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synthesis of isochromans and
tetrahydroisoquinolines by C–H insertion of donor/
donor carbenes†

Leslie A. Nickerson, Benjamin D. Bergstrom, Mingchun Gao,
Yuan-Shin Shiue, Croix J. Laconsay, Matthew R. Culberson,
Walker A. Knauss, James C. Fettinger, Dean J. Tantillo and Jared T. Shaw *

Reports of C–H insertions forming six-membered rings containing heteroatoms are rare due to Stevens

rearrangements occurring after nucleophilic attack on the carbene by a heteroatom. Using donor/donor

carbenes and Rh2(R-PTAD)4 as a catalyst, we have synthesized a collection of isochroman substrates in

good yield, with excellent diastereo- and enantioselectivity, and no rearrangement products were

observed. Furthermore, we report the first synthesis of six-membered rings containing nitrogen by C–H

insertion to form tetrahydroisoquinolines. In one case, a Stevens rearrangement product was isolated at

elevated temperature from a carbamate-protected amine substrate and computational evidence

suggests formation through a free ylide not bound to rhodium.
Insertion reactions of metal carbenes into C–H bonds are useful
methods for making C–C bonds.1–6 In most cases, C–H insertion
reactions are catalyzed with dirhodium tetracarboxylate
complexes, oen using chiral ligands to provide enantiose-
lectivity.1,6–8 Asymmetric C–H insertion has been well-docu-
mented for carbenes with two electron withdrawing
substituents (CO2R, COR, CN, SO2R, acceptor/acceptor)7 or with
one electron donating (aryl, alkenyl) and one electron with-
drawing group (donor/acceptor).9 Acceptor and acceptor/
acceptor carbenes are very reactive and can react indiscrimin-
ately with other functionalities on the molecule.7,10,11 Donor/
acceptor carbenes are less electrophilic due to the donating
substituent, which increases selectivity for C–H insertion
(Fig. 1).3,5,9 Recently, we have been interested in donor/donor
carbenes,12–14 which have two electron-donating groups and, as
a result, are highly selective for C–H insertion while also toler-
atingmany functional groups present in complex substrates.15,16

Although C–H insertion reactions have been used in the
synthesis of a wide variety of ve-membered ring (1,5-C–H
insertion) heterocycles,1,7,10 there are few examples of six-
membered ring (1,6-C–H insertion) formation and the
substrates are limited to oxygen-containing rings.17–24

Accessing 1,6-C–H insertion is difficult due to the kinetic
favorability of 1,5-C–H insertion and the potential for
rnia, Davis, One Shields Ave, Davis, CA

n (ESI) available: Synthetic details,
stallographic data. CCDC 1921673,
I and crystallographic data in CIF or
c9sc05111b
rearrangement products when heteroatoms are present (Fig. 1).
Previous work to synthesize 1,6-C–H insertion products without
heteroatoms consistently observed mixtures of ve- and six-
membered ring products when a 1,5-C–H insertion site was
available.25–29 Installing heteroatoms can eliminate 1,5-C–H
insertion however this introduces the possibility of nucleophilic
attack on the carbene by the heteroatom.17,19,24 This reaction
forms an ylide that undergoes the Stevens rearrangement (or
a Stevens-type rearrangement when the heteroatom is oxygen),
forming a ve-membered ring (5).24,30 Despite these challenges,
there are scattered reports of forming tetrahydropyran, chro-
man, and chromanone cores through 1,6-C–H insertion using
donor/acceptor or acceptor carbenes.18,20,22–24,31–33 In 2012, Cossy
and coworkers demonstrated the use of donor carbenes gener-
ated from cyclopropenes in the synthesis of tetrahydropyrans by
C–H insertion,22,31 further expanding the diazo-free insertion
work demonstrated by Zhu.34,35 In the cases where chiral cata-
lysts were used, enantioselectivity was oen moderate;19,20 it
wasn't until 2015 when Hashimoto achieved higher levels of
enantioselectivity using Rh2(S-PTTL)4 (up to 97 : 3 er).24 We
hypothesized that using donor/donor carbenes would reduce
the electrophilicity of the rhodium carbene enough to allow C–
H insertion to proceed selectively without interference by the
heteroatom.

Due to the propensity of C–H insertions to form ve-
membered rings, we designed substrates that would eliminate
the possibility for 1,5-insertion by installing the requisite
heteroatom at the 5-position. We started by developing
substrates with benzylic insertion sites, as we had found those
to be favored with benzodihydrofuran systems.15 We were
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Six-membered ring formation has proven difficult in the past
due to the kinetic favorability of five-membered ring insertions and the
possibility of Stevens rearrangement products. By utilizing donor/
donor carbenes, which are less electrophilic than donor/acceptor or
acceptor/acceptor carbenes, the Stevens rearrangement product is
not observed.
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pleased to nd that hydrazone 10a was successfully oxidized
to the diazo with eight equivalents of MnO2 and inserted into
the benzylic C–H bond with 1 mol percent catalyst loading
affording a single diastereomer, with excellent enantiose-
lectivity, and with no observed rearrangement product
(Table 1, entry 1).
Table 1 Insertion into benzylic C–H Bonds

Entry Product R1 R2 Solvent Yield (%) er

1 11a Ph H CH2Cl2 60 97 : 3
2 11ba Ph OCH3 CH2Cl2 69 >99.5 : 0.5
3 11c 4-CNC6H4 OCH3 CH3CN 97 99 : 1
4b 11d 4-H3COC6H4 OCH3 CH2Cl2 98 99 : 1
5 11e 3-Pyridyl OCH3 CH3CN 82 94 : 6
6 11f CH3 OCH3 CH2Cl2 56 60 : 40

a With Rh2(S-PTAD)4 as catalyst.
b Catalyst added at rt.

This journal is © The Royal Society of Chemistry 2020
With this result we were encouraged to expand the scope of
benzylic insertions to form isochromans. We saw a modest
increase in yield and enantioselectivity when a methoxy group
was installed para to the insertion site (Table 1, entry 2). We
then wanted to explore electronic effects at the carbene center
and interestingly found no discernible effect when there was
a nitrile group versus a methoxy group para to the carbene
(Table entries 3, 4). Furthermore, heterocycles with a Lewis
basic moiety were also well-tolerated as substituents off of the
carbene (Table 1, entry 5). Encouraged by these results we
wanted to explore the effect of alkyl substituents on the carbene
in combination with an aryl substituent (Table 1, entry 6). The
yield was slightly lower, and we saw a signicant decrease in
enantioselectivity, suggesting that the other aryl ring plays
a role in tting the substrate into the chiral catalyst pocket.

Allylic and propargylic ethers were excellent substrates for C–
H insertion (Fig. 2). Although the analogous substrates for the
synthesis of benzodihydrofurans can suffer from competing
dipolar cycloaddition reactions,36,37 this side reaction was not
observed in the reactions leading to isochromans. Stevens-type
rearrangement products were also not observed for unsaturated
substrates. Notably, 12a did not undergo any Stevens-type
rearrangement under reaction conditions, in contrast to
a similar substrate derived from a donor/acceptor carbene in
work by Hashimoto and co-workers.24 These results appear to
support our hypothesis that the reduced electrophilicity of the
donor/donor carbene prevents the competing rearrangement
reaction. Additionally, while an unsubstituted allyl group
underwent insertion with modest yield, the addition of a single
substituent resulted in yields of 90% or greater. The crystal
structure of 13b demonstrated that the absolute conguration
produced with Rh2(R-PTAD)4 is the same for isochromans as
was observed with benzodihydrofurans and related heterocy-
cles.15,16,38 Cis and trans alkene hydrazones 13d and 13e led to
their respective insertion products with no detectable isomeri-
zation. A propargyl substituted insertion site proved to be the
Fig. 2 Unsaturated isochroman substrates.
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Fig. 4 Diastereoselective insertions to form tri-substituted iso-
chromans.a With Rh2(Mes)4.

b With Rh2(R-TCPTTL)4.
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lowest yielding isochroman (13f). Although the yield was
comparatively lower than the other unsaturated substrates, no
evidence of dipolar cycloaddition was observed. We hypothesize
that a larger ring size helps to limit the dipolar cycloaddition
pathway.36,37

Aliphatic substrates also react with high diastereo- and
enantioselectivity. There is a clear trend of decreasing yield
from substrates that have two alkyl substituents versus one alkyl
substituent at the insertion site. Isochromans 15a–c were
synthesized in excellent yield with insertion into a carbon with
two alkyl substituents (Fig. 3). When inserting into a carbon
with one alkyl substituent the yields decreased signicantly
(15d–e, 54–62%) indicating some substrate preference for
inserting into more highly substituted carbons. Importantly,
throughout the isochroman examples, all products were formed
as a single diastereomer and no Stevens-type rearrangement
products were observed.

With the formation of six-membered rings comes the
opportunity to explore the inuence of 1,3-diaxial interactions
in the diastereoselective formation of the stereogenic centers
that form during insertion (Fig. 4). A single diastereomer (17a)
was observed from hydrazone 16a using Rh2(Mes)4 as the
catalyst, the conguration of which was determined by a NOE
NMR experiment. This indicates that the C–H insertion step
occurs in a diastereoselective manner despite having a bulky
group close to the rhodium carbene. Furthermore, compounds
17b and 17c were also isolated in good yields with excellent
diastereoselectivity when Rh2(R-TCPTTL)4 was used as the
catalyst to accelerate the rate of C–H insertion. The chiral
phthalimido catalysts generally exhibit higher activity than any
of the achiral catalysts used with donor/donor carbenes. The
structure of compound 17c was also determined by X-ray
diffraction.38

Our success in synthesizing isochromans motivated our
attempts to synthesize the more challenging nitrogen
analogues. To the best of the authors' knowledge, 1,6-C–H
insertion on aliphatic systems has never been done to
synthesize nitrogen-containing heterocycles. Jefford and
Fig. 3 Aliphatic isochroman substrates.a Run with Rh2(S-PTAD)4.

496 | Chem. Sci., 2020, 11, 494–498
coworkers demonstrated related work involving a C(sp2)–H
insertion on pyrrole using an acceptor carbene.39–41 Using our
prior work to synthesize indolines as inspiration,16 we rst
developed amine- and aniline-based substrates. These
substrates proved unsuccessful as the crude reactions were
oen complex mixtures with no discernible traces of product.
In order to reduce the possibility of side reactions, N-sulfonyl
groups were installed to reduce the nucleophilicity of the
nitrogen lone pair. No identiable products were isolated with
these substrates.

Computational evidence suggests that donor/donor C–H
insertions forming benzodihydrofurans proceed through
a stepwise mechanism that has a zwitterionic intermediate in
which a carbocation is formed on the insertion carbon.36 Based
on this observation we reasoned that a sulfonyl protecting
group on nitrogen might be too electron withdrawing, to the
detriment of stabilizing a possible carbocation intermediate.
We hypothesized that an amide would reduce the nucleophi-
licity of the nitrogen but to a lesser extent than a sulfonyl pro-
tecting group.

We next attempted substrates using lactams and were
pleased to synthesize tetrahydroisoquinoline 23a as a single
diastereomer in 54% yield and with 99 : 1 er (Fig. 5). We went on
to synthesize tetrahydroisoquinoline 23b in good yield and with
slightly reduced er. Carbamate derived tetrahydroisoquinoline
23c was also synthesized in moderate yield and with excellent
stereoselectivity. X-ray crystallography of 23c showed the same
absolute stereochemistry as is observed with isochromans.38 As
these insertions occur rapidly, we found that reducing the
temperature before the addition of catalyst allowed the reaction
to complete within 30 minutes to 3 hours while producing
a cleaner reaction mixture.
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Scope of tetrahydroisoquinoline substrates.
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In analogy to our work with indolines, in which insertion
into methyl C–H bonds was possible,16 we attempted to
synthesize a mono-substituted tetrahydroisoquinoline. We
synthesized hydrazone 24 with a carbamate protecting group,
which we reasoned would provide roughly an equivalent level of
electron withdrawing potential as an amide and is easily
removed for further functionalization. This substrate reacted
much more slowly and eventually required heating to reux for
the diazo to be fully consumed. Upon consumption of diazo no
insertion product was observed. The sole identiable product
Fig. 6 (A) Stevens rearrangement product synthesis. (B) The DFT
(uB3LYP/LANL2DZ[6-31G(d)]) computed mechanism suggests that N-
attack to the rhodium carbene and the subsequent Stevens rear-
rangement is energetically feasible at experimental conditions; relative
free energies (electronic energies in parentheses) for metal-bound
(normal text) and ylide (italics) reactions are reported in kcal mol�1.

This journal is © The Royal Society of Chemistry 2020
was isoindoline 26, resulting from an apparent Stevens [1,2]-
rearrangement (Fig. 6A).42,43 A similar product involving attack
by an amide nitrogen leading to Stevens rearrangement was
observed by Padwa.42

Aer identifying the isoindoline as the primary product of
the reaction using Rh2(R-PTAD)4, a second run using Rh2(TFA)4
proceeded in 50% yield. The isolation of Stevens product 26
indicates that the properties of the insertion site are as impor-
tant as the electron withdrawing effect on the nitrogen, given
that tetrahydroisoquinoline 23c was isolated from insertion of
hydrazone 22c. Although previous studies propose a stepwise
diradical mechanism for the Stevens rearrangement,43 density
functional theory (DFT) studies support N-attack to the metal
carbene, but then a concerted free ylide Stevens rearrangement
(Fig. 6B).44 This model suggests that the metal catalyst is not
essential in the Stevens rearrangement step.45

Conclusions

In conclusion, we have used donor/donor rhodium carbenes to
synthesize isochromans in good to excellent yields and with
overall excellent stereoselectivity. For isochroman substrates,
no Stevens-type rearrangement products were observed.
Furthermore, we also explored the synthesis of isochromans in
a diastereoselective fashion by installing a substituent on the
benzylic carbon alpha to oxygen and were gratied to see
a single diastereomer formed. Additionally, we synthesized the
rst six-membered rings containing nitrogen through 1,6-
C(sp3)–H insertion in moderate yields and with excellent ster-
eoselectivity. A Stevens rearrangement product was isolated
from one substrate using increased temperature and compu-
tational evidence suggests that isoindoline formation occurs via
a free ylide not bound to rhodium.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work was supported by grants from the National Institutes
of Health (R01/GM124234). Research reported in this publica-
tion was supported by the National Institute of General Medical
Sciences of the National Institutes of Health under Award
Number R01GM124234. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the National Institutes of Health. LAN and BDB
acknowledge UC Davis for nancial support in the form of
Borge and Corson/DOW fellowships. MRC thanks the California
Alliance for Minority Participation (CAMP) for nancial support
(NSF grant 1826900). We thank the Franz group for providing
access to a chiral HPLC and particularly Austin Kelly and Jake
Jagannathan (Franz group, UC Davis) for providing assistance
with HPLC traces. We also thank the Kurth group, (UC Davis)
for use of their IR with assistance from Winston Chow (Olson
group, UC Davis). We thank the National Science Foundation
(Grant CHE-1531193) for the Dual Source X-ray diffractometer.
Chem. Sci., 2020, 11, 494–498 | 497

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc05111b


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

0/
21

/2
02

5 
11

:0
7:

55
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
We gratefully acknowledge support from the XSEDE program
via TG-CHE050017N for computational resources.

Notes and references

1 M. P. Doyle, M. Ratnikov and Y. Liu, Org. Biomol. Chem.,
2011, 9, 4007–4016.

2 M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev.,
2010, 110, 704–724.

3 H. M. L. Davies and J. R. Denton, Chem. Soc. Rev., 2009, 38,
3061–3071.

4 H. M. L. Davies and J. R. Manning, Nature, 2008, 451, 417–
424.

5 H. M. L. Davies and D. Morton, Chem. Soc. Rev., 2011, 40,
1857–1869.

6 H. M. L. Davies and P. M. Pelphrey, in Organic Reactions,
JohnWiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 75–212.

7 H. M. L. Davies and R. E. J. Beckwith, Chem. Rev., 2003, 103,
2861–2904.

8 H. M. L. Davies and T. Hansen, J. Am. Chem. Soc., 1997, 119,
9075–9076.

9 H. M. Davies and Ø. Loe, Synthesis, 2004, 16, 2595–2608.
10 G. A. Sulikowski, K. L. Cha and M. M. Sulikowski,

Tetrahedron: Asymmetry, 1998, 9, 3145–3169.
11 M. P. Doyle, M. A. McKervey and T. Ye, in Modern Catalytic

Methods for Organic Synthesis with Diazo Compounds: From
Cyclopropanes to Ylides, Wiley, 1998, pp. 112–162.

12 G. Seidel and A. Fürstner, Angew. Chem., Int. Ed., 2014, 53,
4807–4811.
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M. J. Di Maso and J. T. Shaw, J. Am. Chem. Soc., 2014, 136,
15142–15145.

16 L. W. Souza, R. A. Squitieri, C. A. Dimirjian, B. M. Hodur,
L. A. Nickerson, C. N. Penrod, J. Cordova, J. C. Fettinger
and J. T. Shaw, Angew. Chem., Int. Ed., 2018, 57, 15213–15216.

17 N. McCarthy, M. A. McKervey, T. Ye, M. McCann, E. Murphy
and M. P. Doyle, Tetrahedron Lett., 1992, 33, 5983–5986.

18 E. Lee, I. Choi and S. Y. Song, J. Chem. Soc., Chem. Commun.,
1995, 321–322.
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