
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
D

ec
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 1
2:

58
:5

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Scaffold-based m
aDepartment of Chemistry, KAIST, 291 D

Republic of Korea. E-mail: wooyoun@kaist.a
bSchool of Computing, KAIST, 291 Daehak-ro

Korea
cKI for Articial Intelligence, KAIST, 291

Republic of Korea

† Electronic supplementary information
implementation of our model, and
experiments. See DOI: 10.1039/c9sc04503

‡ These authors contributed equally to th

Cite this: Chem. Sci., 2020, 11, 1153

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 6th September 2019
Accepted 3rd December 2019

DOI: 10.1039/c9sc04503a

rsc.li/chemical-science

This journal is © The Royal Society o
olecular design with a graph
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Searching for new molecules in areas like drug discovery often starts from the core structures of known

molecules. Such a method has called for a strategy of designing derivative compounds retaining

a particular scaffold as a substructure. On this account, our present work proposes a graph generative

model that targets its use in scaffold-based molecular design. Our model accepts a molecular scaffold

as input and extends it by sequentially adding atoms and bonds. The generated molecules are then

guaranteed to contain the scaffold with certainty, and their properties can be controlled by conditioning

the generation process on desired properties. The learned rule of extending molecules can well

generalize to arbitrary kinds of scaffolds, including those unseen during learning. In the conditional

generation of molecules, our model can simultaneously control multiple chemical properties despite the

search space constrained by fixing the substructure. As a demonstration, we applied our model to

designing inhibitors of the epidermal growth factor receptor and show that our model can employ

a simple semi-supervised extension to broaden its applicability to situations where only a small amount

of data is available.
1 Introduction

The goal of molecular design is to ndmolecules with desirable
functionalities. The vast expanse of chemical space offers
innite possibilities of discovering novel molecules in a variety
of applications. Yet at the same time, the very innity is what
brings hardships when one intends to nd the most promising
candidate in an affordable amount of time. In drug discovery,
for instance, the number of potential drug-like molecules is
estimated to be about 1023 to 1060,1 among which only a few 108s
have ever been synthesized.2 Thus, it is practically impossible to
discover a new drug through brute-force exploration of chem-
ical space, and the demand for more rational approaches has
inevitably surged.

A common strategy of rational molecular design is narrow-
ing the search space by starting from a known molecule with
potential. Designing new molecules then proceeds by searching
for the right combination of functional groups that optimizes
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the required properties, while the core structure, or scaffold, of
the original molecule is purposely retained to preserve the
underlying characteristics. This scaffold-based design has been
one of the standard approaches in small-molecule drug
discovery, where one rst identies a scaffold based on the
information of the target protein and probes a library of deriv-
ative compounds to nd the one showing optimum potency and
selectivity.3–5 Molecular design in other areas such as materials
chemistry also adopts similar strategies. A conspicuous
example is organic electronics, where a typical set of electron-
donor and -acceptor moieties is known. The process of properly
selecting or combining scaffold moieties, followed by side-
chain optimization, leads to designing new constituents in
organic light-emitting diodes,6 eld-effect transistors,7 photo-
catalysts8 and solar cells.9 However, although xing the core
structure hugely reduces the search space, it is most likely that,
in most real-world applications, the remaining fraction still
spans easily beyond the reach of what could be covered by sole
human intuition.

Upon the call for more exhaustive and intelligent exploration
of chemical space, recent advances in deep generative models
have been more and more stimulating the use of the models in
in silico molecular design.10,11 All the related studies share
a common goal of easing the labor of discovering new mole-
cules in practice.12–31 That said, until today not much attention
was given to scaffold-based molecular design, despite its prev-
alence as described above. One exception is the work by Li
et al.,25 where the authors use a ngerprint representation of the
Chem. Sci., 2020, 11, 1153–1164 | 1153
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scaffolds contained in a molecule. The ngerprint is then used
to condition the generation process so that the generated
molecules tend to contain desired scaffolds. Another possible
way of retaining scaffolds is to learn a continuous representa-
tion of molecules.15,17,24,32 Searching the vicinity of a query
molecule in the resulting latent space allows generating mole-
cules similar in shape. Generating derivatives of a scaffold can
thus be possible if the distance in the learned space well
correlates with core-structure similarity.

The described schemes of scaffold-based molecule genera-
tion have the following drawbacks. First, categorically repre-
senting the scaffold kind of a molecule requires a predened
vocabulary of scaffolds. This imposes a limitation on querying
arbitrary kinds of scaffolds when generating molecules. Second,
because of their probabilistic nature, both the conditional
generation and the latent-space search permit molecules that
do not contain desired scaffolds. Lastly, to the best of our
knowledge, no work has been shown to control the scaffold and
properties of generated molecules at the same time, which is
essential in achieving the goal of scaffold-based molecular
design.

We here show our development of a generative model that
targets its use in scaffold-based molecular design. Our model is
a variational autoencoder (VAE)33 that accepts a molecular
scaffold as input and extends it to generate derivative mole-
cules. Extending a scaffold is done by sequentially adding new
atoms and bonds to due parts of the scaffold. We adopt graphs
to represent molecular structures instead of widely used textual
formats, such as the simplied molecular-input line-entry
system (SMILES).34 This is because a string representation can
substantially change throughout our process of sequential
extension while graphs can more naturally express how a new
atom or bond—i.e., node or edge—is added each time.24 Graph
neural networks are used to extract the structural dependencies
between nodes and edges, making every decision of adding
a new element dependent on the structure of the graph being
processed.25,35,36 The properties of generated molecules can be
controlled by conditioning the generation process on desired
properties. Aer learning, our model can accept any arbitrary
scaffold and generate new molecules, with their properties
controlled and core structures retained.

Ideally, generative models without any starting structure, i.e.,
de novo generative models for molecules, would be more
desirable. However, the performance of optimizing a property
in de novo generation may signicantly drop when the associ-
ated structure–property relationship is hard to be learned.18

Such a tendency can get still worse whenmultiple properties are
to be controlled, because acquiring a sufficient amount of data
for individual properties is oen impractical. By leveraging the
properties of a scaffold, our scaffold-based generative model
can more easily optimize target properties and preserve desir-
able characteristics. As an example of the latter, one can retain
the synthetic accessibility of the generated molecules by using
a scaffold whose synthetic routes are well established—an
aspect crucial in in silico design.

Our work contributes to molecular design in two aspects.
One, of more practical importance, is our proposal of the model
1154 | Chem. Sci., 2020, 11, 1153–1164
as a tool for scaffold-basedmolecular design. The other, of more
analytical importance, is our exploration of supergraph space.
To elaborate the latter, we rst note that once a scaffold is to be
retained, the set of possible generations only include the
molecules whose graphs are supergraphs of the scaffold graph.
In other words, xing a scaffold imposes a strong constraint on
the search space, and therefore it shall be meaningful to probe
how such a constraint affects the generation performance and
property controllability. The rst part of our experiments
addresses this point. Further divided into three parts, our
experiments address (i) the overall generation performance, (ii)
the scaffold dependence and (iii) the property controllability of
our model. In part (i), we show that our model achieves high
rates of validity, uniqueness and novelty in generating mole-
cules. In part (ii), we show that our model consistently shows
good performance in extending unobserved as well as observed
scaffolds, conrming that our model can build new molecules
from smaller ones by learning valid chemical rules, rather than
by memorizing the molecule–scaffold matching in the training
data. In part (iii), we show that despite the conned search
space, our model can control single or multiple properties of
generated molecules, with tolerable deviations from targeted
values.

Finally, returning to the more practical aspect, we applied
our model to designing inhibitors of the human epidermal
growth factor receptor (EGFR). We performed semi-supervised
learning by incorporating a property predictor to learn from
unlabeled molecules as well, which can help treat the frequently
encountered problem of data deciency. As a result, the model
was able to generate new inhibitors with improved potency,
where 20% of the unique generations showed more than two
orders of magnitude decrease in the predicted half-maximal
inhibitory concentration. This shows that our model can learn
to design molecules in more realistic problems, where the
deciency of available data makes learning hard.

2 Method
2.1 Related work

To dene a generative model for molecules, one must choose
a molecular representation suitable for feature learning and
molecule generation.37 One of the most widely used specica-
tions is SMILES,34 which uses a string of characters to represent
a molecule's 2D structure and stereoisomerism. Accordingly,
SMILES-based generative models have been developed under
various frameworks including language models,12–14 VAEs,15–17,32

adversarial autoencoders18 and generative adversarial
networks.19 Some models employed reinforcement learning
strategies to augment goal-directed generation.19–23

Despite the well-demonstrated successes of SMILES-based
models, SMILES has a fundamental limitation in consistently
conveying molecular similarity.24 In contrast to SMILES,
molecular graphs as a representation can more naturally
express the structural characteristics of molecules. Because
learning a distribution over graphs imposes more challenging
problems like low scalability and non-unique node order-
ings,25,38 it is only very recently that reports on generative
This journal is © The Royal Society of Chemistry 2020
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Table 1 Notations used in this paper

Notation Description

G An arbitrary or whole-molecule graph
S A molecular scaffold graph
V(G) The node set of a graph G
E(G) The edge set of a graph G
hv A node feature vector
huv An edge feature vector
HV(G) {hv:v ˛ V(G)}
HE(G) {huv:(u,v) ˛ E(G)}
hG A readout vector summarizing HV(G)

z A latent vector to be decoded
y The vector of molecular properties of a whole-molecule
yS The vector of molecular properties of a scaffold
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models of graphs—molecular graphs, in particular—began to
emerge. The majority of works adopts sequential methods in
generating graphs. For instance, the models by Li et al.,25 You
et al.26 and Li et al.27 generate a graph by predicting a sequence
of graph building actions consisting of node additions and edge
additions. Assouel et al.28 and Liu et al.29 similarly adopted the
sequential scheme, but their graph generation proceeds
through two (fully28 or partially29) separate stages of node
initialization and connection. It is also possible to coarse-grain
the standard node-by-node generation into a structure-by-
structure fashion. The junction tree VAE by Jin et al. generates
a tree of molecular fragments and then recovers a full molecular
graph through a ne-grained assembly of the fragments.24

Sharply contrasting to the sequential generation scheme is the
single-step generation of whole graphs. The models GraphVAE
by Simonovsky and Komodakis30 and MolGAN by De Cao and
Kipf31 are such, where an adjacency matrix and graph attributes
are predicted altogether, generating a graph at one time.
Fig. 1 Our model architecture in the learning phase. The encoder qf is t
the decoder pq is trained to recover G from z by sequentially adding n
constitute the encoder, and those in the green area constitute the decode
sampled from the standard normal distribution N ð0; IÞ. The whole proce

This journal is © The Royal Society of Chemistry 2020
2.2 Overall process and model architecture

Our purpose is to generate molecules with target properties
while retaining a given scaffold as a substructure. To this end,
we set our generative model to be such that it accepts a graph
representation S of a molecular scaffold and generates a graph
G that is a supergraph of S. The underlying distribution of G can
be expressed as p(G;S). Our notation here intends to manifest
the particular relationship, i.e., the supergraph–subgraph rela-
tionship, between G and S. We also emphasize that p(G;S) is
a distribution of G alone; S acts as a parametric argument,
explicitly conning the domain of the distribution. Molecular
properties are introduced as a condition, by which the model
can dene conditional distributions p(G;S|y,yS), where y and yS
are the vectors containing the property values of a molecule and
its scaffold, respectively. Oen in other studies of molecule
generation,25,27 a substructure moiety is imposed as a condition,
hence dening a conditional distribution p(G|S). Unlike p(G;S),
the space of G in the conditional distribution p(G|S) is not
explicitly conned by S, and the probabilistic nature also allows
G that are not supergraphs of S. On the other hand, the graphs
that our model generates according to p(G;S) always contain S as
a substructure. As we will see below, our model realizes this by
sequentially adding nodes and edges to S. Before we proceed
further, we refer the reader to Table 1 for the notations we will
use in what follows. Also, when clear distinction is necessary, we
will call a molecule a “whole-molecule” to distinguish it from
a scaffold.

The learning object of our model is a strategy of extending
a graph to larger graphs whose distribution follows that of real
molecules. We achieve this by training our model to recover the
molecules in a dataset from their scaffolds. The scaffold of
a molecule can be dened in a deterministic way such as that by
Bemis andMurcko,39 which is what we used in our experiments.
rained to encode a whole-molecule graph G into a latent vector z, and
odes and edges to the scaffold graph S. The modules in the red area
r. In the generation phase after learning, only a scaffold is given, and z is
ss can be conditioned by molecular properties (expressed as y and yS).

Chem. Sci., 2020, 11, 1153–1164 | 1155
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The construction of a target graph is done by making successive
decisions of node and edge additions. The decision at each
construction step is drawn from the node features and edge
features of the graph at the step. The node features and edge
features are recurrently updated to reect the construction
history of the previous steps. The construction process will be
further detailed below.

We realized our model as a VAE,33 with the architecture
depicted in Fig. 1. The architecture consists of an encoder qf
and a decoder pq, parametrized by f and q, respectively. The
encoder encodes a graph G to an encoding vector z and the
decoder decodes z to recover G. The decoder requires a scaffold
graph S as an additional input, and the actual decoding process
runs by sequentially adding nodes and edges to S. The encoding
vector z plays its role by consistently affecting its information in
updating the node and edge features of a transient graph being
processed. Similar to p(G;S), our notation pq(G;S|z) indicates
that candidate generations of our decoder are always a super-
graph of S. As for the encoder notation qf(z|G;S), we emphasize
that the encoder also has a dependence on scaffolds because of
the joint optimization of qf and pq.

As a latent variable model, a VAE may have difficulty in
generating meaningful samples when the manifold of the
learned latent distribution is insufficient to cover all the infor-
mative regions.40–42 In generative models for molecules, this
difficulty has manifested itself in the form of chemically invalid
generated molecules,15,43 and accordingly various SMILES-
based43–46 and graph-based24,29,47–49 models have introduced
explicit constraints or learning algorithms to enhance the val-
idity of generations. It is possible to incorporate similar
constraints or algorithms also in our model; without such,
nonetheless, our model shows high chemical validity in the
generated graphs (see Section 3.2 below).
2.3 Graph encoding

The goal of graph encoding is to generate a latent vector z of the
entire graph G of a whole-molecule. Given the graph G ¼ (V(G),
E(G)) of any whole-molecule, we rst associate each node v ˛
V(G) with a node feature vector hv and each edge (u,v) ˛ E(G)
with an edge feature vector huv. For the initial node and edge
features, we choose the atom types and bond types of the
molecule. We then embed the initial feature vectors in new
vectors with a higher dimension so that the vectors have suffi-
cient capacity to express deep information in and between the
nodes and edges. To fully encode the structural information of
the molecule, we want every node embedding vector hv to
contain not only the sole information of its own node v but also
the relationship of v to its neighborhood. This can be done by
propagating each node's information to the other nodes in the
graph. A large variety of related methods have been devised,
each being a particular realization of graph neural networks.35

In this work, we implemented the encoder qf as a variant of
the interaction network.36,50 Our network's algorithm consists of
a propagation phase and a readout phase, which we write as

H0
VðGÞ ¼ propagate

�
HVðGÞ;HEðGÞ

�
(1)
1156 | Chem. Sci., 2020, 11, 1153–1164
hG ¼ readout
�
H0

VðGÞ
�
: (2)

The propagation phase itself consists of two stages. The rst
stage calculates an aggregated message between each node and
its neighbors as

mv ¼
X

u:ðu;vÞ˛EðGÞ
Mðhu; hv; huvÞ cv˛VðGÞ (3)

with a message function M. The second stage updates the node
vectors using the aggregated messages as

h0v ¼ Uðmv; hvÞ cv˛VðGÞ (4)

with an update function U. Updating every node feature vector
in HV(G) results in an updated set H0

VðGÞ, as written in eqn (1). We
iterate the propagation phase a xed number of times whenever
applied, using different sets of parameters at different iteration
steps. Aer the propagation, the readout phase (eqn (2))
computes a weighted sum of the node feature vectors, generating
one vector representation hG that summarizes the graph as
a whole. Then nally, a latent vector z is sampled from a normal
distribution whose mean and variance are inferred from hG.

The graph propagation can be conditioned by incorporating
an additional vector c in calculating aggregated messages. In
such a case, the functions M and (accordingly) propagate accept
c as an additional argument (i.e., they become M($,$,$,c) and
propagate($,$,c)). When encoding input graphs, we choose c to
be the concatenation of the property vectors y and yS to enable
property-controlled generation. During graph decoding, we use
the concatenation of y, yS and the latent vector z as the condi-
tion vector (see below).
2.4 Graph decoding

The goal of graph decoding is to reconstruct the graph G of
a whole-molecule from the latent vector z sampled in the graph
encoding phase. Our graph decoding process is motivated by
the sequential generation strategy of Li et al.25 In our work, we
build the whole-molecule graph G from the scaffold graph G0

(extracted from G by the Bemis–Murcko method39 using the
RDKit soware51) by successively adding nodes and edges. Here,
G0 ¼ S denotes the initial scaffold graph, and we will write Gt to
denote any transient (or completed) graph constructed from G0.

Our graph decoding starts with preparing and propagating
the initial node features of G0. As we do for G, we prepare the
initial feature vectors of G0 by embedding the atom types and
bond types of the scaffold molecule. This initial embedding is
done by the same network (embed in Fig. 1) used for whole-
molecules. The initial feature vectors of G0 are then propagated
a xed number of times by another interaction network. As the
propagation nishes, the decoder extends G0 by processing it
through a loop of node additions and accompanying (inner)
loops of edge additions. A concrete description of the process is
as follows:

� Stage 1: node addition. Choose an atom type or terminate
the building process with estimated probabilities. If an atom
type is chosen, add a new node, say w, with the chosen type to
This journal is © The Royal Society of Chemistry 2020
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the current transient graph Gt and proceed to Stage 2. Other-
wise, terminate the building process and return the graph.

� Stage 2: edge addition. Given the new node, choose a bond
type or return to Stage 1 with estimated probabilities. If a bond
type is chosen, proceed to Stage 3.

� Stage 3: node selection. Select a node, say v, from the
existing nodes except w with estimated probabilities. Then, add
a new edge (v,w) to Gt with the bond type chosen in Stage 2.
Continue the edge addition from Stage 2.

The ow of the whole process is depicted in the right side of
Fig. 1. Excluded from Stages 1–3 is the nal stage of selecting
a suitable isomer, which we describe separately below.

In every stage, the model draws an action by estimating
a probability vector on candidate actions. Depending on
whether the current stage should add an atom or not (Stage 1),
add an edge or not (Stage 2), or select an atom to connect (Stage
3), the probability vector is computed by the corresponding one
among the following:

p̂an ¼ addNode(HV(Gt)
,HE(Gt)

,z) (5)

p̂ae ¼ addEdge(HV(Gt)
,HE(Gt)

,z) (6)

p̂sn ¼ selectNode(HV(Gt)
,HE(Gt)

,z). (7)

The rst probability vector p̂an is a (na + 1)-length vector,
where its elements p̂an1 to p̂anna correspond to the probabilities on
na atom types, and p̂annaþ1 is the termination probability. As for
p̂ae, a vector of size nb + 1, its elements p̂ae1 to p̂aenb correspond to
the probabilities on nb bond types, and p̂aenbþ1 is the probability
of stopping the edge addition. Lastly, the i-th element of the
third vector p̂sn is the probability of connecting the i-th existing
node with the lastly added one.

When the model decides to add a new node, say w, a corre-
sponding feature vector hw should be added to HV(Gt). To this
end, the model prepares an initial feature vector h0

w by repre-
senting the atom type of w and then incorporates it with the
existing node features in HV(Gt) to compute an appropriate hw.
Similarly, when a new edge, say (v,w), is added, the model
computes hvw from h0

vw andHV(Gt) W {hw} to updateHE(Gt), where
h0
vw represents the bond type of (v,w). The corresponding

modules for initializing new nodes and edges are as follows:

hw ¼ initNode(h0w,HV(Gt)
) (8)

hvw ¼ initEdge(h0vw,HV(Gt)
W hw). (9)

The graph building modules addNode, addEdge and select-
Node include a preceding step of propagating node features. For
instance, the actual operation done by addNode is

addNode(HV(Gt)
,HE(Gt)

,z) ¼ f◦concat(readout◦propagate(k)

(HV(Gt)
,HE(Gt)

,z),z), (10)

where ◦ denotes the function composition. According to the
right-hand side, the module updates node feature vectors
through k times of graph propagation, then computes a readout
vector, then concatenates it with z, and nally outputs p̂an
This journal is © The Royal Society of Chemistry 2020
through a multilayer perceptron f. Likewise, both addEdge and
selectNode start with iterated applications of propagate. In this
way, node features are recurrently updated every time the
transient graph evolves, and the prediction of every building
event becomes dependent on the history of the preceding
events.

As shown in eqn (10), the graph propagation in addNode (and
addEdge and selectNode) incorporates the latent vector z, which
encodes a whole-molecule graph G. This makes our model refer
to z when making graph building decisions and ultimately
reconstruct G by decoding z. If the model is to be conditioned on
whole-molecule properties y and scaffold properties yS, one can
understand eqn (5)–(7) and (10) as incorporating ~z ¼
concat(z,y,yS) instead of z.

2.5 Molecule generation

When generating new molecules, one needs a scaffold S as an
input, and a latent vector z is sampled from the standard
normal distribution. Then the decoder generates a new molec-
ular graph Ĝ as a supergraph of S. If one desires to generate
molecules with designated molecular properties, the corre-
sponding property vectors y and yS should be provided to
condition the building process.

2.6 Isomer selection

Molecules can have stereoisomers. Stereoisomers of a molecule
have the same connectivity between atoms but different 3D
geometries. Consequently, the complete generation of a mole-
cule should also specify the molecule's stereoisomerism. We
determine the stereochemical conguration of atoms and
bonds aer a molecular graph Ĝ is constructed from z.24 The
isomer selectionmodule selectIsomer prepares the graphs I of all
possible stereoisomers (enumerated by RDKit) whose 2D
structures without stereochemical labels are the same as that of
Ĝ. All the prepared I include the stereochemical conguration
of atoms and bonds in the node and edge features. Then the
module estimates the selection probabilities as

p̂si ¼ selectIsomer(Ĝ,z), (11)

where the elements of the vector p̂si are the estimated proba-
bilities of selecting respective I.

2.7 Objective function

Our objective function has the form of the log-likelihood of an
ordinary VAE:33

log pðG;SÞ$Ez�qf

�
log pqðG;SjzÞ��DKL

�
qfðzjG;SÞkpðzÞ

�
;

(12)

where DKL[$k$] is the Kullback–Leibler divergence, and p(z) is
the prior distribution, dened to be standard normal in our
model. Maximizing the rst term in the right-hand side maxi-
mizes the probability that our decoder pq recovers graphs G
from their latent representations z, and maximizing the second
term makes our encoder qf as close as possible to the prior. As
we introduced in Section 2.2, the additional argument S in eqn
Chem. Sci., 2020, 11, 1153–1164 | 1157
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Table 2 Validity, uniqueness and novelty of the molecules generated
by our model, and the results from other molecular generative models

Model Validity (%)
Uniqueness
(%) Novelty (%)

Ours (MW) 98.6 85.4 98.7
Ours (TPSA) 93.0 84.9 99.1
Ours (log P) 97.8 86.4 99.3
GraphVAE31 55.7 87.0 61.6
MolGAN31 98.1 10.4 94.2
JTVAE24 100.0 — —
MolMP27 95.2–97.0 — 91.2–95.1
SMILES VAE27 80.4 — 79.3
SMILES RNN27 93.2 — 89.9
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(12) signies the explicit constraint imposed by our model that
G is a supergraph of S.

In actual learning, we have a scaffold dataset S, and for each
scaffold S˛S we have a corresponding whole-molecule dataset
DðSÞ. Note that any set of molecules can produce a scaffold set
and a collection of whole-molecule sets: once the scaffolds of all
molecules in a pregiven set are dened, producing S, the
molecules of the pregiven set can be grouped into the collection
DðSÞ ¼ fDðSÞ: S˛Sg. Using such S andDðSÞ, our objective is to
nd the optimal values of the parameters f and q that maximize
the right-hand side of eqn (12), hence maximizing
ES�S EG�DðSÞ½log pðG; SÞ�. Here, the double expectation indicates
explicitly the dependence of whole-molecule sets D(S) on scaf-
folds S. That is, according to our denition, dening a scaffold
set S is rst, and then each S˛S denes a whole-molecule set
DðSÞ.

In the ESI,† we detail our implementation of the modules
and their exact operations, along with the algorithm of the full
process.

3 Results and discussion
3.1 Datasets and experiments

Our dataset is the synthetic screening compounds (versionMarch
2018) provided by InterBioScreen Ltd.52 The dataset (henceforth
the IBS dataset) initially contained the SMILES strings of organic
compounds composed of H, C, N, O, F, P, S, Cl and Br atoms. We
ltered out the strings containing disconnected ions or fragments
and those that cannot be read by RDKit. Our preprocess resulted
in 349 809 training molecules and 116 603 test molecules. The
number of heavy atoms was 27 on average with maximum 132,
and the average molecular weight was 389 g mol�1. The number
of scaffold kinds was 85 318 in the training set and 42 751 in the
test set.

Our experiments include the training and evaluation of our
scaffold-based graph generative model using the stated data-
set. For the conditional molecule generation, we used molec-
ular weight (MW), topological polar surface area (TPSA) and
octanol–water partition coefficient (log P). We used one, two
or all of the three properties to singly or jointly condition the
model. We set the learning rate to 0.0001 and trained all
instances of the model up to 20 epochs. The other hyper-
parameters such as the layer dimensions are stated in the
ESI.† We used RDKit to calculate the properties of molecules.
In what follows, we will omit the units of MW (g mol�1) and
TPSA (Å2) for simplicity.

Our source code and dataset are available at https://
github.com/jaechanglim/GGM.

3.2 Validity, uniqueness and novelty analysis

The validity, uniqueness and novelty of the generatedmolecules
are basic evaluation metrics of molecular generative models.
For the exact meanings of the three metrics, we conform to the
following denitions:53

Validity ¼ # of valid graphs

# of generated graphs
1158 | Chem. Sci., 2020, 11, 1153–1164
Uniqueness ¼ # of non-duplicate; valid graphs

# of valid graphs

Novelty ¼ # of unique graphs not in the training set

# of unique graphs
:

We dene a graph to be valid if it satises basic chemical
requirements such as valency. In practice, we use RDKit to
determine the validity of generated graphs. It is particularly
important for our model to check the metrics above because
generating molecules from a scaffold restricts the space of
candidate products. We evaluated the models that are singly
conditioned on MW, TPSA or log P by randomly selecting 100
scaffolds from the dataset and generating 100 molecules from
each scaffold. The target values (100 values for each property)
were randomly sampled from each property's distribution over
the dataset. For MW, generating molecules whose MW is
smaller than the MW of its scaffold is unnatural, so we excluded
those cases from our evaluation.

Table 2 summarizes the validity, uniqueness and novelty of
the molecules generated by our models and the results of other
molecular generative models for comparison. Note that the
comparison here is only approximate because the values by the
other models were taken from their respective reports. Despite
the strict restriction imposed by scaffolds, our models show high
validity, uniqueness and novelty that are comparable to those of
the other models. The high uniqueness and novelty are particu-
larly meaningful considering the fact that most of the scaffolds in
our training set have only a few whole-molecules. For instance,
among the 85 318 scaffolds in the training set, 79 700 scaffolds
have less than ten whole-molecules. Therefore, it is unlikely that
our model achieved such a high performance by simply memo-
rizing the training set, and we can conclude that ourmodel learns
the general chemical rules for extending arbitrary scaffolds.
3.3 Single-property control

For the next analysis, we tested whether our scaffold-based
graph generative model can generate molecules having
a specic scaffold and desirable properties simultaneously.
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc04503a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
D

ec
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 1
2:

58
:5

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Although several molecular generative models have been
developed for controlling molecular properties of generated
molecules, it would be more challenging to control molecular
properties under the constraint imposed by a given scaffold. We
set the target values as 80, 100 and 120 for MW, 300, 350 and 400
for TPSA, and 5, 6 and 7 for log P. For all the nine cases, we used
the same 100 scaffolds used for the result in Section 3.2 and
generated 100 molecules for each scaffold.

Fig. 2 shows the property distributions of generated mole-
cules. We see that the property distributions are well centered
around the target values. This shows that despite the narrowed
search space, our model successfully generated new molecules
having desired properties. To see how our model extends
a given scaffold according to designated property values, we
drew some of the generated molecules in Fig. 3. For the target
conditions MW ¼ 400, TPSA ¼ 120 and log P ¼ 7, we randomly
sampled nine examples using three different scaffolds. The
molecules in each row were generated from the same scaffold.
Fig. 2 Property distributions of the generated molecules. The values
in the legends indicate the target property values of the generation
tasks. The red line in each plot shows the respective property distri-
bution of the molecules in the training dataset.

This journal is © The Royal Society of Chemistry 2020
We see that themodel generates newmolecules with designated
properties by adding appropriate side chains: for instance, the
model added hydrophobic groups to the scaffolds to generate
high-log P molecules, while it added polar functional groups to
generate high-TPSA molecules.

3.4 Scaffold dependence

Our molecular design process starts from a given scaffold with
sequentially adding nodes and edges. So the performance of our
model can be affected by the kind of scaffolds. Accordingly, we
tested whether our model retains its performance of generating
desirable molecules when new scaffolds are given. Specically,
we prepared a set of 100 new scaffolds (henceforth “unseen”
scaffolds) that were not included in the training set and an
additional set of 100 scaffolds (henceforth “seen” scaffolds)
from the training set. We then generated 100molecules for each
scaffold with randomly designated property values. The process
is repeated for MW, TPSA and log P.

Table 3 summarizes the validity, uniqueness and MAD of
molecules generated from the seen and unseen scaffolds. Here,
MAD denotes the mean absolute difference between designated
property values and the property values of generated molecules.
The result shows no signicant difference of the three metrics
between the two sets of scaffolds. This shows that our model
achieves generalization over arbitrary scaffolds in generating
valid molecules with controlled properties.

3.5 Multi-property control

Designing new molecules seldom requires only one specic
molecular property to be controlled. Among others, drug design
particularly involves simultaneous control of a multitude of
molecular properties. In this regard, we rst tested our model's
ability of simultaneously controlling two of MW, TPSA and
log P. We trained three instances of the model, each being
jointly conditioned on MW and TPSA, MW and log P, and log P
and TPSA. We then specied each property with two target
values (350 and 450 for MW, 50 and 100 for TPSA, and 2 and 5
for log P) and combined them to prepare four generation
conditions for each pair. Under every generation condition, we
used the randomly sampled 100 scaffolds that we used for the
results in Sections 3.2 and 3.3 and generated 100 molecules
from each scaffold. We excluded those generations whose target
MW is smaller than the MW of the used scaffold.

Fig. 4 shows the result of the generations conditioned on
MW and TPSA, MW and log P, and log P and TPSA. Plotted are
the joint distributions of the property values over the generated
molecules. Gaussian kernels were used for the kernel density
estimation. We see that the modes of the distributions are well
located near the point of the target values. As an exception, the
distribution by the target (log P, TPSA) ¼ (2, 50) shows a rela-
tively long tail over larger log P and TPSA values. This is because
log P and TPSA have by denition a negative correlation
between each other and thus requiring a small value for both
can make the generation task unphysical. Intrinsic correlations
between molecular properties can even cause seemingly
feasible targets to result in dispersed property distributions. An
Chem. Sci., 2020, 11, 1153–1164 | 1159
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Fig. 3 Example molecules generated from three scaffolds. The indicated values are the target conditions of the generation and the property
values of the scaffolds.

Table 3 Scaffold dependence of property-controlled generation. A
scaffold is “seen” or “unseen” depending on whether it was in the
training dataset or not

Property
Validity
(%)

Uniqueness
(%) MAD

MW (seen scaffolds) 98.4 88.6 6.72
MW (unseen scaffolds) 98.4 83.5 6.09
TPSA (seen scaffolds) 93.2 87.0 8.32
TPSA (unseen scaffolds) 92.5 82.9 9.82
log P (seen scaffolds) 98.2 91.1 0.28
log P (unseen scaffolds) 97.1 87.0 0.36

1160 | Chem. Sci., 2020, 11, 1153–1164
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example of such can be the result of another target (log P, TPSA)
¼ (5, 50), but we note that in the very case the outliers (in log P >
5.5 and TPSA > 65 for example) amount to only a minor portion
of the total generations, as the contours show.

We further tested the conditional generation by incorpo-
rating all the three properties. We used the same target values of
MW, TPSA and log P as above, resulting in total eight conditions
of generation. The rest of the settings, including the scaffold set
and the number of generations, were retained. The result is
shown in Fig. 5, where we plotted the MW, TPSA and log P
values of the generated molecules. The plot shows that the
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Estimated joint distributions of the property values of generated molecules. The legends show the target values used for the generations.
In all distributions, the innermost contour encloses 10%, the outermost encloses 90%, and each n-th in the middle encloses n � 10% of the
population. On the upper and right ends of each plot are the marginal distributions of the properties on horizontal and vertical axes, respectively.
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distributions from different target conditions are well separated
from one another. As with the double-property result, all the
distributions are well centered around their target values.

We also compared the generation performance of our model
for single- and multi-property controls in a quantitative way.
Table 4 shows the performance statistics of single-, double- and
triple-property controls in terms of MAD, validity and novelty.
Using the same 100 scaffolds, we generated 100 molecules from
each, each time under a randomly designated target condition. As
the number of incorporated properties increases from one to two
and to three, the overall magnitudes of the descriptors are well
preserved. Regarding the slight increases in the MAD values, we
attribute them to the additional connement of chemical space
forced by intrinsic correlations between multiple properties.
Nevertheless, the magnitudes of the worsening are small
compared to the mean values of the properties (389 for MW, 77
for TPSA and 3.6 for log P).
3.6 EGFR inhibitor design by semi-supervised learning

Deep learning methods oen require millions of labeled data to
fully exhibit their power. However, many real-world applications
Fig. 5 Scatter plot of the property values of generated molecules. The
legend lists the eight sets of property values used for the generations.

This journal is © The Royal Society of Chemistry 2020
suffer from data deciency. For instance, in inhibitor design,
the available size of binding affinity data for a target protein
usually amounts to only a few thousand. One possible approach
in such a case is semi-supervised learning, which incorporates
a large amount of unlabeled data with a small amount of
labeled data for learning. Indeed, Kang and Cho demonstrated
the effectiveness of semi-supervised learning in conditional
molecular design when only a small portion of molecules in
a dataset have property values.16 To see the applicability of our
scaffold-based molecular graph generative model in similar
situations, we equipped the model with the scheme of semi-
supervised learning and tested how well it can design inhibitors
of the human EGFR protein, where the data amount is likewise
limited.

We adopted the semi-supervised VAE16,54 because it can be
easily implemented by adding a label predictor to a plain VAE.
In semi-supervised VAE, we jointly train the predictor to predict
the negative logarithm of half maximal inhibitory concentration
(pIC50) values against the human EGFR, together with the VAE
part. For labeled molecules, we use the true pIC50 values to train
the predictor and also use them in the VAE condition vector. For
unlabeled molecules, we only train the VAE part using the pIC50

values predicted by the predictor. To the IBS training molecules
we used above, we added 8016 molecules from the ChEMBL
Table 4 Statistical comparison of the performance on single-,
double- and triple-property controls

Properties

MW TPSA log P
Validity
(%) Novelty (%)MAD MAD MAD

MW 7.99 — — 98.6 98.7
TPSA — 8.57 — 93.0 99.1
log P — — 0.29 97.8 99.3
MW & TPSA 8.04 7.06 — 93.5 99.4
MW & log P 11.59 — 0.45 97.0 99.6
TPSA & log P — 9.62 0.60 94.5 99.6
All 16.23 10.95 0.73 93.9 99.8

Chem. Sci., 2020, 11, 1153–1164 | 1161
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Fig. 6 Distributions of human-EGFR pIC50 values predicted for the
test scaffolds and generated molecules in our semi-supervised
learning experiment. We extended our model into a semi-supervised
VAE by adding a property predictor.
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database55 to prepare our dataset for semi-supervised learning.
The ChEMBL molecules were the ones having pIC50 values,
hence labeled, whereas the IBS molecules were unlabeled. Note
that each molecule is paired with its extracted scaffold and that
all the scaffolds of ChEMBL as well as IBS molecules are treated
unlabeled. We divided the ChEMBL molecules into 6025
training molecules and 1991 test molecules, resulting in only
1.7% label ratio in the training set. To efficiently train the
predictor, we sampled labeled and unlabeled inputs with the
ratio of 1 : 5 in every batch. Aer 20 epochs of learning, we
chose the 100 scaffolds in the ChEMBL test set whose predicted
pIC50 are between 5 and 6, and generated 100 molecules from
each scaffold with the target pIC50 value of 8.

The MAD of pIC50 prediction on the ChEMBL test molecules
was 0.58. In the total 10 000 times of generation, the model
showed the validity of 96.6%, uniqueness of 44.9% and novelty
of 99.7%. The relatively low uniqueness was expected because
using one xed target value imposes a strict condition on the
search space, increasing redundancy in generations. Fig. 6
shows the distributions of predicted pIC50 values of the 100
scaffolds and generated molecules. Although the distribution of
generated molecules is centered on values lower than 8 and
shows relatively broad dispersion, the mean improvement of
pIC50 value compared to the scaffolds is 1.29 (only counting the
unique molecules), which amounts to about 19.7 times
enhancement of inhibition potency in terms of IC50. Those
predicted to have pIC50 larger than 8, which will be of more
interest in practice, belong to 20% of the unique generations.
These results show the applicability of our model, with minimal
extension, to many of the practical situations where the prep-
aration of data becomes problematic.
4 Conclusion

In this work, we proposed a scaffold-based molecular graph
generative model. Our model generates new molecules from
a desired substructure, or scaffold, by sequentially adding new
atoms and bonds to the graph of the scaffold. In contrast to
1162 | Chem. Sci., 2020, 11, 1153–1164
other related methods such as probabilistically conditioning
a substructure during generation, our strategy naturally guar-
antees the existence of the scaffold in generated molecules.

Because generating molecules from a scaffold can leverage
the properties already present in it, optimizing or retaining
target properties can be easier than by generating molecules de
novo. Suppose a pharmacological activity is targeted to be
optimized, then generating the best molecular structure from
scratch is likely to be hard because of the property's intricate
relationship with molecular structures. In such a case, using
a scaffold having moderate activity can make the optimization
more feasible. A similar advantage is expected in controlling
multiple properties simultaneously. If one's objective is to
acquire, for instance, synthetic accessibility of the generated
molecule as well as to enhance the activity, using a well-syn-
thesizable scaffold allows the objective to be more focused on
the latter, increasing the efficiency of search.

We evaluated our model by examining the validity, unique-
ness and novelty of generated molecules. Despite the constraint
on the search space imposed by scaffolds, the model showed
comparable results with regard to previous SMILES-based and
graph-based molecular generative models. Our model consis-
tently worked well in terms of the three metrics when new
scaffolds, which were not in the training set, were given. This
means that the model achieved good generalization rather than
memorizing the pairings between the scaffolds and molecules
in the training set. In addition, while retaining the given scaf-
folds, our model successfully generated new molecules having
desired degrees of molecular properties such as the molecular
weight, topological polar surface area and octanol–water parti-
tion coefficient. The property-controlled generation could
incorporate multiple molecular properties simultaneously. We
also showed that our model can incorporate semi-supervised
learning in applications like designing protein inhibitors, one
of the common situations where only a small amount of labeled
data is available. From all the results we presented, we believe
that our scaffold-based molecular graph generative model
provides a practical way of optimizing the functionality of
molecules with preserved core structures.
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15 R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud,

J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams and A. Aspuru-Guzik, ACS Cent. Sci., 2018, 4,
268–276.

16 S. Kang and K. Cho, J. Chem. Inf. Model., 2019, 59, 43–52.
17 J. Lim, S. Ryu, J. W. Kim andW. Y. Kim, J. Cheminf., 2018, 10, 31.
18 D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov,

V. Aladinskiy, P. Mamoshina, M. Bozdaganyan, A. Aliper,
A. Zhavoronkov and A. Kadurin, Mol. Pharm., 2018, 15,
4398–4405.

19 G. Lima Guimaraes, B. Sanchez-Lengeling, C. Outeiral,
P. L. Cunha Farias and A. Aspuru-Guzik, arXiv e-prints,
arXiv:1705.10843, 2017.

20 N. Jaques, S. Gu, D. Bahdanau, J. M. Hernández-Lobato,
R. E. Turner and D. Eck, Proceedings of the 34th
International Conference on Machine Learning, Sydney,
Australia, 2017, pp. 1645–1654.

21 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, J.
Cheminf., 2017, 9, 48.

22 D. Neil, M. H. S. Segler, L. Guasch, M. Ahmed, D. Plumbley,
M. Sellwood and N. Brown, 6th International Conference on
This journal is © The Royal Society of Chemistry 2020
Learning Representations, Workshop Track Proceedings,
Vancouver, BC, Canada, 2018.

23 M. Popova, O. Isayev and A. Tropsha, Sci. Adv., 2018, 4,
eaap7885.

24 W. Jin, R. Barzilay and T. Jaakkola, Proceedings of the 35th
International Conference on Machine Learning,
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