1).

It is important to note that (S)-z-BuPyOx ligand showed no
reactivity in the current reaction conditions (Table 1, entry 1).
While (S)-3a also showed no reactivity, electronically modified
ligand (S)-3b showed low reactivity and moderate enantiose-
lectivity (Table 1, entries 2 and 3). Surprisingly, a considerable
increase of both yield and enantioselectivity was observed with
ligand (S)-3c which has a (2,6-dimethylphenyl)methyl group
(Table 1, entry 4). When the steric demands were increased in
the ligands (5)-3d and (S)-3e, enantioselectivity was increased at
the expense of the yield (Table 1, entries 5 and 6). Therefore, the
ligand ($)-3c was chosen for further study as it showed
a balanced performance in terms of reactivity and enantiose-
lectivity. Encouraged by these results, we systematically altered
the reaction conditions and searched for potential additives to
further improve reactivity and enantioselectivity. Weakly coor-
dinating counteranions such as BF,  and PFs were tested,
since these have previously been shown to beneficially impact

This journal is © The Royal Society of Chemistry 2020

the reactivity and selectivity in related conjugate addition
reactions.®” All the additives tested resulted in better reactivity
than without the additive (¢f. entries 8-10 with entry 7). PFs~
showed higher yields than BF, ™ (entries 8 vs. 9, and entries 4 vs.
10) and ammonium cation showed higher yields than the
sodium cation (entries 4 vs. 9 and entries 8 vs. 10). As a result,
NH,PF, was selected because it showed excellent reactivity and
high enantioselectivity (entry 4). In addition, the use of m-
chlorophenylboronic acids resulted in very low yields (entry 11).
By increasing the reaction temperature from 60 °C to 70 °C, the
yield increased from 17% to 33% (entry 12). The ligand
decomposition was observed at 80 °C by thin-layer chromatog-
raphy monitoring (entry 13).

Remarkably, O, atmosphere increased the isolated yield
from 33% to 55% at 70 °C (entry 14)."> Therefore, the optimized
reaction conditions including the use of NH,PF¢ in O, atmo-
sphere at 70 °C showed the best combination of reactivity and
enantioselectivity.

Under the optimized reaction conditions, the substrate
scope was examined with various arylboronic acids (Table 2). In
case of the reaction with para-substituted arylboronic acids,
electron-rich boronic acids (Table 2, 6b-6e) resulted in mostly
good yields (78-85%) and high enantioselectivity (96-99%),

Chem. Sci., 2020, 11, 4602-4607 | 4603
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Scheme 2 Chiral pyridine-dihydroisoquinoline(PyDHIQ) ligands.

except for para-methoxyphenylboronic acid 6d (51% yields and
90% ee). Reactions with electron-deficient boronic acids such as
para-fluoro- or para-chlorophenylboronic acid also showed
good reactivity and high enantioselectivity (Table 2, 6j and 6k).

bromophenylboronic acid (61, 32% yield and 98% ee) and para-
trifluoromethylphenylboronic acid (6m, 31% yield and 99% ee).
In case of the reaction with meta-substituted arylboronic acids,
electron-rich boronic acids (Table 2, 6f-6i) showed good yield

However, reduced yields were observed with para- (77-82%) and high enantioselectivity (97-99%). An exceptional
Table 1 Reaction optimization®
o) B(OH), o)
PA(TFA), (5 mol%)
dj\ v R @ Ligand (6 mol%)
o Me H,0, Additive, 12 h, T °C
(1.2 equiv.) R
4 R=Hor 3-Cl 6a or 60
Entry T[°C] ArB(OH), Additive (30 mol%) Ligand Yield® [%] ee? [%]
1 60 PhB(OH), NH,PF, (S)-t-BuPyOx” Trace —
2 60 PhB(OH), NH,PF, (S)-3a Trace —
3 60 PhB(OH), NH,PF, (S)-3b 11 —68
4 60 PhB(OH), NH,PF, (8)-3¢ 97 95
5 60 PhB(OH), NH,PF, (8)-3d 77 98
6 60 PhB(OH), NH,PF, (8)-3e 70 98
7 60 PhB(OH), — ($)-3c 42 90
8 60 PhB(OH), NaBF, (8)-3¢ 47 95
9 60 PhB(OH), NaPF, (8)-3¢ 85 95
10 60 PhB(OH), NH,BF, (8)-3¢ 60 90
11 60 3-CIPhB(OH), NH,PF, (8)-3¢ 17 90
12 70 3-CIPhB(OH), NH,PF, (8)-3¢ 33 90
13 80 3-CIPhB(OH), NH,PF, ()-3¢ 35 89
14 70 3-CIPhB(OH), NH,PF,, O, balloon (8)-3¢ 55 92

“ All reactions were carried out with 4 (0.5 mmol, 1 equiv.), ArB(OH) (0.6 mmol, 1.2 equiv.), Pd(TFA), (0.025 mmol, 5 mol%), ligand (0.030 mmol,

6 mol%), additive (0.15 mmol, 30 mol%), HZO (0.35 mL) for 12 h. ?
screening data.  Isolated yield of 6a or 60.

4604 | Chem. Sci,, 2020, 11, 4602-4607

(8)-5-CF;-t-BuPyOx also showed trace amount of products; see ESI for additional
¢ Determined by HPLC with DAICEL chiralpak.

This journal is © The Royal Society of Chemistry 2020
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Table 3 Reaction scope of chromone electrophiles®®

2 Pd(TFA); (5 mol%)

(S)-3c (6 mol%)
H,0, NH,PFg, O,
70°C,20h

©ﬁi©

(1.2 equnv.)

OMe

6a 6b 6c 6d
80% yield, 96% ee

98% yield, 95% ee 85% yield, 98% ee

51% yield, 90% ee

6f

1 X-ray structure of Sef 81% yield, 99% ee

6k
86% yield, 99% ee

77% yield, 97% ee

47% yield, 96% ee 80% yield, 98% ee

6l 6m 6n 60

32% yield, 98% ee 31% yield, 99% ee 60% yield, 96% ee 55% yield, 92% ee

“ All reactions were carried out in vial charged with 4 (0.5 mmol, 1
equiv.), ArB(OH), (0.6 mmol, 1.2 equiv.), Pd(TFA), (0.025 mmol,
5 mol%), (S$)-3¢ (0.030 mmol, 6 mol%), NH,PFs (0.15 mmol,
30 mol%), H,O (0.70 mL), and O, balloon for 20 h. ? Isolated yield.

case is 3,4-(methylenedioxy)phenylboronic acid 6i, which was
isolated in 47% yield and 96% ee. Reactions with electron-
deficient arylboronic acids (6n and 60) were also isolated in
moderate yields (55-60%) and high enantioselectivity (92-96%).
The absolute configuration of compound 6e was determined by
X-ray crystallography, and all other products were assigned by
analogy.

In sequence, the reaction scope was studied with various 2-
substituted chromone derivatives (Table 3). 2-Ethyl-, 2-iso-
propyl-, 2-benzyl- and 2-cyclohexylchromones were synthesized
according to previously reported literature® to investigate the
steric effect of 2-substituted chromones (Table 3, 8a-8d).
Reactions with 2-ethylchromone, which has a linear B-alkyl
substituent resulted in excellent yield and high enantiose-
lectivity (8a, 93% yield and 98% ee). On the other hand, chro-
mones having a branched B-alkyl substituent such as isopropyl

This journal is © The Royal Society of Chemistry 2020

] B(OH),
Pd(TFA), (5 mol%)
- 1+ (S)-3c (6 mol%)
2 H,0, NH,,PFS 0,
o IR 70°C, 20
7a+j 5a
(1.2 equiv.)

93% Yield, 98% ee

47% Yield, 97% ee

48% Yield, 98% ee

8h 8i 8j
74% Yield, 97% ee 90% Yield, 96% ee 64% Yield, 99% ee

“ All reactions were carried out in vial charged with 7 (0.5 mmol, 1
equiv.), PhB(OH), (0.6 mmol, 1.2 equiv.), Pd(TFA), (0.025 mmol,
5 mol%), ($)-3c (0.030 mmol, 6 mol%), NH4PF6 (0.15 mmol,
30 mol%), H,0 (0.70 mL), and O, balloon for 20 h. ? Isolated yield.

or cyclohexyl group afforded the product 8b and 8c in moderate
yield (47-48%), but still with high enantioselectivity (97-98%).
2-Benzylchromone also displayed moderate reactivity with
outstanding enantioselectivity (8d, 52% yield and 98% ee).
Notably, both electron-rich and electron-deficient chromones
with substituents at the 6-position or 7-position were well
tolerated in the reaction (8e-8j), furnishing good yields (64-
92%)and high enantioselectivity (96-99%).

The [(S)-3d]-Pd(u) complex was prepared by the complexa-
tion of (§)-3d with palladium(u) chloride and characterized by X-
ray crystallography (Fig. 1a). The X-ray structure of [(S)-3d]PdCl,
showed that Pd-Cl bond trans to the dihydroisoquinoline is
slightly longer than Pd-Cl bond cis to the dihydroisoquinoline
(2.287(2) A vs. 2.280(2) A).** This suggests that the dihy-
droisoquinoline would exert a stronger ¢rans influence than the
pyridine. Based on the literature precedence, it might be
reasonable to propose a stereochemistry-determining transition
state where a Pd-phenyl bond is located trans to the dihy-
droisoquinoline moiety (Fig. 1b).°»#2213 Fig. 1b shows our
simplified transition state model rationalizing the stereo-
chemical pathways of asymmetric conjugate addition of phe-
nylboronic acid 5a to 2-methylchromone 4. It has been known
that the enantioselectivity-determining step involves a square-
planar geometry transition state at the stage when the phenyl
group inserts across the alkene.”” Among the two possible

Chem. Sci., 2020, 11, 4602-4607 | 4605
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isomeric transition states TS-A and B (Fig. 1b), TS-A leading to
the major product, (S)-6a, might be most favored owing to the
minimized steric repulsions between the ligand and the
substrate.

Conclusions

In conclusion, new chiral pyridine-dihydroisoquinoline (PyD-
HIQ) ligands have been developed for the palladium-catalyzed
asymmetric conjugate addition reactions in aqueous media.
This chemistry represents the first example of a highly enan-
tioselective conjugate addition of arylboronic acids to 2-
substituted chromones to afford hindered chromanone prod-
ucts containing tetrasubstituted stereocenters. Twenty-five
examples of various arylboronic acids and 2-substituted chro-
mones were demonstrated to provide good isolated yield (31-
98%) and outstanding enantioselectivity (90-99%) under the
optimized reaction conditions. The observed stereochemistry
was rationalized by proposed transition state models. The
application of this method to the synthesis of natural products
is currently on-going in our laboratories.
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