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diverse all-carbon quaternary
center containing spirobicycles by exploring
a tandem Castro–Stephens coupling/acyloxy shift/
cyclization/semipinacol rearrangement sequence†

Ye Zhang,a Tian-Lu Zheng,a Fu Cheng,a Kun-Long Dai,a Kun Zhang,b Ai-Jun Ma,b

Fu-Min Zhang, a Xiao-Ming Zhang, a Shao-Hua Wang *ab

and Yong-Qiang Tu *ac

Efficient combination of two or more reactions into a practically useful purification free sequence is of great

significance for the achievement of structural complexity and diversity, and an important approach for the

development of new synthetic strategies that are industrially step-economic and environmentally friendly.

In this work, a facile and efficient method for the construction of highly functionalized spirocyclo[4.5]

decane derivatives containing a synthetically challenging quaternary carbon center has been successfully

developed through the realization of a tandem Castro–Stephens coupling/1,3-acyloxy shift/cyclization/

semipinacol rearrangement sequence. Thus a series of multi-substituted spirocyclo[4.5]decane and

functionalized cyclohexane skeletons with a phenyl-substituted quaternary carbon center have been

constructed using this method as illustrated by 24 examples in moderate to good yields. The major

advantages of this method over the known strategies are better transformation efficiency (four consecutive

transformations in one tandem reaction), product complexity and diversity. As a support of its potential

application, a quick construction of the key tetracyclic diterpene skeleton of waihoensene has been achieved.
Introduction

Spiro bicyclic scaffolds incorporating all-carbon quaternary ster-
eocenters, as a big number of key structural moieties, broadly
exist in bioactive natural products and pharmaceutical mole-
cules, and oen play essential roles in their characteristic
bioactivity.1 Because of the highly steric repulsion caused by its
four carbonic substituents,2 however, the construction of this
type of moiety is a long-standing challenging topic.3 Taking the
spirocyclo[4.5]decane skeleton as a typical example, a lot of
bioactive natural products as well as synthetic intermediates
contain this key unit (Fig. 1).4 Therefore, in order to synthesize
these target molecules and facilitate corresponding molecular
function studies, how to efficiently construct this unit has
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become a crucial and difficult step. Although several strategies
based on different intermolecular or intramolecular cycloaddi-
tion patterns of relatively complex substrates have been devel-
oped during the past decade,5 it is still highly desirable to further
explore alternative approaches for pursuing transformation effi-
ciency, and product diversity as well as extensibility.
Results
Design plan

Besides the above strategies, it is particularly noticeable that the
semipinacol rearrangement reaction, which can generate
Fig. 1 Representative important natural products bearing the spi-
rocyclo[4.5]decane core.

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Strategy design toward the spirocyclo[4.5]decane skeleton.

Table 1 Optimization of reaction conditionsa

Entry Solvent Ag salt Temp Product Yield

1 DCEb — 70 �Cc 3a 82%d

2 Benzeneb — rtc 3a 40%d

3 THFb — rtc 3a 47%d

4 EtOHb — rtc 3a 55%d

5 CH3CN
b — rtc 3a 55%d

6 DMFb — rtc 3a 54%d

7 DCE AgOTf rte 5a 57%f

8 DCE AgNTf2 rte 5a 66%f
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a spirocyclic quaternary carbon center through functional
group migration or skeleton reorganization, has been used by
us6 and several other research groups7 for the syntheses of
a variety of bioactive molecules containing spirocyclo[4.5]
decane and related skeletons. Accordingly, the development of
more efficient semipinacol rearrangement involved reaction
patterns is always a main research program of our group,
especially, through ingenious design and realization of
sequential chemical transformations in step economy. Inspired
by the special chemical properties of propargyl ester in acyloxy
shi/cyclizations,8 we envisioned that a 1,3-acyloxy shi of the
propargyl ester9 intermediate 3 generated by a Castro–Stephens
coupling10 from propargyl ester 1 and allylic bromide 2 pos-
sessing a potential migration moiety might be viable to trigger
a cyclization/semipinacol rearrangement of 4 affording multi-
substituted spirocyclo[4.5]decane and related skeletons
(Scheme 1). Based on the mechanism analysis of the above four
transformations, it is highly likely to achieve them in a tandem
manner. Additionally, since a series of substituent combina-
tions can be used from the two substrates, this strategy, once
feasible, will not only exhibit better transformation efficiency
and product complexity and diversity, but also further enrich
the content of semipinacol rearrangement. Herein, we present
such a novel sequence and its application in the construction of
the tetracyclic ring system of waihoensene, a new example of
complex bioactive molecule-directed synthetic methodology
development.
9 DCE AgSbF6 rte 5a 53%f

10 DCE AgBF4 rte 5a 49%f

11 Benzeneg AgNTf2 rte 5a 11%f

12 THFg AgNTf2 rte 5a 27%f

13 EtOHg AgNTf2 rte 5a nd
14 CH3CN

g AgNTf2 rte 5a 53%f

15 DMFg AgNTf2 rte 5a nd
16 DMSOg AgNTf2 rte 5a nd

a Unless specied, all reactions were carried out using 1a (0.5 mmol, 2.5
eq.), 2a (0.2 mmol, 1.0 eq.), CuOAc (30 mol%), Cs2CO3 (50 mol%),
AuPPh3Cl (10 mol%), and Ag salt (10 mol%) in a reaction tube in DCE
(2 mL) at indicated temperature. b The solvent of Castro–Stephens
coupling for 3a. c Temperature for the rst coupling reaction.
d Isolated yield of 3a. e The rst coupling step was carried out at
70 �C. f Isolated yield of 5a in a purication free manner. g Aer
ltration, the ltrate was concentrated and diluted with the indicated
solvent (4 mL) for the subsequent operation.
Discussion
Optimization of reaction conditions

Following the above assumption, we rst tested the feasibility of
the designed tandem reaction using propargyl ester 1a and
allylic bromide 2a as the model substrates. As the copper cata-
lyst has been successfully applied in Castro–Stephens coupling
and the 1,3-acyloxy shi process to form an allene group,11

different copper catalysts were examined for promoting the
expected reaction.12 Although none of them afforded the desired
nal product 5a, most could give the Castro–Stephens coupling
product 3a, with a best yield of 68% using CuOAc.12 Further
screening of the base additive, solvent and reaction temperature
This journal is © The Royal Society of Chemistry 2020
showed that the use of Cs2CO3 in DCE at 70 �C could produce 3a
in the best yield of 82% (Table 1, entry 1). Subsequently, the
realization of the initial tandem reaction in a purication free
manner was then investigated. Fortunately, aer a quick
removal of the solid from the reaction mixture through Celite
pad ltration following the Castro–Stephens coupling reaction,
a rst attempt using the combination of 10 mol% AuPPh3Cl and
AgOTf could promote the desired reaction to give the product 5a
in 57% yield (Table 1, entry 7). Furthermore, the counterion
effect13 was also observed with this reaction, and the use of
counterion NTf2

� from AgNTf2 exhibited the best result of 66%
yield for 5a (Table 1, entry 8). Next, several different solvents
were applied to this tandem reaction. Among them, benzene,
THF and CH3CN could give the desired product in low yield
(Table 1, entries 11–16). Other solvents were not compatible
with this transformation. Finally, the use of CuOAc along with
Cs2CO3 and the combination of AuPPh3Cl and AgNTf2 in DCE
(Table 1, entry 8) was selected as the optimal reaction
conditions.
Substrate scope investigation

With the optimal reaction conditions in hand (Table 1, entry 8),
we began to explore the generality of this reaction, and the results
are summarized in Tables 2 and 3. Among the substrates tested,
Chem. Sci., 2020, 11, 3878–3884 | 3879
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Table 2 Exploration of the generality of the tandem reaction of cyclic
alkanes as migrating groupsa

a Unless specied, all reactions were conducted using 1 (0.5 mmol, 2.5
eq.), 2 (0.2 mmol, 1.0 eq.), CuOAc (30 mol%), Cs2CO3 (50 mol%),
AuPPh3Cl (10 mol%), and AgNTf2 (10 mol%) in a reaction tube in
DCE (2 mL) at indicated temperature. b 10 mmol of 1a (1.26 g) and
4 mmol of 2a (1.22 g) were used. c CHCl3 was used as the solvent aer
Castro–Stephens coupling. d AuCl3 (10 mol%) in 2 mL HFB
(hexauorobenzene) was used instead of the combination of
AuPPh3Cl and AgNTf2 aer Castro–Stephens coupling; the structure
shows the relative conguration of the major isomer.

Table 3 Exploration of the generality of the tandem reaction of
aromatic rings as migrating groupsa

a All reactions were conducted using 1a (0.5 mmol, 2.5 eq.), 6 (0.2 mmol,
1.0 eq.), CuOAc (30mol%), Cs2CO3 (50mol%), AuPPh3Cl (10mol%), and
AgNTf2 (10 mol%) in a reaction tube in DCE (2 mL) at indicated
temperature.

Scheme 2 New synthetic strategy design toward corresponding
sesquiterpenes.
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most of them could give the expected products in moderate to
good yields. When R1 and R2 groups of propargyl ester formed
a ring system (i.e., cyclohexyl and cyclopentyl), the reaction with
bromide 2a (R4, R5, R6 ¼ H) proceeded smoothly providing
tricyclic products 5b and 5c in 53% and 55% yield, respectively.
Moreover, with the R1 as H, R2 could be H, Ph, isopropyl, or
methyl, and all reactions could give the desired products 5d to 5g
inmoderate to good yields, albeit with low diastereoselectivity for
5d to 5f. Additionally, the reaction was also compatible with
substrate 2with different R4/R5 groups. In the case of substrate 2b
with R4 and R5 being Me and H, respectively, the expected
product 5h was obtained in 36% yield and 1/1 dr ratio. When
both R4 and R5 wereMe (2c), the desired product 5iwas produced
with good diastereoselectivity and yield. It should be noted that
a series of natural product skeletons might be obtained by our
protocol. For example, since the relative conguration of the two
diastereoisomers of ketone 5e (ref. 14) (5e-1 and 5e-2) is consis-
tent with natural products erythrodiene4c,d and cedrol,4g,h respec-
tively, a new general synthetic strategy for these types of natural
products might be developed based on propargyl ester with
3880 | Chem. Sci., 2020, 11, 3878–3884
pivaloyl, and benzoyl was successful to give the corresponding
products 5j and 5k in 53% and 50% yield, respectively. In order to
prove the efficiency of this method in the rapid construction of
product complexity, other four allylic bromides 2d–2g were
applied to the reaction, which produced four spirocyclic products
in good yields. Among them, products 5l and 5m conrmed the
feasibility of adding additional substituents on the cyclobutanol
moiety, while product 5n showed that the amine group is
amenable to this reaction. It was noteworthy that substrate 2g
with a 2,3-dihydro-1H-inden-2-ol motif could go through the
reaction through a ve-membered ring to a six-membered ring
expansion affording product 5o. In order to demonstrate the
potential utility of such a reaction, the transformation between 1a
and 2a was attempted on the gram scale giving 5a in a moderate
yield of 43% (Scheme 2).

Based on the above results, the application of this method in
the construction of a functionalized cyclohexane skeleton with
a phenyl-substituted quaternary carbon center, a common
This journal is © The Royal Society of Chemistry 2020
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moiety in a variety of natural products like limaspermidine15a

and strychnine,15b was further investigated. Accordingly, a series
of allylic bromides with an aryl substituted tertiary alcohol
moiety were applied to this reaction with substrate 1a. All of the
tested substrates afforded the expected products, and the
regioselectivity of this reaction during the migration step agrees
well with the common semipinacol rearrangement pattern, i.e.,
aryl groups and aryl groups with an electron-donating substit-
uent are more preferred than alkyl groups and aryl groups with
an electron-withdrawing substituent, respectively. For example,
substrates 6a–6f all gave the aryl group migrated products, and
substrate 6i led to ketone 7i as the sole product. Besides, the
steric hindrance effect of the substituent on the aromatic ring
has also been clearly observed. When the substituent on the
phenyl ring was chloro, product 7c with the substituent at the
para-position was obtained in higher yield than the one with it
at the meta-position (7e).
Synthetic application

In order to demonstrate the efficiency of this method in con-
structing a highly complex structural skeleton, a quick assembly
of the key tetracyclic skeleton of waihoensene,16 a unique
diterpene molecule isolated from the New Zealand podocarp,
featuring fused and strained tetracyclic rings and four
Scheme 3 Synthetic utility of the tetracyclic skeleton of waihoensene.
Reagents and conditions: (a) pyrrolidine, Et3N, neat, 85 �C, then
TBDPSCl, imidazole, CH2Cl2, 0 �C (98%); (b) Tf2O, 2,6-di-tert-butyl-4-
methylpyridine, DCE, reflux, then CCl4/H2O reflux (54%); (c) 2-bro-
mopropene, t-BuLi, THF, �78 �C (85% brsm); (d) TESOTf, 2,6-lutidine,
CH2Cl2, 0 �C (94%); (e) SeO2, TBHP, CH2Cl2, 0 �C – rt (73% brsm); (f)
CBr4, PPh3, imidazole, CH2Cl2, rt (90%); (g) prop-2-yn-1-yl acetate,
CuOAc, Cs2CO3, DCE, 70 �C, then AuCl3, PTS, HFB (hexa-
fluorobenzene), rt (40%, dr ¼ 3.2 : 1); (h) TBAF, THF, 0 �C (93%); (i) IBX,
EtOAc, reflux (91%); (j) K2CO3, MeOH/H2O¼ 100 : 1, 0 �C – rt (64%); (k)
HCl, THF, rt (89%). TBDPSCl ¼ tert-butyl diphenylchlorosilane, DCE ¼
1,2-dichloroethane, TESOTf ¼ triethylsilyl tri-
fluoromethanesulphonate, IBX ¼ 2-iodoxybenzoic acid.

This journal is © The Royal Society of Chemistry 2020
consecutive congested all-carbon quaternary centers, was
attempted using this reaction as the key step (Scheme 3). Due to
the great difficulty in constructing such a tetracyclic framework
with vicinal quaternary carbon centers, only one synthetic
strategy toward waihoensene has been reported in 2017 using
a tandem cycloaddition reaction of an allene substrate prepared
in 12 steps as the key step.17 Herein, based on the method we
developed, starting from prop-2-yn-1-yl acetate 1g and 2h
synthesized from the known reagent 8 in 6 steps, a facile access
to a tricyclic skeleton was accomplished affording 5p in 40%
yield and a dr ratio of 3.2/1 using hexauorobenzene as the
solvent.18 The relative conguration of 5p and its diastereo-
isomer 5q was conrmed by the X-ray structure analysis of their
derivatives.14 Next, the TBDPS protecting group of 5p was
removed with TBAF followed by IBX oxidation providing dicar-
bonyl compound 12. A K2CO3-induced tandem hydrolysis/
intramolecular aldol cyclization/elimination reaction would
give compound 13. Thus a quick construction of the tetracyclic
skeleton core of waihoensene with vicinal all-carbon centers
was realized through the use of this key methodology. Addi-
tionally, an unprecedented [3.2.2] bridged motif 14 could be
obtained through a different cyclization model in the presence
of HCl.

Conclusions

In summary, targeting a highly functionalized spirocyclo[4.5]
decane skeleton, a purication free tandem Castro–Stephens
coupling/1,3-acyloxy shi/cyclization/semipinacol rearrange-
ment reaction of propargyl esters with allylic bromide has been
successfully developed. This method not only features a highly
efficient chemical conversion into complex spirobicyclic
compounds from simple readily available substrates, but also
exhibits a wide substrate scope. Especially, compared with our
previous work on semipinacol rearrangement related synthetic
methodology, some characteristic functional groups that are
necessary for the corresponding bioactive natural products,
such as isopropyl4g,h and geminal methyl groups,4a can be
readily installed. Moreover, the generation of a vinyl ester
moiety by this transformation provides an important hinge for
subsequent transformation enabling a quick construction of
the key 6/5/5/5-fused tetracyclic skeleton of waihoensene.
Further application of this method for the total synthesis of
related bioactive natural products is ongoing in the same lab.
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