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Fluorescent probes for nitric oxide (NO), or more frequently for its oxidized surrogate dinitrogen trioxide
(N2O3), have enabled scientists to study the contributions of this signaling molecule to many
physiological processes. Seeking to improve upon limitations of other probes, we have developed
a family of fluorescent probes based on a 2-amino-3'-dialkylaminobiphenyl core. This core condenses
with N,Osz to form benzolc]cinnoline structures, incorporating the analyte into the newly formed
fluorophore, which results in product fluorescence with virtually no background contribution from the
initial probe. We varied the substituents in the core in order to optimize both the reactivity of the probes
with N,O3z and their cinnoline products’ fluorescence wavelengths and brightness. The top candidates

were then applied to cultured cells to verify that they could respond to NO within cellular milieus, and
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Accepted 7th December 2019 the top performer, NOs3o, was compared with a “gold standard” commercial probe, DAF-FM, in

a macrophage-derived cell line, RAW 264.7, stimulated to produce NO. NOs39 demonstrated similar or
DOI: 10.1039/c95c04304g better sensitivity and higher selectivity for NO than DAF, making it an attractive potential alternative for

rsc.li/chemical-science NO tracking in various applications.
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Introduction

Nitric oxide (NO) is a blood vessel relaxation factor with
multiple roles in physiological signaling.' Considering how
NO is integrally involved in cardiovascular, nervous, immune,
and other human body systems, it is no surprise that abnormal
NO levels are implicated in numerous pathological conditions,
including cardiovascular diseases, circulatory shock, local
inflammation, asthma, cancer, stroke, ischemic reperfusion
injury, neurodegenerative disorders, depression and dia-
betes.®* In order to establish NO levels and activity, scientists
have employed NO-specific electrodes®*>* and chemical probes
that, upon reaction with NO or its surrogates, produce a change
in electron paramagnetic resonance (EPR),**7° UV-vis absor-
bance,**** chemiluminescence,*** and/or fluorescence.***° For
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monitoring NO in cells and tissues, fluorescence imaging
provides a sensitive and spatially defined signal that can be
followed over time, often with minimal interference to cell or
tissue processes.

Nitric oxide synthases (NOSs) produce the free radical NO
when they convert r-arginine to r-citrulline.®® This neutral and
slightly polar dissolved gas diffuses through both aqueous and
non-polar (lipid membrane) environments, where it has several
fates.* Transition metals such as those bound to heme
proteins, as well as other radicals, such as superoxide, scavenge
NO and therefore contribute to its short lifetime.> NO binds
readily (often under diffusion control) to paramagnetic metals.
In addition, high oxidation-state metals can be reduced by NO,
with concomitant or swiftly ensuing nitrosation of a proximal
nucleophile, such as a thiol.***¢ If present, superoxide will react
with NO in a diffusion-controlled rate. It produces the perox-
ynitrite anion, a potent oxidizer responsible for DNA muta-
tions.”” When triplet oxygen reacts with four equivalents of NO,
it forms two equivalents of the potent nitrosating dinitrogen
trioxide (N,O3, Scheme 1). The diradical molecular oxygen first
reacts with two NO radicals to form the dinitroso peroxide
which homolyzes to the nitrogen dioxide (NO,) radical. Reac-
tion with another NO radical produces the asymmetric N,O3,
rather than the symmetric nitrous anhydride.

Most fluorescent probes for NO fall into three categories.
First are probes inspired by high oxidation state transition

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Reactions involving NO and N,Os.

metal NO scavengers, in which a fluorescent ligand binds
a fluorescence-quenching metal, such as copper(u), as exem-
plified by Lippard's Cu(FL) probes.®*”* After NO complexation
to Cu(u), nucleophilic attack by the ligand amine reduces the
metal to Cu(1). Metal reduction and N-nitrosation lower the
affinity of the ligand for the metal, to the extent that the metal
dissociates and no longer quenches ligand fluorescence
(Scheme 2A).

The second category consists of the ortho-diaminobenzene
family, which detects N,O; (Scheme 2B).”>7° The dia-
minobenzene moiety is attached to a fluorophore to produce
photoinduced electron-transfer (PET) quenching of fluores-
cence. Nitrosation of either of the amines, followed by
condensation of the other amine upon the N-nitrosamine,
produces a triazole that can no longer efficiently PET quench
fluorescence. In this category lies DAF-FM, one of the most cited
probes for NO imaging. It has also been suggested that the
nitrosation occurs via peroxynitrite, which is formed due to
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a reaction between superoxide and NO,* however the probes
cannot differentiate the source of nitrosation.

Both sensing strategies produce an enhancement, not
awavelength-shift, of emission as the signal of reaction with NO
or its oxidized surrogate. Incomplete quenching of fluorescence
in the unreacted probes can result in significant background
signal. With no change in wavelength, this background
degrades the detection limits of the reaction with NO. Transi-
tion metal-based probes are most affected by this incomplete
quenching, with relatively small increases (3-40x) in fluores-
cence due to NO addition when compared to the non-metal-
based probes (40-1500x). In addition, the performance of
ortho-diaminobenzene-based probes is limited both by chela-
tion to alkali-earth metals and reaction with other bioavailable
dielectrophiles, such as dehydroascorbic acid (DHA) and methyl
glyoxal, resulting in the attenuation of PET quenching and thus
a non-NO-selective signal.®*-**

In 2010 Shear, Anslyn, and Yang presented a new fluores-
cence detection mechanism for NO embodied in the probe
NOsso (probe 9, Table 1).%° This probe comprises a 2-amino-3'-
dimethylaminobiphenyl core that condenses with N,O; to
produce a benzo[c]cinnoline via nitrosation of the amine, fol-
lowed by nucleophilic aryl attack on the nitrosamine, with
subsequent loss of water - an intramolecular diazotization,
creating AZOss, (Scheme 2C).

The excitation and emission wavelengths of AZOss, are
sufficiently bathochromically-shifted that excitation of AZOs5,

Scheme 2 Common strategies to detect NO: (A) CuFL-1 fluorescence turns on with the release of copper after the complex binds NO with
subsequent copper-reductive N-nitrosation. (B) PET-quenching ortho-diaminobenzene (in blue) reacts with N,Osz, the oxidation product of NO,
to make non-PET-quenching benzotriazole, with a turn-on of fluorescence, as exemplified by DAF-FM. (C) The reaction of 2-aminobiphenyl

scaffold (in blue) with N,Os3 to produce benzolc]cinnoline.

This journal is © The Royal Society of Chemistry 2020
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produces virtually no excitation of NOss,. Such elimination of
background signal deriving from NOss, results in a 1500-fold
enhancement of emission upon full conversion to AZOss.
Moreover, NOss, demonstrates high selectivity for N,O; in its
fluorescence response, showing no response to 100-fold excess of
DHA and 1000-fold excess of other biologically relevant analytes.
It either fails to react with the competing analytes, or their reac-
tions produce non-fluorescent products. Unfortunately, AZOss,'s
brightness (defined here as the product of molar absorptivity and
fluorescence quantum yield: 440 M~ " cm™ ") is significantly lower
than that for fluorescein-based DAF-FM triazole (from reaction of
DAF-FM with N,0;, 59 000 M~ " cm ™' brightness), due both to
AZOss0's lower molar absorptivity (4000 M™' em™' versus
73000 M~' em™") and fluorescence quantum yield (0.11 versus
0.81).” Ghebremariam and co-workers found that not even at 75
uM loading concentration did NOss, match the intensity of only 1
UM DAF-FM in the same endothelial cells at the same time
point.** Loading with higher concentrations of NOss, was also
hampered by poor water solubility and cytotoxicity. Herein, we
describe the systematic substitution of the 2-aminobiphenyl
scaffold, the effect of this substitution on reactivity and fluores-
cence, and the response of the best candidates to exogenous and
endogenous NO in cells, and compare these results to those ob-
tained for DAF-FM.

Results and discussion

Spectroscopic properties of probes and their cinnoline
products

Despite NOss,'s limitations, the results were sufficiently prom-
ising to study the 2-aminobiphenyl core more thoroughly, with
the goals of increasing brightness, quantum yield, and red-
shifting the fluorescence, all while maintaining the selectivity
for NO and the spectral resolution of probe fluorescence versus
that of the corresponding cinnoline product. Table 1 shows the
permutations synthesized and studied. As N,O; is dielectrophilic,
these probes are dinucleophilic, and positions X and Y on rings A
and B, respectively, have the greatest influence on the probes’
nucleophilicity. We incorporated ring C to impart bathochromic
shifts. Substituent Z on ring C is not only commercially and
synthetically convenient but also distant from (and less induc-
tively and sterically interfering with) the N,O; reaction sites. It is
therefore an attractive attachment point for hydrophobic,
hydrophilic, cell-compartment directing, or tethering function-
alities. We first evaluated the brightness and fluorescence prop-
erties (Table 1), in 1 : 4 DMSO/50 mM PBS at pH 7.4, of the probes
and their cinnoline (i.e. azo) products (hereafter denoted as AZO-
Probe Number, black column) accessed from the reaction of
nitrite with acid (ESI page S97).

The first set studied consisted of simple variants with rings A
and B only (no C annulation). The Y substituent was fixed as
a methyl group while varying the X substituent on ring A. Since
ring A attacks the trapped N-nitroso group, to X we assigned
electron-donating methoxy (OMe, 1), hydroxy (OH, 2), and N,N-
dimethylamino (NMe,, 3) groups. By far, the hydroxyl variant
surpassed the others in brightness due to AZO-2's much higher
quantum yield of 67%. Unfortunately, this brightness showed

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Fluorescence emission pH titration of 5 pM solutions of the
cinnoline products of probes 2 (blue) and 3 (red) in 2.5% aqueous
DMSO with excitation set at the probes' respective absorbance
maxima (Table 1).

a dependence upon the protonation state of the phenol around
physiological pH. For fluorescein-based probes, the pK, of the
phenol in the excited state normally lies around 6.7, meaning
that these probes may non-selectively detect (by quenching of
fluorescence) pH in cells. We performed fluorescence pH titra-
tions on AZO-2 and AZO-3, establishing their pK,'s as 7.8 and 4.5,
respectively (Fig. 1). Protonation quenches the fluorescence of
both cinnolines, but AZO-3 provides a pH-independent signal
above pH 6. AZO-1's signal is also pH-independent at physiolog-
ical pH, but we did not pursue it or any variants with X = OMe
because of this probe poor reactivity, even with nitrite in acid.

We next evaluated the influence of position Y by changing it
from methyl to cyano, postulating that the greater conjugation
from NMe, to CN would result in a bathochromic shift of
fluorescence wavelengths. The X = NMe, and Y = CN cinnoline
variant (AZO-4) had excitation and emission maxima 35-40 nm
longer than AZO-3; however, the quantum yield of AZO-4 was
determined to be less than 1%, even lower than AZO-3's
quantum yield (2%).

When considering AZO-3 and AZOss,'s low quantum yield,
we speculated that the excitation energy was lost to non-
radiative relaxation through rotation about the ring A aryl-
NMe, bond.?®* This bond rotation decreases significantly when
the N-alkyl groups are fused to the aryl ring, so we synthesized
N-methyl-tetrahydroquinoline (5) and julolidine (6) variants on
ring A, with methyl at Y on ring B. The ring fusion in both
variants resulted in a remarkable increase in quantum yield,
from 0.02 and 0.11 for non-fused AZO-3 and AZOs5, to 0.36 for
AZO-6 and 0.62 for AZO-5. In addition, the molar absorptivity
for AZO-5 also increased, making it the brightest of the biphenyl
series — nearly twenty times brighter than AZOss;,, albeit at
shorter wavelengths. The julolidine variant did produce the
longest fluorescence wavelengths of the group, confirming the
expected greater planarity of the dialkyl-N to aryl bond.
However, a steric clash between the aromatic proton and the
julolidine benzylic protons, as depicted in Fig. 2, disrupts the

Chem. Sci., 2020, M, 1394-1403 | 1397
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planarity of the entire fluorophore, possibly explaining AZO-6's
lower quantum yield and lower molar absorptivity than AZO-5.

Probe 5 proved to be the brightest candidate, but AZO-5's
excitation and emission maxima (425 and 508 nm) fall short of
the ideal wavelengths for the universal FITC filters. We decided
to add ring C with the hypothesis that benzannulation would
extend fluorescence wavelengths to those more suitable for
the FITC filter set. For a thorough comparison, we studied the
N,N-dimethylamino, N-methyltetrahydroquinoline, and juloli-
dine variants at position X on ring A. For each of these
variants, H occupied position Y and we derivatized position Z
with H, N-acetamide (NHAc), and CN - a total of nine variants.

Focusing on brightness first, the results listed in Table 1
(probes 7-15) show that both NMe, (at X) and CN (at Z)
substitutions are detrimental to cinnoline brightness. For the
same Z substituent, the NMe, series members had lower
molar absorptivities and quantum yields than their corre-
sponding N-methyl tetrahydroquinoline or julolidine conge-
ners, Le., cinnolines 7 versus 10 and 13, 8 versus 11 and 14, and 9
versus 12 and 15. This trend is readily explained by the greater
non-radiative relaxation rate caused by rotation about the
N-aryl bond for NMe, variants versus the singly fused N-methyl
tetrahydroquinoline and doubly fused julolidine variants.
Likewise, the Z = CN cinnoline series exhibited lower molar
absorptivities than the corresponding Z = NHAc or H series (for
the same X substituent). We speculate that the Franck-Condon
excited state has significant quinoid character in the Z = CN
series, with less quinoid character in the ground state, such that
the poor orbital overlap between the two states results in lower
probability of photon absorption.

Within the Z = CN series, for the two alicyclic amine variants
at X (AZO-12 and AZO-15), the ground state incorporates greater
donation of the aligned nitrogen lone pair into the polyaromatic
system than from the more freely-rotating X = NMe, variant
(AZOss5), leading to better orbital overlap of the ground state
with the excited state, as demonstrated by their higher
absorptivities. For the Z = H and NHAc variants, both substit-
uents are less electron withdrawing than the quinoid-inducing
CN, meaning that their ground and excited states are more
similar and their absorptivities higher.*>** The Z = CN series
also produced lower quantum yields. Here we posit that the
excited state relaxes through internal charge transfer to the
nitrile ©* orbital, with subsequent non-radiative relaxation
through the increased hydrogen-bonding of this negatively-

Fig. 2 Disruption of planarity in AZO-6 due to A** strain.
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charged complex with buffer. N-methyl tetrahydroquinoline
variants proved brighter than their A'3-strained julolidine
counterparts, as discussed for AZO-6. Interestingly, for AZO-13
the greater electron-withdrawing nature of the NHAc Z-
substituent (acceptor) acting upon the dialkyl amine (donor)
lone pair electrons countered the A*® strain to promote greater
planarity and therefore a higher quantum yield, as compared to
Z = H for AZO-14.

As anticipated, adding ring C to the biphenyl probes bath-
ochromically shifted fluorescence wavelengths. While benzan-
nulation of fluorones to seminaphthofluorones shifts
wavelengths by more than 100 nm, we found only 15-30 nm
shift for the cinnolines.”>®* Substituting CN at Z (9, 12, 15)
induced the greatest shift, but this substitution prohibitively
decreased brightness. Variants substituted with NHAc at Z (7,
10, 13) showed only slight shifts (3-7 nm) to longer wavelengths
compared to their corresponding H (8, 11, 14) substituted
ones. Varying X in the benzannulated series from NMe, (7, 8, 9)
to N-methyltetrahydroquinoline (10, 11, 12) to julolidine (13, 14,
15) continued the aforementioned pattern in the biphenyl
series of red-shifting fluorescence wavelengths with greater ring
fusion. Benzannulated julolidine variants therefore produced
the longest wavelength probes; unfortunately, julolidine
substitution also decreased brightness, as proposed above, due
to A" strain.

The spectroscopic data reveal probes 5, 10, 11, and 13 as the
brightest in the group. Importantly, as with first generation
NOs5, and AZOs5y, the maximum excitation and emission
spectra are well resolved from each other for both the probes
and their cinnoline products, obviating homo-Forster reso-
nance energy transfer (FRET) that occurs for high intracellular
concentrations of ortho-diaminophenyl-type probes.* Further-
more, in the case of the four brightest probes, the absorption
spectra for the probes minimally overlap with the absorption
spectra of their corresponding cinnolines (Fig. S1f). Conse-
quently, as described below, in cells the probes can be excited
independently from their N,O; reaction products to compare
intracellular distribution or compartmentalization of probe and
cinnoline product, as well as to maintain a nearly zero back-
ground for detecting product (as previously reported for NOsso).

Fluorimetric NO titrations of probes

We next looked at fluorescence titrations with NO of the probes
in aerobic buffer. Incremental aliquots of a saturated NO solu-
tion (1.9 mM),"*** up to five equivalents of NO, were added to
an air-equilibrated 50 pM solution of each probe variantin 4 : 1
50 mM PBS/DMSO at pH 7.4 (ESI Fig. S2t). Two equivalents of
NO react with a half-equivalent of molecular oxygen to form one
equivalent of N,Oj3 (Scheme 1), a portion of which is degraded to
nitrite via hydrolysis.*® To maximize signal, probes should
exhibit sufficient nucleophilicity to successfully compete with
an excess of water. We started at the biphenyl system with no
ring C, with Y as Me, and with X varied as OMe (1), OH (2), and
NMe, (3), their Hammett ¢' substituent constants of —0.78,
—0.92, and —1.7, respectively.”” Variant 1 did not produce
sufficient cinnoline product to be detected by fluorescence

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Kinetics of cinnoline emission emanating from exposure to one
equivalent of NO of 50 uM solutions of 1-4 and 7-15 in 1: 4 DMSO/
phosphate buffer at pH 7.4 under aerobic conditions. Respective
excitation wavelengths were set to the absorbance maximum of each
probe’s cinnoline product (AZO 1-4 and AZO 7-15).

(Fig. 3), whereas 2 and 3 provided ample signal, confirming that
X must be sufficiently electron-donating (¢* < —0.78) to readily
promote nucleophilic attack by ring A. Subsequently, we set X as
NMe, and changed the weakly donating methyl (6" = —0.311) at
Y to a strongly-withdrawing cyano group, (¢ = 0.659).° With no
cinnoline fluorescence detected, we concluded that the nitrile
group inhibits the nucleophilicity of the p-amine to such an
extent that it could not N-nitrosate.

The probes that did form cinnolines from N,O; (2-3, 5-15)
for the most part required less than five minutes to nearly fully
react. The high level of fluorescence from species 10, 11, 13, and
14 makes these species the most promising of the group we
examined (Fig. 3 and ESI Fig. S2}). More than two equivalents of
NO, typically four in most cases, are necessary to reach satura-
tion, however. We postulate that at the starting concentration of
probe (50 uM, compared to 55.5 M for water), hydrolysis of N,O;
competes sufficiently as a side-reaction to warrant the excess
NO.” Despite requiring at least twice the theoretical amount of
NO for full conversion, these probes surpass DAF-2, the prede-
cessor of DAF-FM in reactivity. The fluorescence intensity of
a solution of 3 exposed to two equivalents of NO, when cali-
brated to varying concentration standards of AZO-3, showed
36% cinnoline formation. In comparison, 27% of DAF-2 con-
verted to the triazole when exposed to 2 equivalents of NO under
similar conditions.”

With the high reactivity of these probes and with the creation
of signal with virtually no background, excellent detection
limits were obtained. We defined the lower detection limit
(LDL) as the concentration of NO that produces signal equal to
three times the experimental setup noise. The LDL of 9 (NOss)
was previously determined to be 30 nM;* for the brighter 10, the
detection limit is 2 nM, comparable to DAF-FM's detection limit
of 3 nM.”®

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Fluorescence emission spectra depicting the ratiometric
response to NO of a 50 pM probe 5 solution in 1: 4 DMSO/50 mM
phosphate buffer at pH 7.4 with excitation at 310 nm. The inset plots
the ratio of emission intensity of AZO-5 (515 nm) to that of probe 5
(415 nm) versus equivalents of NO.

The resolution of the probe and cinnoline emission spectra
enables ratiometry when the probes and their cinnoline prod-
ucts share an excitation band (Fig. 4). Ratiometry corrects for
several experimental factors, including variations in intracel-
lular dye concentrations, in optical path due to cell thickness,
and in instrumental noise.'® However, with our probes two
factors moderate this benefit of ratiometry. First, the probe
excitation band is in a shorter, cell-damaging near-UV range
than that for the cinnoline products. Second, the shorter exci-
tation results in little cinnoline emission, instead primarily
unreacted probe background fluorescence. The later phenom-
enon however does not affect one of the most significant attri-
butes of our 2-aminobiphenyl system: i.e. that exciting at the
cinnoline absorbance maximum results in virtually no back-
ground contribution from the probe.

By keeping the 2-aminobiphenyl core, we expected to main-
tain in our newer probes the selectivity of NOs5, for NO over

3.0 x 10° q

2.5 x 10° 1

2.0x10°~
1.5 x 10% 1
1.0 x 10°

5.0 x 103 4

Fluorescence Intensity (AU)

0-

Fig. 5 Probe 10's selective response to various physiological analytes
in 100-fold excess, as compared to its response to one equivalent of
NO (last column). The first column quantifies emission from 10 alone.
Note the break/change in the vertical axis.
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other common biological substrates.®® Indeed this anticipation
proved correct; as one example, Fig. 5 demonstrates fluores-
cence emission for probe 10 in the presence of NO versus that in
the presence of various oxidants. Even at one hundred equiva-
lents of peroxynitrite to probe, at most a five-fold increase of
fluorescence was observed, as compared with a greater than
1300-fold increase for merely one equivalent of NO. It is
important to note that we used purified peroxynitrite for this
study. When this is generated in cellulo it involves both super
oxide and NO which could potentially activate the fluorescent
probe through a free radical mechanism.

Probe performance in cells

Taking into consideration the probes' spectral properties and
response to NO, we decided to focus on probes 10 (henceforth
named NOs3), and 13 (NOse,) and to compare them to the first-
generation probe 9 (NOs5o) and commercial probe DAF-FM. In
the current studies, we examined the response of these probes
to NO in an NIH-3T3 murine fibroblast cell line and a RAW
264.7 murine macrophage cell line because, while NOs3, and
NOsg, readily reacted with NO in solution, most important is
their performance in live cells. We first pre-incubated cells with
the probes and then exposed cells to either exogenous NO-
donor S-nitrosopenicillamine (SNAP) or to a NO solution.
Next, we compared the specificity of NOs34, NOsg,, and DAF-FM
probes for the detection of endogenous NO produced in RAW
264.7 cells. Finally, we evaluated the cytotoxicity of NOs3,.
NIH-3T3 and RAW 264.7 cells were pre-loaded with 10 uM
solutions of NOsso, NOs34, and NOsg,, and exposed to 1 mM and
200 uM SNAP solutions, respectively (Fig. 6). Microscopic obser-
vations revealed cell-associated blue fluorescence, characteristic
of the unreacted probes (ESI Fig. S31). In both cell types, the
unreacted NOssg, NOszg, and NOse, produced homogenous
cytoplasmic staining visible in the blue (DAPI) channel (ESI
Fig. S4}). When exposed to SNAP, NOss, NOs30, and NOsg, con-
verted to their respective cinnolines as demonstrated by
increased green fluorescence signal in the FITC channel corre-
sponding to cinnoline emission spectra (ESI Fig. S31). In SNAP-
dosed cells compared to the untreated cells, NOsq, produced
the smallest signal increase among the three tested probes
(Faosed/Fun-dosed, Fig- 6A). NOsg, also produced higher background
than the two other probes and generated lower signal in SNAP-
treated NIH-3T3 cells. The observed increased background fluo-
rescence of NOse, in untreated cells could be explained by the use
of FITC filter set, which has shorter than necessary window for
excitation/emission and thus may result in a bleed-through of the
signal from the unreacted probe (Table 1 and ESI Fig. S37).
However, we also observed high background of NOse, reaction
with NO endogenously produced in RAW264.7 cells using an IN
Cell Analyzer imaging system (INCA 2200, GE Healthcare) with
appropriate Cy3 filters (data not shown). In contrast, NOss,
generated somewhat more SNAP-dependent signal than NOss, in
NIH-3T3 cells, although it provided a several-fold lower increase
relative to unstimulated cells (28-fold vs. 104-fold). In RAW 264.7
cells, NOs3, and NOs5, stimulated cell fluorescence was not
significantly different, although NOs;, provided somewhat higher
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Probe Response to SNAP Dosage

- rer NIH 3T3 RAW 264.7
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Un-dosed % .SNAP-dosed

Fig. 6 Response of probes to SNAP. (A) Response of control (dotted
bars) versus SNAP-dosed (solid bars) NOsso, NOszg, and NOsgp in NIH-
3T3 (with 1 mM SNAP) and RAW 264.7 (with 200 pM SNAP) cells. The
relative increase in intensity for cells dosed with SNAP versus un-dosed
cells is provided as a fold increase. (B and C) 40x magnification,
pseudo-colored FITC-filtered images of NIH-3T3 cells with no SNAP
added (B), and with 1 mM SNAP added (C) for NOssg, NOszo, and
NOseo.

fractional increase in fluorescence as a result of lower back-
ground (Fig. 6A blue). It is worth noting here, hat the production
of N,0; is dependent on O, concentration in cells, and that
higher nitrosation levels will occur when cells are treated with
higher than normal O, levels.

Probe Response to NO Solution Dosage

NIH 373 RAW 264.7
93X I -
253 X
aex] 8ax 15
5 0 0 .0 0.0,
NOSSO N0530 NOSSZ NOSSO N0530 NOSSZ ‘

Un-dosed % . NO-dosed
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o ) &
:

0
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00
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Fig. 7 Response of probes to NO dosing. (A) Response of control
(dotted bars) versus NO-dosed cells (solid bars) using NOssg, NOsz,
and NOsg, in both NIH-3T3 (with 200 pM NO) and RAW 264.7 (with
320 uM NO) cells. The relative increase in intensity for cells dosed with
NO versus un-dosed cells is provided as a fold increase. (B and C) 40 x
magnification, pseudo-colored FITC-filtered images of NIH-3T3 cells
without NO dosing (B), and with 320 uM NO added (C) for NOssq,
N0530, and NOS62-
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In addition, cells loaded with each probe were exposed to 200
UM NO (NIH-3T3 cells) or 320 uM NO (RAW 264.7 cells) by
diluting 1.9 mM saturated NO solution into the cell medium
(Fig. 7). In NIH-3T3 cells, NOs;, produced the highest signal,
while NOs5, yielded the smallest change (although a similar
fractional change in signal to NOs3,). All three probes yielded
similar signal in RAW 264.7 cells; NOs3, provided the best
fractional change in signal because of substantially lower
background before addition of NO. Taken together, these
findings suggest that NOs3;, was the most promising probe to
investigate endogenous production of NO in RAW 264.7 cells.

The RAW 264.7 cell line is known to express inducible NOS
(iNOS), an enzyme that can be stimulated by a combination of
lipopolysaccharide (LPS) and interferon-y (IFN-y) to produce
NO in the presence of NO-synthase substrate r-arginine. We
tested NOs3, response in both quiescent and LPS/IFN-activated
RAW 264.7 cells, and compared results to those obtained using
DAF-FM DA. Data were obtained using cell imaging instrument
INCA 2200. Cells were exposed to r-arginine in the presence of
NO probes as described in the ESL.} In the presence of NOs3,
quiescent RAW 264.7 cells produced low fluorescence signal
that did not measurably change after treatment with arginine.
In the absence of exogenous arginine, LPS/IFN-activated RAW
264.7 cells produced approximately two-fold higher fluores-
cence signal than un-activated cells; cellular fluorescence
further increased in response to arginine in a concentration-
dependent manner (Fig. 8A, black bars). Pre-incubation of
RAW 264.7 cells with pan-NOS inhibitor L-NG-monomethyl
arginine (L-NMMA) blocked most of the signal in cells loaded
with NOs;p, indicating the high NO specificity of the signal
(Fig. 8A, white bars). In contrast, DAF-FM strongly reacted with
activated RAW 264.7 cells, but both cells and media produced
high fluorescence signal, requiring two iterative PBS washes to
remove media fluorescence. Nevertheless, no arginine-
concentration-dependence of the cell-associated signal could
be observed and the pre-treatment with L-NMMA had little
effect on DAF-FM-mediated fluorescence (Fig. 8B). The current
observation confirms previously reported observations that 4,5-

>

10 pM N0530
12 12

10

1uM DAF-FM

Fold Change
Fold Change

N & O @

2 VXN PR ONDH DS 2 0] d PN DR DO
o SWHRRRAKBAS & WIRARHRES

L-Arginine (mM) L-Arginine (mM)

Fig. 8 Detection of NO production in stimulated RAW 264.7 cells as
a function of arginine concentration (open bars) using (A) NOszo, and
(B) DAF-FM. Black bars show results for cells inhibited with 2.5 mM
NMMA; errors bars represent mean + SD (n = 3). For all studies, cells
were incubated with LPS and IFN-y overnight. NMMA or control
solutions were added to cells for 1 h and NOs3zo or DAF-FM were added
during the final 15 min. L-Arginine was added for 30 min. Images were
acquired using the INCA 2200 at 20x magnification and quantified
using manufacturer's software. Quie = quiescent.
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diaminofluorescein-based probes are prone to non-specific
interactions with reactive species present in cells and cell
culture media, exhibiting low selectivity towards cellular NO at
physiologically relevant conditions.*****>

Finally, we did not observe signs of cytotoxicity when using
our family of probes, even after 18 hour of incubation. Since
NOs3, was the best performer in terms of fluorescence ratio in
NO-dosing studies, we evaluated its cytotoxicity in RAW 264.7
cells at various concentrations with a Calcein Blue/propidium
iodide viability assay. For 1.25, 2.5, 5, 10, 20, and 40 uM
loading concentrations of NOs;,, greater than 93% of the cells
stained a viable blue (ESI Fig. S5), similar to 95% viability in
controls where either only DMSO or no additional solution was
added.

Conclusions

The 2-aminobiphenyl core selectively creates a longer-
wavelength fluorophore when it reacts with oxidized NO. We
found that attaching electron-donating groups, primarily dia-
Ikyl amines, on the nucleophilic aryl group, and avoiding the
conjugation of electron withdrawing groups to the 2-amino
group, renders the probes sufficiently nucleophilic to readily
scavenge NO in acellular media. Furthermore, fusion of the 4’-
aminoalkyl groups to the nucleophilic aryl group increased both
fluorescence wavelengths and the fluorescence quantum yield
of the cinnoline product. Benzannulation of the 2-amino aryl
group also provoked a bathochromic shift in fluorescence and
opened a functionalizable position, removed from the non-
alkylated amine, for attachment of groups with desired prop-
erties vig an amide linkage. When considering the propensity of
the probe to react with NO, the brightness of the cinnoline
product, and its low cytoxocity, NOs;, (10) stands as a promising
candidate for live cell imaging. Due to its greater response to
stimuli, higher selectivity for NO, and the ability to image both
reacted and unreacted probe, NOs3, provides a attractive option
as a nitric oxide probe and a potentially valuable alternative to
DAF-FM in various applications.
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