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Large and flexible ligands gain increasing interest in the development of bioactive agents. They challenge

the applicability of computational ligand optimization strategies originally developed for small molecules.

Free energy perturbation (FEP) is often used for predicting binding affinities of small molecule ligands,

however, its use for more complex ligands remains limited. Herein, we report the structure-based design

of peptide macrocycles targeting the protein binding site of human adaptor protein 14-3-3. We observe

a surprisingly strong dependency of binding affinities on relatively small variations in substituent size. FEP

was performed to rationalize observed trends. To account for insufficient convergence of FEP, restrained

calculations were performed and complemented with extensive REST MD simulations of the free ligands.

These calculations revealed that changes in affinity originate both from altered direct interactions and

conformational changes of the free ligand. In addition, MD simulations provided the basis to rationalize

unexpected trends in ligand lipophilicity. We also verified the anticipated interaction site and binding

mode for one of the high affinity ligands by X-ray crystallography. The introduced fully-atomistic

simulation protocol can be used to rationalize the development of structurally complex ligands which

will support future ligand maturation efforts.
Introduction

Selective ligands are the basis for most strategies aiming at the
elucidation or modulation of biological processes.1 For protein
targets with relatively at surfaces, it still remains a major
challenge to develop selective, high affinity ligands as tradi-
tional small molecular scaffolds usually require dened
binding pockets.2 For such targets, more complex structures
with large surface areas and more diverse conformational states
represent a valuable source for ligands.3 In this respect, peptide-
based scaffolds have proven useful, in particular when con-
taining macrocyclic structures.4 Macrocyclization can reduce
ligand exibility thereby increasing target affinity and
bioavailability.5 Such macrocycles still explore a large confor-
mational space and a modulation of conformational
constraints heavily impacts binding and physio-chemical
properties such as lipophilicity.6,7 In addition to their overall
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high exibility, the large number of individual interactions that
contribute to binding complicate any affinity maturation
process.8

Computational approaches allow to estimate binding affin-
ities.9–11 In particular, the free energy perturbation (FEP)
methodology based on molecular dynamics (MD) simulations
proved useful for the quantication of relative binding free
energies also providing mechanistic insights.12–16 Since FEP
explicitly considers ligand and target exibility,17 it tends to be
more reliable than docking or molecular mechanics/Poisson–
Boltzmann approaches.9,18 The FEP methodology is mainly
applied for the characterization of small-molecule/protein
complexes.9,18 The consideration of exible, large and macro-
cyclic ligands on the other hand remains rather rare,9,19–21 since
dynamic simulations of such systems oen face convergence
problems.14,22,23 For small molecules, restraining techniques
have been applied to improve convergence of absolute binding
free energy calculations12,24,25 also allowing the estimation of
different contributions to the binding free energy, that are not
readily accessible in experiments: e.g. conformational strain,
contribution from electrostatic and van-der-Waals interac-
tions.12 Yet, there is the need to establish and validate protocols
of MD simulation-based methods for the rational design of
compounds beyond small-molecular space.3
Chem. Sci., 2020, 11, 2269–2276 | 2269

http://crossmark.crossref.org/dialog/?doi=10.1039/c9sc04705k&domain=pdf&date_stamp=2020-02-22
http://orcid.org/0000-0001-9801-3253
http://orcid.org/0000-0003-0179-4116
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc04705k
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC011008


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

20
. D

ow
nl

oa
de

d 
on

 7
/2

8/
20

24
 2

:2
5:

53
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
In particular, exploration of the vast conformational space of
macrocyclic peptides is challenging, with some resent reports
addressing this issue.22,26–28 Among those, force-eld-based
implicit solvent approaches proved to be very efficient in the
exploration of conformational space.27,28 However, explicit
solvent models are generally more accurate in predicting free
energy quantities,29 but on the expense of increased computa-
tional cost. Various enhanced sampling techniques were
proposed to accelerate explicit solvent simulations including
Replica Exchange with Solute Tempering (REST) simulations,30

accelerated MD,22 metadynamics,31,32 adaptive umbrella
sampling,33 and multiple simulations with diverse starting
conformations analysed with Markov State Model.26 These
methods allow to efficiently sample the conformational space of
peptide macrocycles and to obtain the corresponding
conformer populations. However, a general approach that
includes this information into binding affinity predictions is
lacking.

Here, we present the structure-based design of peptide
macrocycles targeting the protein interaction site of human
adaptor protein 14-3-3. Using a previously reported macrocyclic
ligand as starting point,34 a small library of truncated deriva-
tives with altered substitution pattern has been generated. FEP
was performed and complemented with extensive REST MD
simulations to rationalize the observed affinity trends. These
calculations revealed that changes in affinity originate both
from altered direct interactions and conformational changes of
the free ligand. For one novel high affinity derivative a crystal
Fig. 1 (A) Amino acid sequence of peptide 1with dark circles highlighting
with corresponding pKd-values derived from direct FP and BEI-values. Fo
crystal structure of 1 (light red, PDB ID 4n7y) in complex with 14-3-3 (grey
analysis of 14-3-3 surface reveals cavity 1 and 2 (yellow) in proximity to am
peptide with variable substituents (R1, R2) and variable N-terminal modifi
sponding pKd-, pKi- and BEI-values. pKd- and pKi-values are derived fro
account for 1s). aTitration curves did not show significant change in sign
concentration in titration; btitration curve did not reach upper plateau. pKd

did not show significant change in signal (#10%). Upper limit of pKi was

2270 | Chem. Sci., 2020, 11, 2269–2276
structure in complex with 14-3-3 was obtained verifying the
anticipated binding mode.

Results
Truncation and derivatization of macrocyclic peptides

Macrocyclic peptide 1 (Fig. 1A)34 binds to a class of highly
related eukaryotic adaptor proteins called 14-3-3. It was origi-
nally derived from the pathogenic protein ExoS and proves
efficient in inhibiting the interaction between ExoS and 14-3-3
proteins. The ExoS/14-3-3-interaction plays a crucial role in
Pseudomonas aeruginosa infections which play an important
role in hospital-acquired infections.35 Macrocyclic peptide 1
comprises 11 amino acids and harbors an R- and an S-cong-
ured a-methyl, a-alkyl amino acid at position 3 and 6, respec-
tively (X(Me)R3 and X(Me)S6, Fig. 1B). Both amino acids are
connected via their alkyl side chains forming an eight
membered hydrocarbon crosslink. Notably, this hydrophobic
crosslink contributes to binding by engaging in direct interac-
tions with the target protein 14-3-3 and by stabilizing the
bioactive conformation of the free ligand.34 Given the impor-
tance of the central macrocycle, we consider peptide 1 a good
starting point for the structure-based design of smaller peptide
ligands with high binding affinity.

Initially, we were interested to identify amino acid side
chains in 1 that are crucial for 14-3-3 binding. These so-called
hotspots, are dened as amino acid positions where variation
to alanine results in considerably increased binding free energy
(DG $ 2.0 kcal mol�1).36,37 Therefore, an alanine scan was
the LDL hotspot motif, and truncation studies resulting in peptides 2–6
r affinity data see Fig. S1 and S2† (triplicates, errors account for 1s); (B)
) including hotspot amino acid side chains (aa 7–9, LDL). Computational
ino acids X(Me)R3 and X(Me)S6; (C) top: chemical structure of truncated
cation; bottom: peptides with varying substitution pattern and corre-
m direct FP and FP competition assays, respectively (triplicates, errors
al (#10%). Upper limit of pKd was estimated based on highest protein
were calculated using the extrapolated upper plateau; ctitration curves
estimated based on highest competitor concentration in titration.

This journal is © The Royal Society of Chemistry 2020
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performed by replacing each natural amino acid of 1, except for
glycine, sequentially to alanine. The resulting seven peptides
were synthesized and N-terminally labeled with uorescein
isothiocyanate (FITC) for affinity testing in a direct uorescence
polarization (FP) assay. In analogy to previous studies, we used
14-3-3 isoform z (in the following, referred to as 14-3-3) for
affinity measurments.34,38 In the FP assay, 1 served as the
reference providing a dissociation constant (Kd ¼ 0.46 mM, pKd

¼ 6.43) in the reported range.34 Alanine-variation of N-terminal
amino acid Q1 and C-terminal S11 did not interfere with
binding to 14-3-3 (Fig. 1A and S1†). This also holds true for
central amino acids L4 and D5. We observed a severe loss of
binding affinity when varying any of the three amino acids
within the LDL motif (aa 7–9, dark, Fig. 1A and S1†) thereby
identifying these residues as hotspots. Encouraged by these
ndings, various N- and C-terminal truncations were tested to
identify the minimal binding sequence of 1. Truncation of the
two C-terminal amino acids (A10 and S11) had only minor
effects on binding affinity (pKd(3) ¼ 5.54, Fig. 1A) while an
additional deletion of L9 resulted in tremendously reduced
affinity (pKd(4) < 4) which is in line with its hotspot character.
Using peptide 3 as starting point, we tested N-terminal trunca-
tions indicating that removal of Q1 slightly improves binding
(pKd(5) ¼ 5.57) while the additional deletion of G2 considerably
reduces affinity (pKd(6) ¼ 4.91).

The binding efficiency index (BEI) is a useful measure when
comparing a series of structurally related compounds to judge
the importance of various groups.39 The BEI considers the
dissociation constant (Kd) of the target/ligand-complex in rela-
tion to the ligand's molecular weight (MW) (BEI ¼ pKd/(MW �
10�3)).40 Among our truncation series, peptide 5 exhibits the
highest binding efficiency (BEI¼ 4.2) thereby surpassing the 11-
mer starting peptide 1 (BEI ¼ 3.8). This renders 5 a good
starting point for subsequent optimization aiming at increased
binding affinity and efficiency. Due to the previously shown
tolerance towards structural modications,34 we pursued
derivatization of the central macrocycle. Using the crystal
structure of 1 in complex with 14-3-3 as structural basis, we
searched for cavities in close proximity to the macrocycle (l $ 2
Å). The analysis of the 14-3-3 surface in this area, using an
atomic probe placing approach,41 reveals two hydrophobic
cavities (cavity 1 and 2, yellow, Fig. 1B).

Cavity 1 and 2 are only partially occupied by the two methyl
groups of X(Me)R3 and X(Me)S6, respectively. Encouraged by
this observation, we decided to test the effect of an ethyl group
at the Ca of X(R1)R3 and X(R2)S6 (Fig. 1C). To probe the general
inuence of substitutions at those positions, we also included
hydrogen bearing derivatives and assembled a panel of six
macrocyclic peptides (7–12) with varying substitution patterns.
Initially, these peptides were synthesized with an N-terminal
FITC-label to determine their affinity for 14-3-3 using direct
FP (pKd, Fig. 1C). Within this panel, only 7 (H/H) does not show
detectable binding to 14-3-3 (pKd < 3.5), while the two mono-
methylated derivatives (8 and 9) exhibit low affinities (pKd �
4.3). Compared to 5 (Me/Me), all peptide derivatives with at least
one H-substituent (7–9) experience a loss in binding affinity.
Notably, peptides with ethyl substituents (10–12) show higher
This journal is © The Royal Society of Chemistry 2020
affinities than peptide 5 (Fig. 1C). Interestingly, ethyl modi-
cation at amino acid position 3 (X(Et)R3) results in a more
pronounced affinity increase (DpKd(10/5) ¼ 0.06 vs. DpKd(11/5)
¼ 0.49). In addition, we do not observe an additive effect when
introducing both ethyl groups (peptide 12).

Due to their very similar molecular weight (MW ¼ 1358–
1412 g mol�1), differences in binding efficiency are mainly
determined by the pKd-values rendering peptide 11 and 12 the
most efficient binders (BEI ¼ 4.46 and 4.43, respectively). To
investigate potential effects of the uorescent label on binding,
we also performed FP competition experiments using N-
terminally acetylated peptides. In these measurements, the
14-3-3 binding sequence of ExoS served as uorescent tracer
(Fig. S5†). Obtained IC50-values were used to calculate the cor-
responding pKi values (Fig. 1C and Table S4†),42 which are
generally in line with affinities derived from direct FP (pKd).
Free energy perturbation calculations

Considering the small variations of substituent size relative to
the macrocyclic ligand, we observe a strong dependency of
binding affinities on the substitution pattern. To rationalize
observed trends in binding affinities, FEP calculations were
performed using the crystal structure of 1 in complex with 14-3-
3 (PDB ID 4n7y) as starting model (see ESI for modelling
details†). For our analysis, we decided to consider ve different
ligands: 7 (H/H), 9 (Me/H), 5 (Me/Me), 11 (Et/Me), 12 (Et/Et),
covering the full diversity of our experimentally tested panel.
The use of multiple ligands also allows to evaluate the conver-
gence of FEP calculations by monitoring the hysteresis in
thermodynamic cycles (Fig. S10†). While running conventional
FEP simulations, we recognized insufficient convergence in
particular for all edges with 7 (H/H), both in complex and in
solvent (unbound) simulation legs. Unbound 7 (H/H) explores
a broad conformational space as can be seen by time evolution
of ligand RMSD (Fig. S11†). In addition, the conformation of
bound 7 (H/H) drastically deviates from the X-ray-derived
reference structure over time, such that the hydrophobic
crosslink leaves the binding site (Fig. S12†). The latter, we
interpret as initiation of an unbinding event, which is in line
with the low measured binding affinity (pKd < 3.5). Also, free
energy estimates show signicant dri over the entire simula-
tion time, particularly for the edges with 7 (H/H) in solvent leg
(Fig. S13†). These observations indicate insufficient sampling
for the given simulation time (t ¼ 20 ns per FEP leg), which is
presumably inherent to the high exibility and wide confor-
mational space of the peptidic ligands.

To minimize convergence problems and to estimate the
contributions of direct interactions to binding free energies,
FEP calculations with varying level of conformational restrains
were performed applying three different restraining force
constants (so: 0.1, medium: 1, hard: 10 kcal mol�1 Å�2) to the
ligand and to the protein backbone (Fig. 2A). With hard
restraints, we achieved good convergence as ligands explore the
same RMSD span over the simulation and running free energy
estimates reaches the plateau quickly (Fig. S13†). As expected,
representative simulation conformers (Fig. 2A) reveal
Chem. Sci., 2020, 11, 2269–2276 | 2271
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Fig. 2 (A) Representative structures of FEP calculations for 5 (Me/Me,
grey) with varying position restraints (force constants: 0 (none), 0.1
(soft), 1 (medium), 10 kcal mol�1 Å�2 (hard)). Trajectories are super-
imposed with 5 (Me/Me, light red) derived from crystal structure of 1
(aa 2–9) in complex with 14-3-3 (grey surface, PDB ID 4n7y). Back-
bones of protein and ligand as well as the ligand crosslink are
restrained to reference crystal structure of 14-3-3/1-complex; (B)
DpKd values (DpKd ¼ pKd(derivative) � pKd(5)) were experimentally
determined by direct FP assays (light red) and calculated by FEP
applying varying force constants of 0.1, 1 and 10 kcal mol�1 Å�2 (shades
of grey, for values see Table S6†).
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a progressively reduced conformational diversity upon
increasing the force constant both in the free and the bound
state. This is also reected by decreasing average RMSD-values
2272 | Chem. Sci., 2020, 11, 2269–2276
(free: from 0.93 to 0.39 Å, bound: from 0.76 to 0.35 Å, Table S5†).
FEP calculations provideDpKd-values (relative to 5, grey, Fig. 2B)
which broadly recapitulate the experimental trends (light red).

Interestingly, although convergence improves at higher force
constants, the different restraints provide similar DpKd-values
for a given peptide (Fig. 2B). Considering their varying degree of
convergence, this indicates that both restrained and unre-
strained FEP calculations mostly reect contribution from
direct protein–ligand interactions and solvation terms43, and do
not capture conformational aspects.

Given the inherent accuracy limitations associated with FEP
calculations,9 peptide 7 (H/H) and 9 (Me/H), as well as 5 (Me/
Me), 11 (Et/Me) and 12 (Et/Et) can be considered to show
similar predicted affinities (Fig. 2B) which is not fully in line
with the experimental data. This and the fact that conforma-
tional aspects are presumably neglected in these FEP calcula-
tions encouraged further investigations regarding potential
differences in the conformational aspects of the different free
ligands.
Molecular dynamics simulations of free ligands

To assess the full conformational space of the free ligands in
solution, we performed extensive Replica Exchange with Solute
Tempering (REST) simulations.30 The full simulation time (t ¼
2.5 ms) was split into ve blocks of 0.5 ms each to estimate
statistical uncertainties. For each peptide, all ve blocks show
similar distributions of RMSD-values with respect to the crystal
structure of 1 (Fig. S8†) indicating a consistent sampling of
conformational space. Sufficient conformational sampling is
also conrmed by time series of ligand RMSD revealing uniform
distributions (Fig. S15†), and by the principal component
analysis of the corresponding trajectories (Fig. S16–S18†). The
latter shows that all ligands explore similar distinct conforma-
tional states. When looking at the torsion distribution of bonds
within the macrocycle, we observe sampling of a similar
conformational space for bonds that are remote from the alkyl
substituents (Fig. S19 and S20†) indicating adequate sampling
of macrocycle dihedral angles in the REST MD simulations.
When plotting the frequency of RMSD-values, we observe
a bimodal distribution of conformations for all peptides with
a minimum around 2.6 Å (dashed line, Fig. 3A). Conformations
with an RMSD # 2.6 Å show good overlay with the reference
structure (population 1, Fig. 3B top) while structures with an
RMSD > 2.6 Å (population 2, Fig. 3B bottom) exhibit a diverse
conformation pattern that differs substantially from the
reference.

We reasoned that population 1 conformations provide an
overall shape complementary to the binding site of 14-3-3 and
are therefore more susceptible for binding than conformations
from population 2. We recognize an increasing occupancy of
population 1 with enlarging substituents (Fig. 3C): 7 (H/H, 6 �
2%), 9 (Me/H, 16 � 3%), 5 (Me/Me, 30 � 4%) to 11 (Et/Me, 40 �
4%). For peptide 12 (Et/Et, 30 � 7%) though, we do not observe
a further increase of population 1. Overall, alkylation of position
XR3 and XS6 appears to promote population 1 presumably by
restricting conformational freedom. This is in line with a-
This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (A) Distribution of ligand RMSD derived from REST MD simu-
lations (0.1 Å bin width) for selected peptides with varying substitution
pattern (7, H/H; 9, Me/H; 5, Me/Me; 11, Et/Me; 12, Et/Et) shown as
average over 5 blocks of 0.5 ms each (errors account for 1s); (B)
representative, simulated structures of 5 (Me/Me, grey) showing RMSD
distributions for population 1 (RMSD # 2.6 Å) and 2 (RMSD > 2.6 Å)
superimposed with reference structure derived from peptide 1 (aa 2–
9, light red, PDB ID 4n7y); (C) relative distributions of population 1 and
2 based on REST MD calculations for selected peptides with varying
substitution pattern; (D) correlation between PSA (polar surface area)
and experimentally determined log D-values for peptides with varying
substitution pattern including Pearson correlation coefficient (r ¼
�0.988).
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bisalkylated amino acids accessing a reduced range of j and f

dihedral angles when compared to their mono-substituted
analogs.44 Most notably, the occupancy of population 1 and
experimental pKd-values show a similar trend. Population of the
bioactive conformation (p) has a direct effect on the apparent
binding constant ðK*

dÞ via the following equation (see Section
1.8 in ESI for details†):

K*
dhKd

�
1� p

p
þ 1

�
(1)
This journal is © The Royal Society of Chemistry 2020
where Kd is the binding constant of the compound where the
transition into the non-bioactive conformation is not permitted.
The latter term accounts for the conformational equilibrium
effect on the apparent binding affinity. The difference in
binding affinities associated with the difference in populations
of bioactive conformers between two ligands is then dened as:

DpK*;c
d ¼ �log10

ð1� p1Þ=p1 þ 1

ð1� p2Þ=p2 þ 1
(2)

Considering the occupancy of population 1 for 7 (H/H) and 11
(Et/Me), one can estimate 7 (H/H) to be considerably less potent
than 11 (Et/Me, DpKd z 0.8. Table S7†).

Comparison of RMSD distribution from the 2.5 ms REST MD
with the solvent legs of above presented 20 ns FEP simulations
highlights the insufficient sampling of peptide conformation in
FEP calculations (Fig. S14†). In FEP, ligands predominantly
adopt population 1 conformations and barely access population
2. Clearly, short unbiased FEP simulations are not capable to
sample accurately the ligand conformation space in bulk
solvent in the case of studied, highly exible peptides.

The lipophilicity of compounds is an important parameter
determining their solubility and bioavailability.45 For this
reason, we experimentally determined ligand log D-values
reecting the distribution of a compound between a hydro-
phobic and a hydrophilic phase. Here, we used a previously
reported HPLC-based readout for log D determination.46 As ex-
pected, increased substituent size (H < Me < Et) is associated
with higher log D-values (Table S9†): e.g. 0.63 (7, H/H) < 1.26 (5,
Me/Me) < 1.35 (12, Et/Et). Surprisingly, log D-values nonlinearly
increase with substituent size (Fig. S21†): e.g. the log D differ-
ence between 5 (Me/Me) and unsubstituted peptide 7 (H/H)
(Dlog D ¼ 0.63) is considerably larger than between ligands 12
(Et/Et) and 5 (Me/Me) (Dlog D¼ 0.09). To assess this behavior in
more detail, log P-values were calculated based on 2D structures
using a group contributions approach (Xlog P). These calcula-
tions result in an almost linear Xlog P increase with about 0.4
units per addition of a sp3-hybridized carbon (Fig. S21†)47 which
is not in line with the experimental trend. Consequently, only
a moderate correlation of calculated Xlog P values with our
experimental log D-values is observed (Fig. S22,† r ¼ 0.893). We
hypothesized that this discrepancy originates from differences
in populations and/or surface properties of 3D conformation
states between the ligands.

To account for the 3D conformation effects on lipophilicity,
we decided to compute the ensemble-averaged (dynamic)
nonpolar and polar surface areas (NPSA and PSA, respectively)
from above described REST MD simulations as those can be
expected to determine affinity for the hydrophobic and aqueous
phase, respectively. While calculated NPSA shows low correla-
tion with experimental log D-values (Fig. S23,† r ¼ 0.666), we
observe an excellent correlation of the calculated PSA with log D
(Fig. 3D, r ¼ 0.988) suggesting the PSA having a dominating
effect in our ligand panel. Analogous observations were re-
ported for the correlation between cell permeability and linear
combination of PSA and NPSA for a set of closely related
peptides.48
Chem. Sci., 2020, 11, 2269–2276 | 2273
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Calculated surface area terms can be used in regression
models for predicting ligand partitioning properties.49–51 Thus,
we performed a multi-linear regression of measured log D
versus PSA and NPSA descriptors providing calculated log D-
values (log D ¼ [0.27 � NPSA] � [0.82 � PSA] + 2.22). For these
REST MD-derived parameters, calculated and experimental
log D-values show an excellent correlation (Fig. S24,† r ¼ 0.991).
These observations highlight the importance of taking 3D
conformational aspects of exible macrocyclic molecules into
consideration for computational predictions and ration-
alization of physicochemical properties.
Co-crystallization of 14-3-3 with peptide 11 (Et/Me)

Starting point for our simulations was the core of 11-mer
peptide 1. To investigate the binding mode of a truncated
peptide in more detail, we aimed for a crystal structure of high
affinity binder 11 (Et/Me) in complex with its target protein 14-3-
3. Eventually, we were able to obtain crystals diffracting up to
3.7 Å (space group P64, PDB ID 6rlz, Table S11†). The crystal
structure harbors one 14-3-3 dimer in the asymmetric unit with
each of the binding grooves occupied by 11 (Et/Me, Fig. 4A). For
one peptide (chain C), the entire backbone and side chains are
resolved. The electron density for peptide 11 (chain C) clearly
shows the backbone as well as the location of side chains and
crosslink (Fig. 4B). Superimposition of 11 (Et/Me) with starting
peptide 1 reveals that both ligands bind to the same hydro-
phobic groove of 14-3-3. The two ligands show a close overlay
(RMSD¼ 1.1 Å, Fig. 4C) in particular for the backbone and LDL-
side chains (aa 7–9). The additional ethyl group at amino acid
X3 in 11 (Et/Me) points towards cavity 1 (Fig. 1B) thereby lling
some of the partially unoccupied space observed for peptide 1.
Overall, the crystal structure veries the anticipated binding
mode of 11 and the initial motivation to vary the size of the a-
methyl group.
Discussion and conclusions

We report the structure-guided optimization of a macrocyclic
peptide ligand targeting the protein binding groove of human
Fig. 4 (A) Crystal structure of 14-3-3 dimer (light/dark grey surface) with
PDB ID 6rlz); (B) peptide 11 (red) enclosed by 2Fo–Fc electron density ma
(red, PDB ID 6rlz) and 1 (light red, PDB ID 4n7y) in complex with 14-3-3 s
Close-up on cavity 1 occupied by the ethyl group of X(Et)R3 (peptide 11,

2274 | Chem. Sci., 2020, 11, 2269–2276
adaptor protein 14-3-3. Our efforts resulted in a small ligand
library containing macrocycle 11 with 23% reduced molecular
weight and considerably increased binding efficiency compared
to starting peptide 1. Within our macrocycle library, we
observed a surprisingly strong dependency of binding affinities
on relatively small variations in substituent size (H, Me, Et) at
the Ca atoms of the crosslinking amino acids.

To rationalize observed trends, we applied fully-atomistic FEP
calculations, which however showed a lack of convergence for
both structural and energetic parameters. To improve conver-
gence, position restraints were implemented which allowed
calculating the statistically converged contribution of direct
interaction and solvation effects to binding. These calculations
indicate that the observed affinity difference (DpKd z 3) between
high affinity binder 11 (Et/Me) and low affinity ligand 7 (H/H)
appear to originate at least in part from differences in the
direct interaction/solvation term (estimated DpKd z 2).

To evaluate conformational aspects excluded by the imple-
mentation of restrains in FEP, we performed extensive REST
MD simulations of the free ligands in water. These simulations
reveal the existence of a conformational population similar to
the bound state, whose occupation depends on the size of
introduced substituents: larger substituents favor the bioactive
conformation. E.g. the preference of ligand 11 (Et/Me) for the
bioactive conformation, results in an additional gain in affinity
of DpKd z 0.8 when compared to ligand 7 (H/H). Considering
the contribution of direct interactions (DpKd z 2, based on
FEP), our MD simulations suggest that conformational aspects
account for ca. one third of the gain in binding affinity from 7
(H/H) to 11 (Et/Me). Notably, the here observed bimodal
conformational behaviour cannot be expected to be a general
feature of macrocyclic scaffolds, so that other ligand systems
may require more elaborate analysis of conformational states.
Also, REST MD was sufficient to obtain converged results here,
however, other more enhanced sampling approaches could be
applied if problems with convergence occur.22,31–33

Importantly, REST MD simulations of the free ligands also
allowed to calculate dynamic polar surface areas which show an
excellent correlation with experimental log D-values. The
each of themonomers occupied by one peptide 11 (Et/Me, red spheres,
p (black, contoured at s¼ 1); (C) superimposed structures of peptide 11
howing the crosslink and side chains of hotspot residues (aa 7–9, LDL).
firebrick) and the methyl group of X(Me)R3 (1, light red).

This journal is © The Royal Society of Chemistry 2020
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comparison with calculated Xlog P-values based on 2D struc-
tures, highlights the importance of considering 3D conforma-
tions. In addition, we were able to obtain a crystal structure of
high affinity ligand 11 (Et/Me) in complex with 14-3-3 verifying
the anticipated interaction site and binding mode. This is an
important nding as it supports the relevance of the confor-
mational restrains applied during FEP.

Analogously to classic FEP applications, a structurally well-
characterized ligand–receptor complex is a prerequisite for the
presented FEP/REST MD workow, clearly complicating its
application to ligands that adopt several binding modes in the
same binding site24 or lack a sufficient degree of characterization.
In addition, it is important to note that the restraining force
constant applied for FEP calculations is an arbitrary parameter,
which however could be debiased by explicitly calculating the
reversible work required to introduce restraints potential.12,24 This
requires reasonably converged simulations of unrestrained
protein–ligand complexes, which for the present system appears
to be rather challenging as we observe beginning of ligand
unbinding in some of the unbiased simulations (Fig. S12†).
Notably in the herein described system, calculated relative free
energies only show low sensitivity towards the strength of applied
restraints which indicates that the conformational bias affects
ligands in a similar way. This is certainly an aspect that should be
analyzed for more ligand/receptor pairs in the future.

Taken together, this is the rst report of a fully-atomistic
characterization of a complex between a large macrocyclic
peptide and its protein binding partner, where the structure–
activity relationship (SAR) is explained by dissecting different
contributions into computed binding free energies. The combi-
nation of FEP and REST MD allows to separately quantify direct
binding and conformational contributions to the binding free
energy. This facilitated the rationalization of observed structure–
affinity relationships. We believe this simulation protocol can be
used to rationalize the development of structurally complex
ligands, which increasingly gain attention as bioactive agents.
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