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in–ligand binding with neural
network potentials†

Shae-Lynn J. Lahey and Christopher N. Rowley *

Drugmolecules adopt a range of conformations both in solution and in their protein-bound state. The strain

and reduced flexibility of bound drugs can partially counter the intermolecular interactions that drive

protein–ligand binding. To make accurate computational predictions of drug binding affinities,

computational chemists have attempted to develop efficient empirical models of these interactions,

although these methods are not always reliable. Machine learning has allowed the development of

highly-accurate neural-network potentials (NNPs), which are capable of predicting the stability of

molecular conformations with accuracy comparable to state-of-the-art quantum chemical calculations

but at a billionth of the computational cost. Here, we demonstrate that these methods can be used to

represent the intramolecular forces of protein-bound drugs within molecular dynamics simulations.

These simulations are shown to be capable of predicting the protein–ligand binding pose and

conformational component of the absolute Gibbs energy of binding for a set of drug molecules.

Notably, the conformational energy for anti-cancer drug erlotinib binding to its target was found to be

considerably overestimated by a molecular mechanical model, while the NNP predicts a more moderate

value. Although the ANI-1ccX NNP was not trained to describe ionic molecules, reasonable binding

poses are predicted for charged ligands, but this method is not suitable for modeling charged ligands in

solution.
Introduction

Molecular simulation of the binding of small molecules to
proteins has provided computational prediction and ration-
alization of the affinity and selectivity of drugs with their
targets. These simulations rely on molecular mechanical (MM)
force elds to describe the intra and intermolecular interactions
of the solvent, protein, and ligand. These “force elds” are
constructed from simple mathematical functions that approxi-
mate the potential energy surface of the protein–ligand
complex. A force eldrequires the denition of a large set of
parameters, which are typically chosen to yield the closest
agreement with empirical or quantum chemical data.

Development of accurate models of potential energy terms of
protein–ligand binding and their optimal parameters is a long-
standing objective in computational chemistry. The electro-
static,1,2 repulsive, and dispersion3,4 interaction terms have been
developed actively; however, accurate representation of intra-
molecular potential energy of the ligand is particularly chal-
lenging and no complete, general solution has been developed.
Current force elds approximate intramolecular forces using
. John's, Newfoundland and Labrador,

ion (ESI) available: Details of
NNP/MM NAMD input le. See DOI:

68
simple but generally effective terms that were introduced more
than 50 years ago,5 where bond angles and stretches are
described with harmonic potentials (i.e., spring-like) and
torsional barriers are dened as the sum of a handful of cosine
functions. Force elds for drug-like compounds are particularly
difficult to develop because of the enormous variety of chemical
motifs, which oen feature complex chemical effects like
conjugation, hyperconjugation, and aromaticity. This is com-
pounded by the enormous variety of chemical motifs that are
possible in chemical drug space, where each could require
a distinct set of parameters. For example, the proprietary OPLS3
force eld denes 124 atom types and 48 142 torsional param-
eters.6 Other methods provide options to reparameterize force
elds automatically using ab initio calculations,7–11 although
this complicates the simulation workow and can be compu-
tationally expensive.

Recently, machine-learned neural network potentials (NNPs)
have emerged as an alternative to conventional MM force
elds.12 The ANI models13,14 developed by Roitberg and
coworkers dene the atomic positions in terms of a set of
“symmetry functions”,15 which are constructed from the posi-
tion of a given atom relative to nearby atoms. A neural network
is trained to reproduce the high-level ab initio electronic ener-
gies (i.e., CCSD(T)) from these data. These potentials are
remarkably robust and predict the structures and relative
stabilities of molecular conformations across a broad set of
This journal is © The Royal Society of Chemistry 2020
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chemical structures with similar accuracy to the high-level ab
initio data they were trained to reproduce. The computational
cost of NNPs is comparable to molecular mechanical models, so
they can be used to perform nanosecond (ns) length simula-
tions of molecules containing dozens or hundreds of atoms
routinely.

Here, we present a strategy to simulate protein–ligand
complexes using a machine-learned NNP to represent the
intramolecular interactions of the ligand. This model is
embedded inside a conventional MM force eld for the protein
and solvent, so establishedmodels for these components can be
used without modication. We call this method NNP/MM, as it
functions the same as Quantum Mechanical/Molecular
Mechanical (QM/MM) models do, but with the NNP used in
place of the QM method. This method is tested for its ability to
predict the poses of protein-bound drugs in comparison to
electron density distributions determined by X-ray crystallog-
raphy. The Gibbs energies for restraining the ligands to their
bound conformations are calculated using NNP/MM and
compared to the CGenFF force eld.
Computational methods
Theory

In this method, the potential energy of the whole system is
dened as the sum of the potential energy of the subsystem
described by the NNP (i.e., the intramolecular interactions of
the ligand) ðV NNPÞ, the potential energy of the environment
around the ligand ðV MMÞ, and the interactions between the
ligand and its environment ðV NNP=MMÞ (eqn (1)).

V ðrÞ ¼ V MMðrMMÞ þ V NNPðrNNPÞ þ V NNP=MMðrÞ (1)

where r is the coordinates of the whole system, rMM is the
coordinates of the ligand environment, and rNNP is the coordi-
nates of the ligand. The MM region is represented using
a conventional MM force eld, so V MM is calculated in the
normal fashion for an additive force eld. For non-covalent
protein–ligand binding, the V NNP=MM term is the conventional
MM non-bonded interactions between the protein and the
ligand, which is simply the sum of Lennard-Jones and pairwise
coulombic interactions between the NNP atoms and MM atoms
(eqn (2)).

V NNP=MMðrÞ ¼
XMM

i

XNNP

j

qiqj

4p3rij
þ 43ij

"�
sij

rij

�12

�
�
sij

rij

�6
#

(2)

This functions similarly to mechanically-embedded QM/MM
models,16 where the NNP serves as the “QM” model embedded
within the MM system. This method can be employed in many
established simulation codes without modication because
they can implemented using existing QM/MM features, which
allow the energy and forces of a critical subsection of the system
to be calculated using an external method.

The immediate advantage of this method is that highly-
accurate intramolecular forces can be calculated for ligands
This journal is © The Royal Society of Chemistry 2020
without parameterization and without modications to current
molecular simulation codes. A limitation of this approach is
that the protein–ligand interactions are still calculated by the
CGenFF/CHARMM electrostatic and Lennard-Jones terms. The
development of efficient NNPs that are capable of describing
the entire system could provide more accurate and non-
empirical protein–ligand binding energies.

There have been several reports where QM/MM simulations
were used to model protein–ligand complexes.17–19 The draw-
back of these QM methods is that typically they use semi-
empirical quantum mechanics in order to calculate the energy
and forces of the ligand sufficiently quickly to perform suffi-
ciently long MD simulations. These methods generally are less
accurate than the ANI NNPs for the calculations of the relative
conformational stability of ligand conformations and the
computational cost is generally greater. One advantage of QM/
MM methods over the NNP/MM method used here is that the
electron density of the ligand can be polarized by the protein
and solvent (i.e., through electrostatic-embedding QM/MM16).
This is not possible for the NNPs used here because these
methods do make any calculation of the electron density of the
ligand, so they are effectively mechanically embedded.

Technical details

All molecular dynamics (MD) simulations were performed
using NAMD 2.13.20 The ligand intramolecular energies and
forces were calculated using the ANI-1ccX14 NNP implemented
in the TorchANI package.21 The programs were interfaced
through the general-purpose external-force functionality of the
NAMDQM/MM code.22 The CHARMM36m force eld23was used
to represent the protein and the mTIP3P model24,25 was used to
represent the water molecules. Sample input les and our
scripts can be downloaded from our online repository26 and will
be included in future distributions of NAMD. The CGenFF27

Lennard-Jones and electrostatic parameters were used to
calculate the non-bonded ligand–protein interactions (i.e.,
V NNP=MM). Non-bonded interactions were calculated using a 12
Å cutoff, although lattice-summationmethods are also available
in the QM/MM NAMD interface.

The calculation of the erlotinib potential energy surface was
performed using ORCA 4.2.1.28 Optimizations with constraints
on the amine torsional angle were performed using the reso-
lution of identity 2nd-order Møller–Plesset theory (RI-MP2) with
the def2-TZVP basis set.29 Single point energy evaluations were
performed at these optimized structures using Domain-based
Local Pair Natural Orbital – Coupled Cluster Singles and
Doubles with perturbative triples30 with the def2-TZVP basis set
(DLPNO-CCSD(T)/def2-TZVP//RI-MP2/def2-TZVP) to generate
the QM potential energy surface.

Test set

To evaluate the ability of the ANI-1ccX potential to predict the
pose of a bound ligand, we developed a test set of protein–ligand
complexes. We selected a structurally-diverse set of complexes
where a high-resolution crystallographic structure of the protein–
ligand complex was available, including several where the ligand
Chem. Sci., 2020, 11, 2362–2368 | 2363
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is in a conformationally-strained pose. The ANI-1ccX NNP is only
dened for carbon, nitrogen, hydrogen, and oxygen, so only
ligands comprised of these elements were selected. The full
details of the structures are included in the ESI.†

Simulations of ligand binding poses

The NNP/MM ligand binding poses were generated by MD
simulations of the protein–ligand complexes. The crystallo-
graphic structure (including crystallographic water molecules)
was placed in a periodic unit cell of liquid water. The proton-
ation states of the protein and ligand were assigned using H++
3.2 (ref. 31) and by examining the intermolecular interactions of
titratable residues in the crystallographic structure. A 5 ns
equilibration MD simulation using the CGenFF force eld for
the ligand was performed where all non-hydrogen atoms of the
ligand and protein were restrained to their crystallographic
positions. The equilibrated structures were used as the initial
structures of 2 ns NNP/MM MD simulations of the complexes.
In these simulations, the Ca atom of the protein backbone were
restrained to their crystallographic positions using harmonic
potentials (kc ¼ 10 kcal mol�1 Å�2). These simulations were
performed with a thermostat temperature set to correspond to
the temperature the crystallographic structure was collected for
(e.g., 100 K). The ligand electron density was obtained from the
crystallographic electron density map (2fo � fc), selecting all
points within 2 Å of the ligand atoms in the PDB structure. An
isosurface value of 0.5 was used in the renderings.

Calculation of conformational Gibbs energy

Conne-and-release alchemical free energy perturbation is
a popular technique for calculating absolute protein–binding
energies.32–35 In thesemethods, the total binding energy is divided
into a set of Gibbs energies for each step in a path where the
ligand is constrained to its bound conformation and is then
decoupled from its environment. The component corresponding
to the reversible work required to constrain the ligand to its
bound conformation is dened as DGcons. Physically, this energy
corresponds to the reduction of conformational freedom and
isomerization to a higher energy conformation that occurs when
a ligand binds to a protein. In conne-and-release absolute
binding energy calculation schemes, this is the only term where
the intramolecular interactions of the ligand are signicant.
Accordingly, it is only necessary to use theNNP/MMmethodwhen
calculating this term; the remaining terms can be calculated
using conventional force elds. Notably, this step does not
include any alchemical transformation, so performing the calcu-
lation with NNP/MM does not present any special challenges.

This term can be calculated by dening the root-mean-
square deviation (RMSD) of the ligand relative to its bound
conformation (z) and then calculating the Gibbs energy

required to impose a harmonic restraint on the RMSD
�
1
2
kcz

2
�

so that the ligand is restricted to hold its bound conformation.
This procedure is performed for the ligand in solution and in
the site to obtain Gibbs energies for restricting the conforma-
tion of the ligand in each of these states. The difference of these
2364 | Chem. Sci., 2020, 11, 2362–2368
energies provides the conformational or “strain” component of
the absolute binding energy (DGcons).

Using umbrella sampling, the potential of mean force (PMF)
can be calculated as a function of the RMSD. Integration of this
PMF biased by the harmonic restraining function provides the
DGcons,site/solvent (eqn (3)).

e�DGcons;site=solvent=kBT ¼
Ð
e�½wðz;site=solventÞþ 1

2
kcz

2�=kBTdzÐ
e�wðz;site=solventÞ=kBTdz

(3)

where kc is a harmonic potential to restrain the conformation of
the ligand at the reference structure. In this work, a value of kc¼
10 kcal mol�1 Å�2 was used.

These PMFs are calculated from an umbrella sampling
simulation where the windows were separated by 0.5 Å and
a harmonic biasing potential with a spring constant of
50 kcal mol�1 Å�2 was used. Each window was sampled by
performing a 1 ns equilibration simulation followed by a 4 ns
sampling simulation. The PMF was constructed from the
umbrella sampling simulations using Weighted Histogram
Analysis Method (WHAM) with statistical uncertainties of the
proles estimated by bootstrap analysis.36–38

These calculations are performed for the ligand bound to the
protein and in solution to yield DGcons,site and DGcons,solvent,
respectively. The difference of these two energies provides
DGcons (eqn (4)).

DGcons ¼ DGcons,site � DGcons,solvent (4)

Results and discussion
Prediction of ligand poses

Fig. 1 shows the ligand poses generated from the ANI/MD
simulations overlaid with the crystallographic electron density
maps of the ligand. Generally, the NNP/MM ligand pose over-
laps well with the crystallographic density. The positions of the
ligand phenyl rings in the thrombin complex (3DA9) and the
biotin carboxylase complex (2W6N) are the most signicant
deviation. The NNP/MM model still relies on conventional MM
parameters for the protein–ligand and water–ligand interac-
tions, so these deviations may not be related to the NNP
component of the model.

One notable success of the NNP/MM potential is in predicting
the binding pose of erlotinib to the epidermal growth factor
receptor (EGFR). The core scaffold of this drug is composed of
amine-linked ethynyl-phenyl and quinazoline rings. Crystallo-
graphic structures of the protein-bound complex show the qui-
nazoline ring bound in the adenosine-binding site while the
ethynyl-phenyl group binds in a pocket formed by the T702,
T830, and K721 residues. The binding pose predicted by CGenFF
is inconsistent with the XRD data, in which the two rings form
a more acute angle relative to each other (f1 ¼ 63 � 1�, f2 ¼ 4 �
1�). The simulation using the NNP/MMmodel is more consistent
with the crystallographic data, (f1 ¼ 44 � 1�, f2 ¼ 4 � 1�).

Surprisingly, the poses predicted for the ligands that contain
charged functional groups (2HYY, 3ETA, and 3EIG) are
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Calculated poses of ligands (red) in protein binding sites. The crystallographic electron density of the ligands are shown in blue. The PDB
ID, protein name, and ligand name are included beneath the image.
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reasonable even though the ANI-1ccX potential was not
designed to describe charged species and none of the molecules
this NNP was trained for were charged.
Table 1 Conformational Gibbs energy of binding for protein–ligand
complexes calculated using the MM(CGenFF) and NNP/MM methods.
All energies are in kcal mol�1

PDB ID DGcons,CGenFF DGcons,NNP/MM Charge

1XOZ 0.4 � 0.0 0.5 � 0.0 0
2W6N 4.7 � 0.1 5.2 � 0.1 0
3EYG 1.9 � 0.1 1.0 � 0.2 0
4HJO 13.0 � 0.1 8.3 � 0.1 0
4NCT 3.4 � 0.1 2.3 � 0.1 0
2HYY 8.1 � 0.1 326.9 � 0.1 1
3EIG 11.1 � 0.0 37.7 � 0.0 �2
3ETA 5.6 � 0.1 15.2 � 0.2 1
Conformational free energies

The conformational strain of the ligand that occurs in protein–
ligand binding arises from the need for the ligand to adopt the
conformation it holds in its bound form. The bound confor-
mation may be more strained than the lowest energy confor-
mation it can hold in solution. Further, some ligands can adopt
multiple conformations in solution, so limiting the conforma-
tional space of the ligand to the bound conformation is
endergonic. For example, Roux and coworkers' calculations of
the binding affinity of imatinib to Abl kinase predicted that
while the net interaction energy of binding was
�27.7 kcal mol�1, the conformational energy countered this by
11.3 kcal mol�1.39 The conformational energies for the test set of
ligands were estimated by calculating the PMF (w(z)) for the
deviation from the bound pose using umbrella-sampling MD
simulations with both the CGenFF and NNP/MM models.
DGcons was calculated from these PMFs using eqn (3). These
This journal is © The Royal Society of Chemistry 2020
energies are collected in Table 1. The PMFs for all complexes are
presented in the ESI.†

Amongst the neutral ligands, the NNP/MM conformational
energies are generally similar in magnitude to the CGenFF
strain energies. This indicates that the ANI-1ccX model can
achieve similar results to the CGenFF model despite the lack of
any explicit parameterization for these molecules. The confor-
mational energies of 4HJO (erlotinib bound to EGFR) show the
Chem. Sci., 2020, 11, 2362–2368 | 2365
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largest difference, with the NNP/MM strain energy being
4.7 kcal mol�1 smaller than the CGenFF strain energy. The high
strain predicted by the CGenFF model is due to the amine
functional group of erlotinib holding a pyramidal geometry in
the solution simulations, creating a large energetic penalty to
force the drug into its bound conformation. In the NNP/MM
simulation of erlotinib in solution, the amine group remains
close to a co-planar geometry with respect to the quinazoline
ring, with a moderate skew in the dihedral angle between the
phenyl group and the amine.

The ligands that contain charged functional groups (2HYY,
3ETA, and 3EIG) have anomalously high conformational ener-
gies. This issue originates from the use of the ANI-1ccX NNP,
which was only trained on neutral molecules. This NNP predicts
reasonable geometries of the ammonium and carboxylate
groups in these molecules, but these ionic functional groups
form spurious intramolecular contacts in the solution NNP/MM
MD simulations. For example, the ligand of 3EIG adopts
a conformation where the carboxylates groups are in close
contact, rather than repelling each other like they should (see
ESI†). This results in the stabilization of regions of the PMF
corresponding to large structural deviations from the bound
pose. As the NNP(ANI-1ccX) model was not designed for the
description of charged molecules like this, it is unsuitable for
calculating their conformational energies.

Extensive MD simulations are needed to calculate DGcons by
calculating the PMF of the RMSD, but these simulations were
completed at a modest computational cost because of efficient
implementations of the ANI model for execution on graphical
processing units (GPUs). For example, the NNP/MM MD simu-
lations of imatinib (69 atoms) executed at a rate of 3.4 ns per day
on a single Titan Xp NVIDIA GPU. Even faster performance is
anticipated aer the planned integration of NNPs directly into
NAMD and other molecular simulation codes.

Empirical force elds are parameterized in an internally
consistent manner, so it is possible that the MM parameters
used to describe the non-bonded interactions between the
ligand and its surroundings will not be optimal for the NNP/
MM term. In particular, the balance between the MM ligand–
water, ligand–protein, and the NNP ligand intramolecular
dispersion interactions will not necessarily be consistent.3,4 This
issue has been addressed in some QM/MM models by dening
new parameters for the QM–MM Lennard-Jones terms.40,41

Nevertheless, the common practice has been to parameterize
the intramolecular terms of ligands to gas phase potential
energy surfaces, so the ANI-1ccX should a suitable replacement
for these terms. If there were a serious inconsistency between
the NNP and MM interaction energies, it would likely lead to
a systematic difference in the conformational energies of the
ligands, but the CGenFF and NNP/MM conformational energies
are in close in magnitude for 1XOZ, 2W6N, 3EYG, and 4NCT.
Fig. 2 The potential of mean force for the deviation of the structure of
erlotinib from its bound conformation when it is bound to EGFR (top,
PDB ID: 4HJO) and when it is in solution (bottom) calculated using the
hybrid NNP/MM and pure MM(CGenFF) methods.
Torsional potential energy surface of erlotinib

The large difference in the ANI-1ccX and CGenFF conforma-
tional energies of 4HJO (erlotinib bound to EGFR) originate
from the ligand adopting conformations in solution that are
2366 | Chem. Sci., 2020, 11, 2362–2368
drastically different than the bound conformation when the
CGenFF model is used, while the NNP/MM model predicts
similar conformations in both the binding site and solution.
This is evident in the CGenFF PMF of the ligand's conformation
relative to its bound pose in Fig. 2, which is considerably
broader than the NNP/MM PMF and is higher energy in the
crystallographic pose (RMSD ¼ 0 Å).

The geometry of the erlotinib amine linker and its aromatic
substituents deviates sharply from the bound pose in the
CGenFF solution structure (Fig. 3(b)); the amine is partially
pyramidalized and the aromatic substituents are skew to each
other. In contrast, in the NNP/MM simulation, the amine
predominantly remains in a planar geometry, conjugated with
the quinazoline and phenyl rings.

The potential energy surface corresponding to rotations
around the amine torsion angles of erlotinib is presented in
Fig. 3(c). The minima on the CGenFF surface corresponds to
structures where the amine is signicantly pyramidal and the
substituent phenyl and quinazoline rings adopt angles that
reduce steric repulsion between them. The ANI-1ccX surface is
consistent with the DLPNO-CCSD(T) surface, where there is
a broad global minimum centered around f1 ¼ 0�, f2 ¼ 0� and
the amine nitrogen holds a planar arrangement with the
aromatic groups.

The failure of the CGenFF force eld stems from the lack of
a distinct atom type for amines conjugated with aromatic rings.
While it would be possible to adjust the parameters of the
CGenFF force eld to improve its description of the arylamine
potential energy surfaces, this introduces a new tting stage
and requires computationally demanding QM calculations to
provide the target data. Generally, it is not immediately
apparent where a general-purpose force eld will fail. By using
NNPs to calculate these interactions, these issues are avoided
entirely because energy surfaces with near-CCSD(T) accuracy
This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (a) The fragment of erlotinib used to calculate the potential
energy surface. Truncated groups are shown in grey. (b) Representa-
tive solution conformations of erlotinib for the CGenFF MM model
(green) and NNP/MM model (red) overlaid with the ligand pose from
the 4HJO crystal structure. (c) The relaxed potential energy surfaces
for rotation around the erlotinib fragment amine bonds calculated
using (i) DLPNO-CCSD/def2-TZVP//MP2/def2-TZVP (ii) NNP(ANI-
1ccX) and (iii) the CGenFF MM model. Energies are in kcal mol�1.
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can be generated efficiently and without the need to parame-
terize the intramolecular potential energy surface explicitly.
Conclusions

NNPs provide accurate representations of the intramolecular
interactions of drug molecules in molecular simulations of
protein–ligand binding. These simulations take advantage of
established MM models of the protein and solution, while
eliminating the need to develop a force eld for the intra-
molecular interactions of each ligand. By employing a NNP that
has already been trained on a broad set of molecular species,
the fundamental intramolecular interactions that give rise to
the molecular energy surface are captured without the need to
This journal is © The Royal Society of Chemistry 2020
parameterize a force eld. This representation is also free of the
harmonic/torsional/improper terms used in conventional force
elds. This allows the simulations to be deployed immediately,
without the development of parameters for each new chemical
moiety.

These methods can be incorporated directly into existing
conne-and-release methods to calculate the absolute binding
energy because these methods include a step where the ligand's
conformation is constrained to its bound pose. In several cases,
the conformational energies calculated using the NNP(ANI-
1ccX)/MM model were similar to those predicted by the
popular general-purpose CGenFF force eld.

The scope of the ligands that can be modelled is limited by
the choice of the NNP, which is particularly true for the ANI-
1ccX model. Firstly, the ANI-1ccX model only supports mole-
cules containing C, N, O, and H, although many important drug
molecules also contain sulfur, phosphorus, boron, or halogen
atoms. Secondly, ANI-1ccX NNP was not designed for modeling
ionic species. Although the binding poses predicted for these
compounds were reasonable, the NNP spuriously favored high-
energy conformations in solution. This reects that the ANI-
1ccX training data did not include ionic species. ANI-type
models that are trained to describe molecules containing
sulfur and halogens, as well as charged molecules, are currently
in development.42
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