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e acceleration of materials
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Brian Rohr,‡a Helge S. Stein, ‡b Dan Guevarra, b Yu Wang, b Joel A. Haber, b

Muratahan Aykol, a Santosh K. Suram *a and John M. Gregoire *bc

Sequential learning (SL) strategies, i.e. iteratively updating a machine learning model to guide experiments,

have been proposed to significantly accelerate materials discovery and research. Applications on

computational datasets and a handful of optimization experiments have demonstrated the promise of SL,

motivating a quantitative evaluation of its ability to accelerate materials discovery, specifically in the case

of physical experiments. The benchmarking effort in the present work quantifies the performance of SL

algorithms with respect to a breadth of research goals: discovery of any “good” material, discovery of all

“good” materials, and discovery of a model that accurately predicts the performance of new materials.

To benchmark the effectiveness of different machine learning models against these goals, we use

datasets in which the performance of all materials in the search space is known from high-throughput

synthesis and electrochemistry experiments. Each dataset contains all pseudo-quaternary metal oxide

combinations from a set of six elements (chemical space), the performance metric chosen is the

electrocatalytic activity (overpotential) for the oxygen evolution reaction (OER). A diverse set of SL

schemes is tested on four chemical spaces, each containing 2121 catalysts. The presented work suggests

that research can be accelerated by up to a factor of 20 compared to random acquisition in specific

scenarios. The results also show that certain choices of SL models are ill-suited for a given research goal

resulting in substantial deceleration compared to random acquisition methods. The results provide

quantitative guidance on how to tune an SL strategy for a given research goal and demonstrate the need

for a new generation of materials-aware SL algorithms to further accelerate materials discovery.
Introduction

Accelerating materials discovery is of utmost importance for
realization of several emergent technologies, particularly to
combat climate change through the adoption of zero or negative
emission technologies such as hydrogen driven cars and other
means of clean chemical energy generation, storage and utiliza-
tion. One method of accelerating materials research is through
integration of automated experiments1–4 that are guided by arti-
cial intelligence (AI).5,6 Specically, AI sampling strategies7,8 hold
great promise for resource-constrained activities such as mate-
rials research due to their potential to minimize the number of
experiments necessary for achieving a desired objective.9

Sequential learning (SL) methods wherein a machine learning
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model guides experiment at each iteration based on pre-sampled
data is a promising approach to accelerate materials research. SL
has been used to reduce the number of expensive density func-
tional theory (DFT) calculations needed to nd materials with
desired bulk and interfacial properties,10–12 to t potential energy
surfaces13 as well as to compute an improved force eld for small
molecules.14 Recent demonstrations in chemistry include opti-
mization of the drug-likeness and synthesizability of small
molecules,15 and of the efficiency of organic light emitting diode
molecules.16 SL methods7,8 have also been paired with physical
experiments to improve the efficiency of materials discovery as
demonstrated by a factor of 2 to 5 reduction in the number of
experiments required to discover efficient thermoelectric mate-
rials, superconductors, and steels with high fatigue strength,17

and to discover new Pb-free BaTiO3 (BTO) based piezoelectrics
with large electrostrains.18 SL has even been paired with robotic
experiments to create a fully autonomous organic reaction
searching system for exploring chemical reactivity and synthesis
of new molecules,19 and optimization of organic photovoltaics.20

Recent reviews7,8 highlight the breadth of demonstrated appli-
cations of SL in the chemical sciences, though there have been
relatively limited demonstrations in solid state materials science,
where the autonomous optimization of carbon nanotube growth
This journal is © The Royal Society of Chemistry 2020
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Table 1 Mapping of labels to composition spaces and plate ID. The
compositional complexity of the best 21 catalysts in each dataset is
noted by number of these catalysts with 1, 2, 3 and 4 cation elements in
their compositions

Plate ID Label Composition system

Num. of top 1% with N
cations

N ¼ 1
N
¼ 2 N ¼ 3

N
¼ 4

3496 A Mn–Fe–Co–Ni–La–Ce 0 0 8 13
3851 B Mn–Fe–Co–Ni–Cu–Ta 0 3 13 5
3860 C Mn–Fe–Co–Cu–Sn–Ta 0 1 6 14
4098 D Ca–Mn–Co–Ni–Sn–Sb 0 0 2 19
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is a seminal example.21,22 SL paired with robotic experiment has
the potential to greatly accelerate experimental discovery of new
materials and chemicals,23 which points to the importance of
benchmarking these methods and understanding their behavior
in different materials research settings.

In SL, a model (or an ensemble of models) is updated iter-
atively to achieve an objective ranging from performance opti-
mization to development of an accurate prediction model. The
update could be via an incremental update rule or retraining of
the model with the incrementally expanded training data.7 The
incremental update rules used in the former setting restricts the
ML models to Bayesian based approaches. In addition, incre-
mental update rules typically focus on improving overall
prediction of the model, making this setting less exible for
various research objectives. Thus, the latter, more exible
setting is more common inmaterials research implementations
of SL, and is a convenient choice for exploring various research
objectives and ML models. We adopt sequential learning in the
latter setting to enable comparison of metrics across a variety of
research objectives and machine learning (ML) algorithms.

In the present work we benchmark SL for oxygen evolution
reaction (OER) catalyst discovery in high-dimensional compo-
sition spaces,24 where we dene discovery of a good catalyst to
be identication of a composition whose activity is in the top
percentile of all compositions in the search space. The
comprehensive datasets that enable simulation and bench-
marking of SL originate from previously published high
throughput experimentation techniques.24 Initial bench-
marking studies involve comparison of three complementary
ML regression models: random forest (RF),25 Gaussian process
(GP),25 and query by committee using linear ensemble (LE)
methods. Qualitatively similar behavior among the 3 models,
and the excellent performance and computational efficiency of
the RF model motivated its selection for further benchmarking
studies on different exploration vs. exploitation settings, as well
as evaluation of three additional catalyst datasets to investigate
the generality of the benchmarking results with respect to
composition search space. Efficiency gains with SL for the
various research tasks vary signicantly, from approximately 20-
fold acceleration to drastic deceleration in the number of
catalyst measurements required to reach a specic goal, with
sensitivity to random initialization, indicating where scientists
need to tread carefully in the incorporation of SL. The use of
custom algorithms such as PHOENICS for chemistry experi-
ments26 is an excellent example of developing algorithms
tailored to a specic application, which can lead to improved
performance and model stability. Establishing chemically
meaningful representations of the search space and improving
uncertainty quantication also emerge as key research areas to
facilitate more pronounced acceleration of materials research.27

Experimental and computational
Synthesis and catalyst experiments

The datasets for simulated SL were constructed from high
throughput experiments described previously.24,28 Parallel
synthesis and processing of a composition library proceeded
This journal is © The Royal Society of Chemistry 2020
with inkjet printing29 of elemental precursors to produce
a discrete library with 2121 unique compositions comprising all
possible unary, binary, ternary and quaternary compositions
from a 6 element set with 10 at% intervals. Following conver-
sion to metal oxide samples via calcination at 400 �C for 10
hours, accelerated aging of the catalysts is performed via
parallel operation for 2 hours.30 Subsequent serial character-
ization using a scanning droplet cell provides the OER over-
potential at 3mA cm�2 (per the geometric area of 1 mm2 catalyst
samples) in pH 13 electrolyte (0.1 M sodium hydroxide + 0.25 M
sodium sulfate), the negative of which provides the gure of
merit (FOM) for each composition with increasing FOM value
corresponding to better catalytic activity. Each collection of
2121 FOMs is treated as an independent dataset for sequential
learning simulation, and each such dataset contains consider-
able catalyst composition diversity with 6, 15, 20, and 15 catalyst
composition spaces containing 1, 2, 3 and 4 cation elements,
respectively. The different datasets, their respective identier in
our database,28 and the 6-element composition system are
shown in Table 1. The distribution of catalyst overpotentials in
each dataset is shown in Fig. 1.

The number of the 21 top catalysts for each compositional
complexity, i.e. 1, 2, 3 or 4 cations, is noted in Table 1 for each
dataset. While plates B and C have some representation of 2-
cation catalysts in the top percentile, the 3 and 4-cation catalysts
contain most of the top catalysts, illustrating the utility of
compositional complexity in catalyst optimization. To visualize
the compositional search space and illustrate the existence of
top catalysts in various composition regions, the overpotentials
of the 2121 compositions in dataset A are shown in Fig. 2. The
top 21 catalysts (lowest 1 percentile in overpotential) are indi-
cated, revealing the existence of top catalysts in 6 distinct
composition spaces, which illustrates the importance of iden-
tifying local maxima in a search for all top catalysts.

While the ensuing benchmarking of SL ignores the chemistry
of the catalysts, with each catalyst represented by its unlabeled
composition, we briey comment here on the chemistry under-
lying the composition–activity trends. Ni and Fe oxides are well
known to form mixed oxyhydroxides in alkaline electrolytes that
are effective OER catalysts.31 In Fig. 2, the 6 compositions spaces
with top catalysts all contain Ni and Fe, and while Ni–Fe
compositions exhibit appreciable activity, the results illustrate
Chem. Sci., 2020, 11, 2696–2706 | 2697
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Fig. 1 Distribution of catalyst activities over the four datasets used for
benchmarking of sequential learning algorithms.
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that incorporation of a variety of other elements and combina-
tions thereof can further improve activity. La32 and Ce33 are the
most commonly occurring additional elements in the top cata-
lysts, and the mechanism for increased activity is likely related to
the modication of the redox potential of active transition metal
oxyhydroxide active sites, as recently illustrated with in situ and
operando spectroscopies.34 Dataset C (see Fig. S2†) exhibits more
complex variation in activity with different element combina-
tions. Mn–Cu and Mn–Co–Cu composition spaces contain the
best catalysts with 2 and 3 cations, respectively, all with Mn-rich
compositions. Yet the Mn-free composition space Fe–Co–Cu–Sn
exhibits high activity in nearly all of its compositions. The
composition–activity relationships in these datasets are difficult
to interpret without additional structural characterization, which
is substantially more expensive to acquire than the catalyst
activities noted here. A broader vision of the present work is to
accelerate the learning of composition–activity relationships to
guide design of structure characterization experiments, as dis-
cussed further below.
Fig. 2 (a) Illustration of the composition plotting schema for composition
noted for the placeholder element names A, B, C and D. (b) The 2121 OER
containing 1, 2, 3 and 4 cations, respectively. The 21 compositions outli
potential color scale is noted at bottom left.

2698 | Chem. Sci., 2020, 11, 2696–2706
Sequential learning models

The SL framework is designed to enable facile variation in both
the machine learning model and acquisition function and is
implemented under the assumptions of a discretized search
space that represents all possible experiments, which we refer to
as the sample set of size N. Each sample from this set is rep-
resented by its experiment coordinate, which is the 6 dimen-
sional composition vector. We consider a scalar gure of merit
(FOM) for each sample and note that the framework can be
extended to multi-objective optimization.26 We also limit the
present benchmarking effort to single-selection learning
commensurate with serial experimentation. While multi-
sample or “batch” selection strategies may also be bench-
marked by this approach, the lack of a general cost function for
experiment parallelization limits quantication of the relative
acceleration provided by batched active learning.5,6

Each SL algorithm is implemented into the framework by
assuming no pre-existing FOM measurements beyond random
selection of two initial experiments (i ¼ 0, 1). Subsequent
experiment selection proceeds through iteration of a 4-step
procedure:

(1) Measurement of the FOM for the selected experiment
(2) Training of ML model with updated dataset
(3) Evaluation of ML model at all non-sampled coordinates

(j) to obtain each predicted FOM value, mj, and its uncertainty sj
(4) Selection of the next experiment via the acquisition

function, which identies the coordinate j that maximizes the
quantity in the upper condence bound setting: lmj + (1 � l)sj
where l is a hyperparameter that can be varied from 0 to 1 to
tune the exploration-exploitation tradeoff. The SL cycle i results
in themeasurement of the FOM for a newly-selected point in the
search space, thereby increasing the size of the training set to i +
1 samples.
s containing 1, 2, 3 and 4 cation elements, with example compositions
overpotentials in dataset A for the 6, 15, 20 and 15 compositions spaces
ned in black comprise the top percentile in catalyst activity. The over-

This journal is © The Royal Society of Chemistry 2020
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This SL technique can be implemented with any machine
learning model that provides a predicted FOM value and
uncertainty of that prediction for each input coordinate. Here
we choose three models that cover a breadth of algorithmic
approaches to SL: a query-by-committee type linear ensemble
method (LE), Gaussian process as a representative Bayesian
method (GP), and a random forest model (RF). Briey, our LE
implementation consists of an ensemble of k ¼ 40 linear

regressors of the form ~yj;k ¼
P6
d¼1

ak;d þmk;dxj;d for predicting the

FOM based on the jth input vector xj,d where d denotes the
composition dimension of the input vector. Each regressor is
only t using a random selection of 70% of the previously
sampled data, and the committee of k linear regressors is
evaluated at each coordinate, creating a collection of values
whose mean and standard deviation are taken as mj and sj,
respectively. The RF model in the present work uses the scikit-
learn25 (version 0.21.2) implementation with 50 estimators and
the default values for all other parameters. Similar to the LE
model, the mean and standard deviation of the individual
decision trees' predictions provide mj and sj, respectively. The
Bayesian GP model directly provides mj and sj. The scikit-learn25

implementation of the Gaussian process regressor is used with
a constant combined with a Matern 5/3 kernel with interaction
length of 1. The noise parameter, alpha, was set to 0.01.
Performance metrics for active learning

To quantify the performance of the SL algorithms for different
research objectives, we introduce four complementary active
learning metrics (ALMs) that can be evaluated at each SL cycle
and can be applied more broadly to evaluate different active
learning methods. The decision efficiency metric, deALM, is
based on a desire to perform the experiment that will provide
the highest FOM among the non-sampled materials. At cycle i,
the chosen sample will have FOM greater than or equal to
a fraction fi of the N � i available samples, and dening deALMi

¼ 2 � fi � 1 provides a (�1, 1) scale where 1 is optimal and 0 is
the expected value for random selection.

The second metric, anyALM, is based on the discovery of any
catalyst from the top 1 percentile of the FOM from the full
dataset, where we use the 1% threshold as a nominal denition
of a good catalyst. For a given SL run, the rst of these good
catalysts is found at cycle i, and to provide a continuous metric
for a given SL algorithm, anyALMi is calculated as the fraction of
randomly initialized runs that have measured any catalyst from
the top percentile by cycle i.

The third metric, allALM, similarly considers the top
percentile and is based on identifying all such catalysts. For
a given SL run allALMi is calculated as the fraction of the top
percentile catalysts that have been measured by cycle i.

The fourth metric, modelALM, is based on developing an
accurate predictive model for all samples yet to be
measured. Since anyALM and allALM are between 0 and 1
(inclusive), modelALM is calculated from an error function E as
Efull/Ei, the ratio of the model error when training with the full
dataset and with the sequential learning dataset up to cycle i.
This journal is © The Royal Society of Chemistry 2020
For the present work, the error function is taken to be the mean
absolute error (MAE) over non-measured samples, and the
scaling factor Efull is calculated using a random 70% train and
30% test set, where the MAE is calculated on the test set. By
denition random sampling of 70% will on average produce
a modelALM of 1. To ensure sufficient test set size for the error
function calculation, this metric is not evaluated from SL cycles
beyond 70% of the dataset. While this metric can be deployed
with nominally any ML model, the scaling factor Efull depends
on the ML model, prompting our use of the MAE (Ei) when
comparing different ML models and modelALM when using
a xed ML model (RF in this case) and varying other aspects
such as acquisition function and datasets.

While deALM has a comparison to random selection built
into its denition, for the other three metrics each SL algorithm
is compared to a baseline model of random sample selection
using two complementary metrics for measuring the factor by
which SL improves performance. Taking gALMi to be the ALM
values for random sampling, the ratio xALMi=

x gALMi is referred
to the enhancement factor (xEFi) for metric x, which quanties
the improvement when operating experiments at a given budget
for the number of experiments. The complementary mode of
operation is to specify a required value for ALM and consider
the number of experiments needed to meet the requirement.
The cycle ratio r/i is the acceleration factor (xAFy) in terms of the
number of required cycles for attaining a particular value xALM,
i.e. where xALMi ¼ y and x gALMr ¼ y: The random baseline is
calculated as described in the ESI† for x ¼ any and all and
simulated for x ¼ model.
Simulations and aggregation

As described above, anyALM is best dened as an average over
random initializations, motivating us to use an aggregation
scheme for anyALM, allALM, and modelALM wherein each SL
algorithm is run 50 times with independent, random initiali-
zations. Averaging xALM over sets of 10 runs enables anyALM
and allALM to be specied in intervals of 0.1 and 0.005,
respectively, and 50 such sets (10 random 5-fold splits from the
50 runs) are used to characterize the variation in each xALM.
This variation is visualized by plotting the median value as well
as shaded regions representing the 6th to 94th percentile, i.e.
removing the top 2 and bottom 2 values from each set of 50
values for xALMi.
Results

In the setting of catalyst discovery, we begin with comparison of
deALM of different ML algorithms obtained from simulated SL
runs using dataset A. The deALM is intended to evaluate the
decision making under a mode of research where the goal is to
identify the best possible material in each experiment cycle, and
the comparison of the three MLmodels with l¼ 0.5 is shown in
Fig. 3. The median value over various random initializations is
shown along with the variability at each learning cycle. The
deALM of each model is highly variable when only a small
number of learning cycles have been carried out. The RF and GP
Chem. Sci., 2020, 11, 2696–2706 | 2699
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models start to provide consistent selection of samples from the
top quartile of available catalysts (deALM > 0.5) aer about 40
learning cycles, whereas LE needs nearly 300 cycles to reach the
same performance.

With regard to the test set MAE metric, when only a small
number of active learning cycles have been carried out, the RF
model performs the best and displays little variation due to
random initialization. It outperforms the GP and LE models
until 200 and 300 learning cycles, respectively. The LE model is
unable to make reasonable predictions until about 40 learning
cycles. Aer about 200 learning cycles, the GP model gives the
lowest test MAE as well as the smallest variation due to random
initialization. Despite being a simpler model, the LE model
outperforms the RF model aer about 300 cycles with respect to
test set MAE, perhaps due to only 70% of the previously sampled
data being used for training each linear regressor. Comparison
of the MAE with deALM shows a general trade-off between
choosing the best catalysts and improving test set MAE. The
deALM improves with number of cycles for RF and GP, reaching
a value of above 0.75 consistently at 100 cycles. The deALM then
decreases possibly because the algorithm has to choose
amongst equally bad catalysts.

In the case of LE, the deALM does not improve until 40 cycles,
possibly because of the minimum number of data points
necessary for an invertible solution for linear regression. The
deALM improves aer 40 cycles but the deALM is not consistently
greater than 0.75 even aer 500 cycles. Avoiding composition
regions with poor activity hampers improvement of model
prediction, as demonstrated by relatively little improvement in
MAE with increased number of cycles. Between cycles 40 and
200, the GP model exhibits the most substantial deviation from
this trade-off by substantially improving MAE while maintain-
ing a high deALM, likely due to better uncertainty quantication
in this Bayesian model as compared to the ensemble-based
uncertainty calculation of the RF and LE models.

As a performance metric, deALM evaluates the ability to
identify top catalysts but is not amenable to quantitative anal-
yses of the factor by which SL improves research. For this
Fig. 3 The active learning metrics deALM and test set MAE (V) for 700 m
dataset A. The median value (solid line) as well as the 6th to 94th perce
sequential learning model.

2700 | Chem. Sci., 2020, 11, 2696–2706
analysis we consider the metrics anyALM and allALM calculated
from the same SL runs shown in Fig. 3. The results shown in
Fig. 4 show qualitatively similar performance for the three ML
models. Finding any catalyst from the top percentile is a rela-
tively easy task and shortly aer a ML models gains some
predictive ability, it is highly likely to identify a top catalyst, with
GP, RF, and LE ML models all having median anyALM exceeding
80% by 35 to 55 learning cycles. Finding all of the top catalysts is
a more challenging task where the relatively advanced algo-
rithms RF and GP excel compared to LE, typically nding 80%
of the top catalysts by approximately 100 cycles for RF and GP,
as opposed to over 200 cycles for LE. These benchmarks for GP
and LE are quite insensitive to random initialization while the
number of required cycles for RF varies by 10 s of cycles with
different initializations.

The signals corresponding to expectation values of each
ALM from random sample selection (see ESI†) are shown in
dashed black lines, enabling comparisons to random selection
including the enhancement and acceleration factors, as shown
in Fig. 4. These complementary modes of comparison are
based on experimentation with a xed experiment budget and
with a xed research objective using a variable experiment
budget, respectively. The plots of anyEF and allEF show the
extent by which the ALM is increased by SL for a given exper-
iment budget. During initial learning, these results are highly
variable, and the reduction in variability coincides with
consistent observation of larger than unity EF, suggesting the
presence of a model-specic critical number of learning cycles
to obtain a well-behaved, predictive ML model. This critical
cycle number appears to be 10 cycles for RF and 30 to 40 cycles
for GP and LE. For LE, the performance in the initial cycles is
typically poor due to the use of pseudo-inversion methods
until the training set consists of at-least one non-zero data
point for each composition dimension, and in this case
approximately 40 cycles seem necessary for any reasonable
prediction. As a result, this ML model is best suited for
applications with substantial experiment budget and where
the computation time for model update and sequential
easurement cycles are shown for each of the three ML models using
ntile (shaded region) are based on 50 random initializations of each

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Top) The active learning metrics anyALM and anyALM are shown for each of 3 ML models using dataset A. The median value (solid colored
line) as well as the 6th to 94th percentile (shaded region) are based on 50 random initializations of each sequential learning model. The solid black
line corresponds to the expectation value from random sampling (see ESI†). (Middle) The black dashed line shows the expectation value of each
ALM for random sampling. The enhancement factors (Middle) and acceleration factors (Bottom) with respect to random sampling.
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prediction is at a premium. The GP model appears to have
a similar minimum number of experiments before substantial
model improvement, making RF methods a prudent choice for
settings with low experiment budget.

The accelerate factor (AF) data provide a more direct
measure of how SL can accelerate research. For example,
consider scenarios where a research desired a (i) 50% or (ii) 90%
probability of nding a top catalyst, or to nd (iii) 50% or (iv)
90% of the top catalysts. For scenario (i) RF accelerates by
a factor of 3 while GP and LE accelerate by a factor less than 2.
For scenario (ii), RF performs similarly with a median AF of 2
while GP and LE accelerate by factors of 3 to 5. It is notable that
for this most straightforward catalyst discovery task, accelera-
tion by a factor of 10 is beyond the capabilities of these SL
models. That level of acceleration is exhibited for scenarios (iii)
and (iv) by many RF and GP-based learning runs, whereas LE
exhibits more moderate allAF of 4 to 6 for these scenarios.
Collectively these results indicate that optimal choice of SL
model varies with experiment budget and/or research goal, and
that the maximum obtainable acceleration compared to
random sampling is not very signicant for some research
tasks.
This journal is © The Royal Society of Chemistry 2020
The qualitative similarity in performance of the three ML
models motivates investigation of SL's sensitivity to both the
acquisition function and the dataset. To benchmark this vari-
ability, we expand the simulated SL to four different explore-
exploit hyperparameter values and to the four different data-
sets noted in Table 1. This set of 16 SL settings is analyzed using
the random forest ML model due to its excellent performance
and relatively fast execution, which facilitates continued use of
50 random initializations for each setting to characterize vari-
ability within a given setting. Using a single ML model also
facilitates further quantitative analysis of the prediction quality,
which we continue to measure using MAE of the test set. This
MAE for different ML models is shown in Fig. 3 without
comparison to random sample selection, a comparison that is
not straightforward because the MAE values for random selec-
tion need to be simulated. For the RF model, the average MAE
over 50 random experiment sequences was calculated for each
of the 4 datasets to provide the random-selection baselines. To
convert the MAE values from both SL and random selection into
the metric modelAF, they are compared to the minimum expected
MAE value for random selection, which is taken to be the
average value for the 30% test set with 70% randomly selected
Chem. Sci., 2020, 11, 2696–2706 | 2701

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc05999g


Fig. 5 Active learning metrics (xALM) over 1800 measurement cycles using a random forest ML model with different acquisition function hyper-
parameters l. Each panel includes results for the 4 datasets describes in Table 1. Themedian value (solid line) as well as the 6th to 94th percentile (shaded
region) are based on 50 random initializations of each sequential learningmodel for each dataset. The black dashed line shows the expectation value for
random sampling (for deALM, anyALM, allALM), and the colored dashed lines show the median value for 50 random initializations (for modelALM).

Fig. 6 Enhancement factors for the active learning metrics anyALM, allALM, and modelALM for four different hyperparameters l ¼ 0, 0.25, 0.5, 1 of
the acquisition function. Except for l ¼ 0, anyALM and allALM are enhanced by factors of 1 � 30x. The explorative mode of l ¼ 0 is however the
only mode in which modelALM can reach enhancement factors above 1. The enhancement factor for modelALM captures the fact that the l ¼
0 produced a 50% better modelALM than random selection of samples.

2702 | Chem. Sci., 2020, 11, 2696–2706 This journal is © The Royal Society of Chemistry 2020
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train set. Like anyALM and allALM, this modelALM is between
0 and 1 for random selection, but unlike those other ALMs the
value can exceed 1 during SL when sample selection provides
a more predictive RF model for the test set compared to the RF
model with random 30% test set.

The ALMs, EFs, and AFs for the 16 settings are shown in
Fig. 5, 6 and 7, respectively, where in each gure the 3 columns
correspond to any, all, andmodelmetrics; the 4 rows correspond
to the l hyperparameter values; and the 4 catalyst datasets are
distinguished by color in each panel. The enhanced discovery of
any or all top catalysts is qualitatively similar, with EF and AF
values consistently larger for the more challenging task of
discovering all top catalysts. Partial to full exploitative sample
selection can accelerate the discovery of any top catalyst by
factors of 1 to 10 depending on dataset and random initializa-
tion. This variability is smaller for identifying all top catalysts
where improvements by factors of 3 to 10 are routinely observed
in both the fraction of top catalysts discovered and the number
of cycles required to discover them. Importantly, these
enhancements are most pronounced for experiment budgets
near 100 where SL has consistently identied at least half of the
top catalyst, and there are diminishing returns of sequential
learning as the number of experiments grows larger. Choosing
(l ¼ 0.5) in the acquisition function provides a nice balance of
improvement with relatively little variability with respect to
dataset and random initialization, making this a suitable choice
of hyperparameter for these types of catalyst discovery tasks.

Due to poor model accuracy during initial cycles, all hyper-
parameters have a avor of random selection at the onset,
motivating commencement of plotting at 10 cycles in Fig. 6. For
Fig. 7 Acceleration factors for the active learning metrics anyALM, allALM
the acquisition function. Except for l ¼ 0, anyALM and allALM are accelera
only mode in which modelALM can reach values above 1 (not shown). The e
to improve the models and result in overall low modelALM.

This journal is © The Royal Society of Chemistry 2020
l ¼ 1, this initial random-like selection likely facilitates model
learning of the dynamic range of the catalytic activity, indicating
that models that become predictive more quickly could
performance worse against some metrics. The only substan-
tially different hyperparameter is the uncertainty based explo-
ration (l ¼ 0), which is intuitive given that selecting catalysts
based on model uncertainty isn't optimal for identifying top
catalysts, and in fact this mode of SL decelerates discovery of
top catalysts. For the task of learning a predictive model, as
measured by modelALM, this explorative sequential learning
performs somewhat better than, but oen similar to, random
sample selection. The values of modelEF and modelAF are consis-
tently above 1 (better than random) for learning cycles above
300 to over 1000 depending on the dataset, or target relative
MAE (modelALM value) above 0.86 to 0.97 depending on the
dataset, respectively. That is, SL only outperforms random
selection for model quality when the experiment budget is
a substantial fraction of the search space. The situation is far
worse for the larger hyperparameter values corresponding to
partial to full exploitation, where sequential learning under-
performs random selection under any experiment budget or
desired MAE value. These results are emblematic of the
common knowledge that uniform sampling is a reasonable
strategy for predictive model building, and that bias based on
performance is detrimental to model building.35,36
Discussion

The compendium of simulated learning results indicate that (i)
exploration by uncertainty-based sample selection can
, and modelALM for four different hyperparameters l ¼ 0, 0.25, 0.5, 1 of
ted by factors of 1 � 30x. The explorative mode of l ¼ 0 is however the
qual weighted and exploitative mode of l¼ 0.5, 1 fail to select samples

Chem. Sci., 2020, 11, 2696–2706 | 2703
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accelerate the establishment of predictive models in niche
situations where a substantial fraction of the search space is
measured, however random experiment selection is typically
a suitable strategy; (ii) EFs and AFs up to approximately 20� are
possible for identifying any or all top catalysts, demonstrating
a ceiling for the extent by which sequential learning can
improve catalyst discovery; (iii) EF and AF values well below 0.05
are also observed, indicating that the oor for deleterious
effects of sequential learning is relatively deep compared to the
ceiling. That is, poor choices for ML model and/or acquisition
function for a given experiment budget or research object can
lead to substantially worse performance than random sample
selection, a critical lesson that illustrates the importance of
comprehensive workow design in the context of specic
research objectives.2

We also note that these accelerations are with respect to
random sample selection, which is not a commonly applied
experiment design strategy. Development of more illustrative
baselines is an important area for future research, although we
note that comparing to traditional human-rational catalyst
selection will also motivate further development of the accel-
eration metrics, as the relative costs of the experiment design
mechanisms should be considered. In the present work, the SL
algorithms and random selection are both automated without
human intervention, making them equivalent in terms of
human effort per sample selection, and the additional compu-
tational expense of SL compared to random selection is not
considered in the benchmarking metrics.

The design of an appropriate SL algorithm must be per-
formed in the context of the research task at hand, which is
consistent with general best practices in design of experiments.
The any, all and model active learning metrics of the present
work are designed to span a range of common research goals
from the most applied to the more fundamental. If a material is
needed to enable a technology, one could employ a search to
nd any single such material, which for the present data is
emulated by a search for any of the catalysts in the top
percentile of activity and calculated as the probability of nding
a top catalyst by a given SL cycle. A more general materials
discovery effort would aim to identify all good materials, which
for the present data is quantied by the fraction of the top
percentile of catalysts identied by a given SL cycle. A more
general materials exploration study would aim to predict the
performance of all materials in the search space, as quantied
by the model MAE. For catalyst science, or more generally for
basic research, the ability to predict all catalyst activities would
provide composition–property relationships that characterize
the underlying chemistry. Ultimately, the desired outcome is
a fundamental description of the mechanisms underlying
compositional variation in catalytic activity. Benchmarking SL
in this context is not addressed in the present work due to the
lack of a objective metric that is aligned with this research goal.
The ability of SL to accelerate knowledge discovery remains an
outstanding question with important implications for its
applicability in accelerating fundamental research.

Additional considerations in the choice of SL model that are
not addressed in the present work due to their specicity to
2704 | Chem. Sci., 2020, 11, 2696–2706
a given application are (i) the time available for SL calculations
in the experimental loop and (ii) either incorporating known, or
predicting on-the-y, the uncertainty of individual measure-
ments, including outlier detection. The ML models in order of
computational expense are LE, RF and GP, although calculation
times will vary with specic implementations of these models,
prompting our focus on the performance aspects related to
accelerated discovery.

While the benchmark data in the present work involves
discovery of heterogeneous electrocatalysts, the ML models and
SL acquisition functions are agnostic to their application for
materials discovery. Construction of materials and catalysis-
aware search spaces, ML models, and sample selection poli-
cies will be necessary to accelerate research by more than
a factor of 10 for the type of research discussed in the present
work. Our use of datasets covering a multitude of composition
spaces is intended to make these observations generally appli-
cable to materials discovery. Adding axes with highly nonlinear
behaviour to the search space such as processing or device-
related parameters is likely to make random sample selection
less effective, creating the opportunity for SL to be drastically
more impactful. For example, recent reports of SL for the
synthesis and casting of organic thin lms20 has shown
enhancement factors in excess of 30�37 compared to a compre-
hensive (conservatively chosen) grid search sampling. As the
community continues to establish benchmarks for evaluating
SL techniques, it is important to consider the amount and type
of data that is required to establish accurate benchmarks. For
example, using a search grid that oversamples the search space
with respect to the scale at which FOM variations occur can
make comprehensive experimentation appear arbitrarily bad
compared to SL or even random selection, i.e. make SL appear
articially effective compared to comprehensive grid search. We
note that the benchmarking of the present work capitalizes on
the knowledge gained through millions of experiments over the
past 7 years including sampling at ner composition inter-
vals,32,33 which revealed that the 10 at% steps of the present
work to be a suitable grid for this type of catalysis research.
Without these types of comprehensive high throughput exper-
iments, or at least experimentation well beyond that of a given
SL method, the efficacy of the sequential learning method
cannot be appropriately benchmarked. These observations
demonstrate the complementary roles of high throughput
experimentation and SL, motivating a research strategy that
incorporates both methods to develop optimal discovery strat-
egies and to identify outstanding challenges in AI-guided
experimentation.3 Such challenges will motivate algorithm
development to substantially accelerate research and realize the
paradigm shi in materials discovery that is envisioned by early
adopters of ML for materials science.

Initial areas for algorithm development identied by the
present work include improvements to accurate quantication
of uncertainty and expansion of the purview of SL. Exploitation-
based approaches are likely to perform reasonably well in
simple search spaces. However, their efficacy is likely to be
lower in complex search spaces wherein the role of exploration
and accurate uncertainty quantication becomes essential. In
This journal is © The Royal Society of Chemistry 2020
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this work, exploitation-based sample selection was not found to
be optimal in any setting, highlighting the opportunity for
improving performance of exploration and expected-
improvement approaches via better uncertainty quantica-
tion. The computationally inexpensive methods such as LE and
RF use standard deviation over a collection of estimators to
quantify uncertainty, and given the general overcondence of
these methods (under-estimation of uncertainty),38 uncertainty
calibration or other methods for improving uncertainty quan-
tication are expected to be quite impactful. Random forests
have shown to outperform LE and GP for small datasets,
necessitating further research on the role of ML models that
include bagging and boosting in acceleratingmaterials research
for low-throughput and/or small experimental budget settings.
As discussed in a recent critical review of the use of automation
and active learning in materials science experimental work-
ows,2 the importance of SL of a given task must be evaluated
within the context of the larger workow containing that task.
In the present example, batch synthesis of the composition grid
within the given composition system and parallel processing of
the catalysts means that the synthesis portion of the workow is
not accelerated by the catalyst-sequential learning. The accel-
eration factors of the benchmarking in the present work apply
onto to the serial electrochemistry that provides the catalyst
activity, meaning that the acceleration factors for the entire
experiment workow will be even smaller than the ceiling of
approximately 20-fold acceleration observed in Fig. 4 and 7. For
workows that combine parallel synthesis experiments and
serial experimentation, comprehensive ML strategies that can
suggest new synthesis experiments (e.g. composition spaces
and/or processing conditions) need to be developed and
combined with the SL strategies for serial experimentation.
Substantial advancement in ML algorithms and the design of
the search space are required to realize this more global strategy
for AI-guided experiments.

Conclusions

Benchmarking of sequential learning methods for catalyst
discovery can accelerate research, but not yet at the orders-of-
magnitude level anticipated for AI-guided discovery. The
performance of sequential learning algorithms depend varies
more with respect to the research goal than the specics of the
model, as demonstrated by exploring three complementary
research goals (discover any good catalyst, discover all good
catalysts, discover a predictive model) and three complemen-
tary ML models (random forest, Gaussian process, and linear
ensemble). The variability in performance of models for four
catalyst datasets with different composition spaces reveals
consistent qualitative trends, indicating some level of generality
for the observations. The task of nding any good catalyst is
difficult to accelerate with sequential learning, as 10 to 100
samples are required for training robust models, and random
selection has an appreciable chance of discovery within that
many cycles. Finding all good catalysts is more challenging and
is where sequential learning can most substantially outperform
random selection, producing up to 20 times acceleration for
This journal is © The Royal Society of Chemistry 2020
specic settings. Finding a predictive model, which is oen
aligned with basic research that seeks to understand the activity
of all catalysts, is generally not accelerated by sequential
learning, motivating algorithm development in this area with
particular focus on uncertainty quantication. While the search
space of the benchmarking data is of appreciable size with 2121
unique catalysts per dataset, and of appreciable dimensional
depth with 6 metal cations in the metal oxide composition
space of each dataset, the search space of all possible catalysts
with additional axes for processing parameters and electrode
preparation is much larger. AI-guided discovery may offer
greater levels of acceleration in these larger search spaces,
motivating establishment of compact representations that
facilitate model training with sparse data and enable prediction
into composition axes with little to no training data.

Data and code availability

All catalyst data is visualized in Fig. 2 or the ESI† and is available
for interactive visualization and download at http://
data.matr.io/ACE-I. Source code for benchmarking sequential
learning runs against random sample selection and demon-
strating the sequential learning is available at https://
github.com/SantoshSuram-TRI/ACE-I. The compilation of data
is available in that repository and also at https://
data.caltech.edu/records/1345 (DOI: 10.22002/D1.1345).
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