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The functionalization of remote C-H bonds offers a powerful
method to develop new synthetic methods and achieve
transformations that would otherwise be highly challenging.*
Within this field, 1,4-migration of rhodium(i) between two
carbon centers** has proven to be highly effective for the
catalytic functionalization of remote C-H bonds, which has
been used to impressive effect in a range of valuable synthetic
methods.*

We have described catalytic arylative cyclizations from the
reaction of alkynyl ketones with arylboronic acids, which
produce densely functionalized polycarbocycles through a key
step involving an alkenyl-to-aryl 1,4-metal migration
(Scheme 1A).° This desymmetrization reaction forms two new
carbon-carbon bonds with complete diastereocontrol over
two new stereocenters and a trisubstituted alkene. In the non-
enantioselective variant of this process, rhodium() catalysis
was only moderately successful because of the formation of
significant quantities of side-products, and the highest yields
were obtained using iridium(i) catalysis.>® Although prelimi-
nary attempts towards an enantioselective variant using chiral
bisphosphine-iridium complexes successfully gave products
in high enantioselectivities, only modest catalytic activities
were observed.® Furthermore, only cyclic ketones were
employed in that study.” Yan and Yoshikai have reported
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arylboronic acids to function effectively as 1,2-dimetalloarene surrogates.

related cobalt-catalyzed arylative cyclizations of acyclic 1,3-
diketones with diarylzinc reagents; however, enantioselective
reactions were not described (Scheme 1B).” Therefore, to
increase synthetic utility, there remains a need to discover
more effective chiral catalysts that address these limitations
by promoting high-yielding and highly enantioselective ary-
lative cyclizations of a wider range substrates,® including
acyclic 1,3-diketones. Here, we report that a chiral bisphos-
phine-rhodium complex promotes the diastereo- and enan-
tioselective reaction of arylboronic acids with alkynyl 1,3-
diketones, for which both acyclic and cyclic 1,3-diketones are
effective substrates.

A. Ir(l)-catalyzed arylative cyclizations of alkynyl ket (ref. 5)
1,4-Ir(l) migration
WY -

IrL, O Rt

KF (1.5 equiv) — >
[Ir(cod)C]]z (1.5 mol%) ® R? .‘
+-BUOH (1.5 equiv) “+BUOH (15 equy) . ©
OH

toluene, 65 °C, 16 h

ArB(OH), (1.5 equiv) o

= low catalytic activity in enantioselective variant = only cyclic ketones studied

B. Cobalt-catalyzed arylative cyclizations of alkynyl 1,3-diketones (ref. 7)
Ph

CoCl; (10 mol%)

o Me bisphosphine (10 mol%)
[¢] Ph toluene, 60 °C, 12 h
¥
Ar,Zn (1.5 equiv) = non-enantioselective
C. Enantioselective Rh(l)-catalyzed arylative cyclizations (this work)
R! R! Art :
— 1 H
o) Rz_ A O;é E Q Me
R R*S : ™
’ > Hom, : N
o R ! : Ar
. R v o
Ar?B(OH), ! Ar?B(OH),

m acyclic and cyclic 1,3-diketones studied m generally high enantioselectivities

Scheme 1 Catalytic arylative cyclizations involving 1,4-metal
migration.
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Our experiments began with the arylative cyclization of
alkynyl 1,3-diketone 1a with PhB(OH), (eqn (1) and Table 1).
Application of conditions identical to those described in our

PPh,
PPh,
1)

(R)- dlﬂuorphos (10 mol%)
[Ir(coe). 2C|]2 (5 mol%)

tAmOH (1.5 equiv)

KF (1.5 equiv)
xylenes, 110 °C, 20 h

?Ph

PhB(OH), (1.5 equiv)

no reaction

previous study,® using an iridium—(R)-difluorphos complex, led
to no reaction and only unreacted starting material was recov-
ered (eqn (1)). Pleasingly, however, reaction of 1a with PhB(OH),
(1.5 equiv.) in the presence of [Rh(C,H,),Cl], (5 mol%), (R)-
BINAP (L1, 10 mol%), and KF (1.5 equiv.) in THF/H,O (9 : 1) at
70 °C for 24 h gave arylative cyclization product ent-2a in 54%
yield (as determined by 'H NMR analysis using 1,4-dimethox-
ybenzene as an internal standard) as a single diastereomer
(>19:1 dr) in 80% ee (Table 1, entry 1). Higher enantiose-
lectivity was obtained using (S)-DTBM-SEGPHOS (L2), which
gave 2a in 52% NMR yield and 91% ee (entry 2). Changing the
protic additive from H,O to #AmOH (1.5 equiv.) further
increased the enantioselectivity (entry 3). The yield of 2a was
increased further by raising the temperature to 80 °C (entry 4)
and using 2.0 equivalents of PhB(OH), (entry 5). Conducting the
reaction on a larger scale using 0.30 mmol of 1a gave 2a in 78%
yield and 98% ee (entry 6). This experiment also gave a side-
product 3a in 5% yield." It should be noted that the use of
PhB(OH), free from triphenylboroxine is very important for

Table 1 Evaluation of reaction conditions®
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good results, as otherwise lower enantioselectivities are
observed. Finally, repeating the conditions of entry 5 but using
[Ir(coe),Cl], in place of [Rh(C,H,)Cl,] led to no reaction, and
only unreacted starting material was recovered (entry 7).

With effective conditions identified (Table 1, entry 6), the
scope of this process with respect to the alkynyl acyclic 1,3-
diketone 1 was investigated in reactions with PhB(OH), (Table
2). Arylative cyclization products 2a-2r were obtained as single
observable diastereomers (>19 : 1 dr as determined by 'H NMR
analysis of the crude reaction mixtures) in 27-82% yield and 56~
99% ee. Side-products analogous to 3a (see Table 1) were
generally detected but not isolated. Changing the a-substituent
R? between the two ketones from methyl (2a) to ethyl (2b), n-
butyl (2¢), benzyl (2d), or 4-methoxybenzyl (2e) is tolerated. The
low yield of 2c¢ results from a low conversion as significant
unreacted starting material was observed. The process is also
compatible with a range (hetero)aryl groups Ar' at the alkynyl
position, such as 4-substituted phenyl (2f-2i), 2-fluorophenyl
(2j), 3,5-dimethylphenyl (2k), 3,4-(methylenedioxy)phenyl (21), 2-
naphthyl (2m), 1-naphthyl (2n), 2-thienyl (20), and 2-pyridyl (2p)
groups. Finally, the ketone substituents can also be varied from
methyl to ethyl (2q) or phenyl groups (2r), although the enan-
tioselectivity dropped substantially in the latter case.

The process is not limited to the use of PhB(OH),, as shown
by the arylative cyclizations of 1a with different arylboronic
acids to give 2s-2x in 88-96% ee (Table 3). Various 4-substituted
phenylboronic acids containing methyl (2s), methoxy (2t), flu-
oro (2u), or chloro groups (2v) reacted successfully. When 3-
methylphenylboronic acid was employed, 1,4-Rh(1) migration
occurred to the least sterically hindered site, para to the methyl

——Ph

PhB(OH), (1.5 equiv)

PPh,

PPh, o
e ¢
o}

L1 (R)-BINAP

ligand (10 mol%)
[Rh(C2H4),Cll, (5 mol%)
—_—

additive (1.5 equiv)
KF (1.5 equiv)
solvent, temp, 24 h

O PAr,

L2 (S)-DTBM-SEGPHOS

PAr,

Ar = 3 5-t-Buy-4-MeOCgH,

Entry Ligand Additive Solvent Temp. (°C) Yield” (%) ee (%)
1 L1 — THF : H,0 (9: 1) 70 54 —807

2 L2 — THF : H,0 (9: 1) 70 52 91

3 L2 t-AmOH THF 70 54 95

4 L2 t-AmOH THF 80 67 96

5¢ L2 t-AmOH THF 80 70 96
6%/ L2 t-AmOH THF 80 78 (5)¢ 98
75" L2 t-AmOH THF 80 n.r.’ —

“ Reactions were conducted with 0.05 mmol of 1a in 1 mL of solvent. ?
standard. ¢ Determined by HPLC analysis on a chiral stationary phase. ¢

experiment. " Using [Ir(coe)Cl,], in place of [Rh(C,H,),Cl,].

2760 | Chem. Sci, 2020, N, 2759-2764

Determlned by 'H NMR analysis usmg 1,4-dimethoxybenzene as an internal
The major enantiomer was ent-2a.
f Using 0.30 mmol of 1a in THF (6 mL). ¢ Value in parentheses refers to the yield of side-product 3a, which was also isolated from this
n.r. = no reaction.

Using 2.0 equivalents of PhB(OH),.

This journal is © The Royal Society of Chemistry 2020
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Table 2 Evaluation of alkynyl acyclic 1,3-diketones 1¢

<10
o P(Ar2),

. 0 P(Ar?),
R
——Ar' <O O
o R? L2 (10 mol%)
Ar? = 3 5-t-Bu,-4-MeOCgH,
07 > R! °

[Rh(C2H4)2Cll; (5 mol%)
t-AmOH (1.5 equiv)
+ KF (1.5 equiv)
PhB(OH), (2.0 equiv) THF, 80 °C, 24 h

1a-1q

a-Substituent (R?)

2a R = Me, 78%, 98% ee
2b R = Et, 67%, 96% ee
2¢ R=n-Bu, 27%, 95% ee

2d 50%, 98% ee 2e 53%, 98% ee

Alkynyl substituent (Ar?)

2f R =Me, 82%, 97% ee
2g R=Cl, 76%, 97% ee
2h R = OMe, 48%, 88% ee
2i R=Ph, 64%, 85% ee

2n 40%, 92% ee

Ketone substituent (R")

20 66%, 97% ee

2p 67%, 96% ee 2q R =Et, 63%, 96% ee

2r R =Ph, 48%, 56% ee

“ Reactions were conducted with 0.30 mmol of 1 in THF (6 mL). Yields
are of isolated products. Enantiomeric excesses were determined by
HPLC analysis on a chiral stationary phase. PMB = para-methoxybenzyl.

group (2x). However, 2-methylphenylboronic acid did not
provide any of the arylative cyclization product 2y, and returned
mainly unreacted starting material along with what appeared to
be small quantities of alkyne hydroarylation products.

Our attention then turned to the reaction of alkynyl cyclic 1,3-
diketones 4, substrates employed in our prior study using iridium
catalysis (Tables 4 and 5).” With toluene as the solvent, these
more reactive substrates generally allowed the use of a decreased
catalyst loading of 5 mol% and a lower temperature of 50 °C.

This journal is © The Royal Society of Chemistry 2020
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Table 3 Evaluation of arylboronic acids with alkynyl acyclic 1,3-dike-

tone 1a“
.
0 P(A),
O P(Ar2)2
Me
— Ph <o O

o Me L2 (10 mol%)
Ar2 = 3 5-+-Bu,-4-MeOCgH,
07 "Me [RA(C5H4),Cll, (5 mol%)
1a t-AMOH (1.5 equiv)
* KF (1.5 equiv)

THF,80°C, 24 h

Cl
2v 52%, 88% ee

2x 74%, 90% ee

2y 0%

“ Reactions were conducted with 0.30 mmol of 1a in THF (3 mL). Yields
are of isolated products. Enantiomeric excesses were determined by
HPLC analysis on a chiral stationary phase. ? Unreacted starting
material was returned along with a trace of what appeared to be
alkyne hydroarylation products.

Furthermore, in most cases, acceptable results were obtained
using only 1.5 equivalents of the arylboronic acid. Various
substrates 4a-4f underwent arylative cyclization with PhB(OH), to
give products 5a-5f in 39-74% yield and 61-99% ee (Table 4).
Small quantities of side-products resulting from arylrhodation of
the alkyne with the regioselectivity opposite to that seen in the
formation of products 5 were also observed but generally not
isolated (see ESIt for details). As with the acylic 1,3-diketones
(Table 2), a range of aryl substituents at the alkyne are tolerated,
including phenyl (5a and 5f), 4-methoxyphenyl (5b), 4-chlor-
ophenyl (5c¢), and 3-methylphenyl (5d). The lower yield of 5b
results from the formation of products of alkyne hydroarylation
without cyclization. The cyclization of a 2-cyanophenyl-
containing substrate 4e proceeded smoothly using a 10 mol%
catalyst loading but the product 5e was formed in a modest 61%
ee. A six-membered cyclic 1,3-diketone also underwent arylative
cyclization with PhB(OH), to give 5f in 60% and 97% ee.

The scope of the arylative cyclization of alkynyl cyclic 1,3-
diketones with respect to the arylboronic acid was then explored
in reactions with substrate 4a (Table 5). These reactions pro-
ceeded in 44-69% yield and gave products 5g-5p in 95-99% ee.
The process tolerates diverse 4-substituted phenylboronic acids
containing methyl (5g), halide (5h and 5i), methoxy (5j), acetoxy
(5k), or carboethoxy groups (51). 3-Substituted phenylboronic
acids (5m and 5n), 3,4-dimethoxyphenylboronic acid (50), and 2-
naphthylboronic acid (5p) also react effectively. Again, where 1,4-
Rh(1) migration could occur to two different positions, migration

Chem. Sci., 2020, 1, 2759-2764 | 2761
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Table 4 Evaluation of alkynyl cyclic 1,3-diketones 4“

IO

P(Ar2),
o o P(Ar?),
> X
A o]
é‘:\m L2 (5 mol%)
o Ar? = 3,5-t-Buy-4-MeOCgH,

g [Rh(C3H4)Cll, (2.5 mol%)
4a-4f AmOH (1.5 equiv)
+ KF (1.5 equiv)
PhB(OH), (1.5 equiv) toluene, 50 °C, 18 h

5a R=H, 69%, 95% ee 5d 60%, 99% ee®
5b R =OMe, 39%, 98% ee

5¢ R=Cl, 74%, 99% ee

5e 64%, 61% ee® 5f 60%, 97% ee

“ Reactions were conducted with 0.30 mmol of 4 in toluene (3 mL).
Yields are of isolated products. Enantiomeric excesses were
determined by HPLC analysis on a chiral stationary phase. ? Using
5 mol% of [Rh(CyH,),Cl],, 10 mol% of L2. ° Using 2.0 equiv. of
PhB(OH),.

to the sterically less-hindered side was observed (5m-5p). An
attempt to form 5q with 2-methylphenylboronic acid was
unsuccessful, and returned only unreacted starting material.

Interestingly, the reaction of substrate 4a with 3-thienylbor-
onic acid gave two products 5ra and 5rb resulting from 1,4-Rh(i)
migration to different positions of the thienyl ring before
cyclization (eqn (2)).

Finally, this method is not restricted to the use of 1,3-
diketone-containing substrates; substrate 6 containing a single

(e}
(o) <o O

Me PAr,
% o) PAr,
Ph <

o] o]

4 L2 (10 mol%) 5ra 47%, 99% ee

a

Ar = 3,5-t-Buy-4-MeOCgH.

: rHeors . )

B(OH), [Rh(C,H,),Cll, (5 mol%) o Ph
t-AmylOH (1.5 equiv) Me
/ \ KF (1.5 equiv) B
S toluene, 50 °C, 18 h
(2.0 equiv)

5rb 18%, 98% ee
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Table 5 Evaluation of arylboronic acids with alkynyl cyclic 1,3-dike-

tone 4a“
¢
[ P(Ar2),

o P(Ar2),
% e 1
(o}
X L2 (5 mol%)
Ph Ar? = 3,5-t-Buy-4-MeOCgH,

[RN(C5H4),Cll, (2.5 mol%)
-AmOH (1.5 equiv)
* KF (1.5 equiv)
Ar'B(OH), (1.5 equiv) toluene, 50 °C, 18 h

59 R =Me, 57%, 99% ee

5h R =F, 65%, 99% ee®

5i R=Cl, 65%, 98% ee

5] R=OMe, 55%, 99% ee

5k R =OAc, 61%, 99% eeb®
51 R =CO,Et, 65%, 99% eed

5m R = Me, 44%, 99% ee
5n R =Br, 61%, 99% ee

OMe
50 46%, 99% ee®®

5q 0%°

5p 64%, 95% ee

“ Reactions were conducted with 0.30 mmol of 4 in toluene (3 mL).
Yields are of isolated products. Enantiomeric excesses were
determined by HPLC analysis on a chiral stationary phase. ? Using
5 mol% of [Rh(C,H,),Cl], and 10 mol% of L2. © Using 2.0 equivalents
of the arylboronic acid. “ Using 2.4 equivalents of the arylboronic
acid. ¢ Unreacted starting material was returned.

methyl ketone also underwent arylative cyclization to give 7 in
94% yield and 85% ee (eqn (3)).

<1
© P(AR),
o] P(Arz)z

<1 e
(0]

L2 (10 mol%) Z (3)
Ar? = 3,5-+-Bu,-4-MeOCgH,

HO
Me O

[Rh(C2Hg),Cll, (5 mol%)
7 84%, 85% ee

t-AmOH (1.5 equiv)
KF (1.5 equiv)

(absolute configuration

not known)

(o}

Me)k/\
6 Ph

+
PhB(OH), (2.0 equiv)

THF, 80 °C, 24 h

Scheme 2 illustrates a possible catalytic cycle for these
reactions, using 1a and PhB(OH), as example substrates. First,
upon mixing [Rh(C,H,4)Cl],, L2, KF, and #AmOH, a chiral
complex 8 consisting of one bisphosphine bound to one
rhodium atom is formed, which could have a chloride, fluoride,
or tert-amyl counterion. Transmetalation of 8 with PhB(OH),
gives an arylrhodium species 9, which can then undergo
migratory insertion with the alkyne of 1a to give alkenylrho-
dium intermediate 10. Alkenyl-to-aryl 1,4-rhodium(r) migration
of 10 then provides arylrhodium species 11. The relative
configuration of products 2 can be explained by a tentative
stereochemical model where cyclization proceeds through
a conformation similar to 12, in which: (i) rhodium(i) has

This journal is © The Royal Society of Chemistry 2020
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0.5 [Rh(C,H,),Cll, + L2

KF, t-AmOH

2a L,Rh—X
hx )/’ N

PhB(OH),

XB(OH),
Me
——Ph
L.Rh—Ph Me
9

¢} Me
1a

13 X = CI, F, or Ot-Am H'\'
RhL,
Z
t Ph
Me Me. Me
P O/ Me
SRh_F—__Ph S Me
~ 0
P 4
- RhL,
Ve 0 10

Me

12
Z Ph /1,4-migration
\ Me

(¢} Me

"

Scheme 2 Possible catalytic cycle and rationalization of diaster-
eochemical outcomes.

a square pyramidal coordination geometry; (ii) the ketone
undergoing nucleophilic attack is coordinated to rhodium such
that the carbonyl group is aligned with the arylrhodium bond to
enable subsequent migratory insertion; and (iii) the second
ketone is coordinated to rhodium in an axial position. The
relative configuration of products 5 (Tables 4 and 5) is more
straightforward to rationalize; because of geometric
constraints, nucleophilic addition of the arylrhodium group
must occur to the same face of the cyclic 1,3-diketone as that
from which the tether connecting the two reacting components
projects (as in 14 to give representative product 5a, for example).
However, as to exactly how the chiral ligand controls the abso-
lute configuration of the products is not clear at the present
time.

In conclusion, we have reported rhodium(i)-catalyzed aryla-
tive cyclizations of alkynyl 1,3-diketones with arylboronic acids,
which involve an alkenyl-to-aryl 1,4-Rh(i) migration as a key
step. By using a chiral rhodium(r) complex based upon (S)-
DTBM-SEGPHOS, the formation of side-products observed
previously’ with [Rh(cod)Cl], is significantly reduced, and
catalytic activity is greatly increased compared with chiral
iridium complexes.® These desymmetrization reactions provide
densely functionalized polycarbocycles with high diastereo- and
enantioselectivities, and notably, both acyclic and cyclic 1,3-
ketones are effective substrates.™

This journal is © The Royal Society of Chemistry 2020
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