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Ligand binding affinity calculations based on molecular dynamics (MD) simulations and non-physical

(alchemical) thermodynamic cycles have shown great promise for structure-based drug design.

However, their broad uptake and impact is held back by the notoriously complex setup of the

calculations. Only a few tools other than the free energy perturbation approach by Schrödinger Inc.

(referred to as FEP+) currently enable end-to-end application. Here, we present for the first time an

approach based on the open-source software pmx that allows to easily set up and run alchemical

calculations for diverse sets of small molecules using the GROMACS MD engine. The method relies on

theoretically rigorous non-equilibrium thermodynamic integration (TI) foundations, and its flexibility

allows calculations with multiple force fields. In this study, results from the Amber and Charmm force

fields were combined to yield a consensus outcome performing on par with the commercial FEP+

approach. A large dataset of 482 perturbations from 13 different protein–ligand datasets led to an

average unsigned error (AUE) of 3.64 � 0.14 kJ mol�1, equivalent to Schrödinger's FEP+ AUE of 3.66 �
0.14 kJ mol�1. For the first time, a setup is presented for overall high precision and high accuracy relative

protein–ligand alchemical free energy calculations based on open-source software.
Introduction

The lead optimization (LO) stage of drug discovery involves the
synthesis of hundreds of lead compound analogs, with the aim
to improve multiple properties in parallel. Among these are
selectivity against related targets, enhanced metabolic stability,
permeability, solubility, reduced side effects, efflux, and plasma
protein binding. Thus, LO is a multi-objective optimization
problem in which chemists try to identify structure–property
relationships that will allow to tune the chemical and
biophysical properties of the lead compound. Ligand binding
affinity for the primary protein target is central to all LO efforts
as it impacts drug efficacy, and thus its dose and selectivity
margins versus off-target effects. Computationally-driven
roup, Department of Theoretical and
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well as the calculated DDG values are
://github.com/deGrootLab/pmx.

tion (ESI) available. See DOI:
guidance to LO requires precision and accuracy, and the
predictive power of empirical scoring functions alone is rarely
enough at this stage of drug discovery.1–4 For this data-scarce yet
multiparameter problem it remains to be seen if data-driven
methods are able to predict new primary target activities. On
the other hand, an approach that has shown the required level
of performance is alchemical relative binding free energy
(RBFE) calculations based on molecular dynamics (MD)
simulations.5–7

Free energy perturbation (FEP)8,9 and thermodynamic inte-
gration (TI)10 are popular methods used for alchemical RBFE
estimation. The application of FEP in alchemical calculations
dates back several decades and it typically uses molecular
dynamics (MD) or Monte Carlo simulations to compute the free-
energy difference between two structurally related ligands,
making it ideal for LO.11–15 Equilibrium FEP is arguably themost
common implementation of alchemical calculations and
involves many distinct equilibrium MD simulations for all
states along a l coordinate that alchemically modies the rst
ligand into the second. It is common to use 12, 15 or more so-
called l intermediates wherein atoms that need to appear,
disappear, or mutate between the two ligands are represented
by a linear combination of end-state Hamiltonians. During
alchemical transformations, van der Waals and sometimes
electrostatic interactions are soened to avoid singularities and
numerical instabilities.16–18 Various methods exist to calculate
This journal is © The Royal Society of Chemistry 2020
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the free energy associated with a change of the l coordinate, but
a requisite for convergence is an overlap in conformational
space between neighboring simulations along the l path. TI
differs from FEP in the way free energy difference is calculated
as a function of l: integration of the derivative of the Hamilto-
nian with respect to l results in the free energy difference
between end states. For FEP, if 1, 5 or 10 ns trajectories are
required per l window in both solvent and complex the
computation becomes expensive when performing hundreds or
thousands of perturbations in a drug discovery LO program.
Recently, however, this cost has been dramatically reduced by
using graphics processing units (GPU) or massively parallel
resources.19–21 For instance, Schrödinger's FEP+3 implementa-
tion uses the GPU-enabled MD-engine Desmond.22 This has led
to an explosion of interest in this approach. In turn, application
of FEP to a vast range of protein–ligand systems revealed that
the method can indeed deliver accurate relative binding affinity
predictions with an error of <1 kcal mol�1 with respect to
experiment.23–36 However, the application of FEP usingmost MD
soware remains challenging, preventing its widescale uptake.

Contrary to naturally-occurring amino acids, small mole-
cules cover an almost innite chemical space. Hence, deriving
appropriate force eld parameters for ligands can itself be
challenging, and several recent reports address this.37–39 The
challenge in the RBFE calculations setup is to automatically
recognize the structural differences between the ligands and
prepare a sensible hybrid topology for MD simulations. Several
programs that help with this40–43 and other steps in the
process44,45 have been reported. Work from the de Groot lab has
led to the development of pmx,46,47 a tool to prepare inputs for
alchemical free energy calculations48 in GROMACS.49 So far,
pmx has delivered accurate results for the prediction of the
effect of protein mutations on thermodynamic stabili-
ties,27,35,50,51 changes in protein–protein interaction free ener-
gies,27 shis in the equilibria between protein conformational
substates,52 as well as DNA nucleotide mutations.29 In this
report, we demonstrate the rst application of pmx to relative
protein–ligand binding free energies.

In our approach, pmx is used to identify optimal mappings
between ligand atoms and generate hybrid structures and topol-
ogies for subsequent GROMACS-based free energy calculations. In
contrast to the typical FEP approach based on equilibrium
sampling described above, we estimate free energy differences
with alchemical non-equilibrium transitions using a TI approach.
Equilibrium simulations are rst performed on the ligand-bound
and -unbound states; then, short non-equilibrium simulations are
used to perturb the ligands. Hundreds of short perturbations can
be performed in the forward and backward direction, starting
from snapshots covering the conformational space sampled from
the equilibrated end states. The resulting free energy difference is
derived from the overlap of work distributions associated with the
forward and backward transitions using the Crooks Fluctuation
Theorem.53

A primary feature that discriminates between equilibrium
and non-equilibrium alchemical approaches is the amount of
sampling performed at the physical end states. Equilibrium FEP
employs a number of intermediate non-physical simulations
This journal is © The Royal Society of Chemistry 2020
along the alchemical path and only two simulations sample the
physical end states. The free energy difference of interest is,
however, solely dened by the end states – in fact, the role of the
intermediate states is merely to ensure a converged DG esti-
mate. The non-equilibrium approach, in contrast, invests more
sampling time in the end states, as only very short simulations
in alchemical space are performed to connect the physical end
states. In a few studies, the efficiency of the non-equilibrium
approaches was compared to that of equilibrium methods.
However, which of the two approaches is more efficient in
practice is yet to be determined conclusively. For example,
Ytreberg et al.54 and Goette and Grubmüller55 found bi-
directional non-equilibrium approaches to be more efficient
than equilibrium FEP. In contrast, Yildirim et al.56 found
equilibrium FEP to be more efficient; however, criticism of this
study with respect to how efficiency was dened was
expressed.57 Notwithstanding the lack of consensus in the
scientic community on this matter, our non-equilibrium
protocols58,59 have already provided high-accuracy predictions
in a number of applications involving amino acid and nucleo-
tide mutations.27,29,34,35,59,60

Here, we use pmx to calculate the difference in binding free
energy for 482 ligand perturbations across 13 different ligand–
protein activity datasets in two contemporary force elds. The
calculated free energy differences were combined into
a consensus estimate from the results of both force elds
providing further increase in accuracy. In this case the
consensus approach consists of a simple averaging, but future
extensions may also involve more sophisticated schemes, e.g.
employing machine learning approaches to assign different
weights to force elds.27 We also used the commercial FEP+
implementation from Schrödinger as a state-of-the-art
comparison. This is one of the largest protein ligand relative
free energy calculation studies to date, and amongst the rst
providing a large-scale comparison of implementations on
different MD-engine soware.61 The overall average unsigned
error (AUE) of the predicted DDG was 3.64 � 0.14 kJ mol�1 with
pmx and 3.66 � 0.14 kJ mol�1 with FEP+. The pmx tool is freely
available at https://github.com/deGrootLab/pmx.
Methods
Selected datasets

To help comparison with the prior literature, we selected
benchmark sets studied in previous FEP reports. These included
the 8 datasets from Wang et al.:3 JNK1, TYK2, BACE, MCL1,
CDK2, Thrombin, PTP1B, and P38. Furthermore, we included
protein–ligand systems that have appeared in subsequent FEP
studies: Galectin-3,62 PDE2,33 cMET63 (from: https://github.com/
choderalab/yank-benchmark) and two additional BACE data-
sets.26,28,64 This provided a total of 482 perturbations with
experimental DDG values ranging from �20.7 to 15.4 kJ mol�1.
FEP+ approach

All structures were processed using the “Protein Preparation
Wizard” tool in Maestro with default settings: missing atoms,
Chem. Sci., 2020, 11, 1140–1152 | 1141

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc03754c


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 4
:5

6:
39

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
sidechains, and loops were modelled, protein protonation
states were assigned with PROPKA at pH 7.0, metals were
retained and zero bond order constraints to neighboring atoms
were assigned, the hydrogen bonding network was optimized
and the ligand charges were assigned. To relieve local clashes,
a restrained minimization was performed with a 0.5 Å heavy-
atom RMSD displacement cut-off, below which the minimiza-
tion was terminated. FEP+ calculations were performed using
v2018-1 of the Schrödinger modeling suite. The OPLS v3 force
eld, the Desmond (MD) engine v3.8.5, the replica exchange
with solute tempering (REST-2),65 and the multistate Bennett
acceptance ratio (MBAR) approach to obtain free energy esti-
mates,9 were used. The REST region was applied only to ligand
heavy atoms. Missing force eld parameters were added by
tting to QM calculations using theuilder module. The FEP+
calculations were performed with 12 l-windows and 5 ns of
production MD simulations per window. Equilibration was
performed in ve steps: (i) 100 ps at 10 K with Brownian
dynamics, NVT ensemble, solute heavy atom restraints and
small (1 fs) timestep; (ii) 12 ps at 10 K with Berendsen ther-
mostat, NVT ensemble, solute heavy atom restraints and small
timestep; (iii) 12 ps at 10 K with Berendsen, NPT ensemble,
solute heavy atom restraints, increase to default timesteps; (iv)
24 ps at 300 K with Berendsen, NPT ensemble, solute heavy
atom restraints; (v) nally, 240 ps at 300 K with Berendsen, NPT
ensemble and no restraints. Production simulations used the
NPT ensemble and hydrogen mass repartitioning to permit a 4
fs timestep. Calculations were performed as three independent
repeats using different random seeds. Error bars in the gures
represent the standard error of DDG across the three repeats
and the uncertainty reported by the MBAR estimator.
GROMACS non-equilibrium TI approach

The initial ligand and protein structures were taken from the
setup of the FEP+ approach. The necessary atom and residue
naming adjustments, as well as modications of the non-
standard amino acid residues, were made for compatibility
with the GROMACS naming convention. Ligand parameteriza-
tion used the General Amber Force Field66 (GAFF v 2.1) and the
CHARMM General Force Field67 (CGenFF v3.0.1 and v4.1). For
the GAFF parameter assignment, the ACPYPE68 and Ante-
chamber69 tools were used. The AM1-BCC70 charge model was
used in combination with the GAFF parameters. CGenFF
parameters were assigned using the automated atom-typing
toolset MATCH71 and replacing the bonded-parameters with
those in CGenFF v3.0.1. For the BACE inhibitor sets, the
MATCH algorithm was unable to identify the appropriate atom
types, therefore in these cases a web-based atom-typing and
parameter assignment server72,73 was used. For the BACE
inhibitors, the CGenFF v4.1 bonded parameters were used.
Ligands containing chlorine and bromine were decorated with
virtual particles carrying a small positive charge, following the
rules for GAFF74 and CGenFF.75

Having parameterized the ligands, hybrid structures and
topologies for the ligand pairs were generated using pmx. A
mapping between the atoms of two molecules was established
1142 | Chem. Sci., 2020, 11, 1140–1152
following a predened set of rules to ensure minimal pertur-
bation and system stability during the simulations. pmx follows
a sequential, dual mapping approach. In the rst step, pmx
identies the maximum common substructure between the two
molecules and proposes this as a basis for mapping. In the
second step, pmx superimposes the molecules and suggests
a mapping based on the inter-atomic distances. Finally, the
mapping with more atoms identied for direct morphing
between the ligands is selected. Additionally, pmx ensures that
no ring breaking and disconnected fragments in the mapping
occur. The obtained mapping is used to create hybrid structures
and topologies following a single topology approach.

The simulation systems for the solvated ligands and ligand–
protein complexes were prepared by placing the molecules in
dodecahedral boxes with at least 1.5 nm distance to the box
walls. The TIP3P water model76 was used to solvate the mole-
cules. Sodium and chloride ions were added to neutralize the
systems and reach 150 mM salt concentration. Proteins were
parameterized in two different force elds:
Amber99sb*ILDN77–79 and CHARMM36m.80 Ion parameters by
Joung & Cheatham81 were used for simulations in Amber/GAFF
force eld; Charmm/CGenFF simulations were performed with
the default Charmm ion parameters.

For every pair of ligands, the prepared systems were simu-
lated in their physical state A and state B, representing ligand 1
and ligand 2, respectively. Firstly, the systems were energy
minimized, followed by a 10 ps equilibration in the NVT
ensemble at a temperature of 298 K. Aerwards, the production
runs were performed for 6 ns in the NPT ensemble at 298 K and
a pressure of 1 bar. Subsequently, 80 snapshots were extracted
equidistantly from each of the trajectories generated, aer
discarding the rst 2 ns accounting for the system equilibra-
tion. From each extracted conguration, an alchemical transi-
tion was started (from A to B and vice versa). Every transition was
performed in 50 ps. This procedure adds up to 20 ns of simu-
lation time invested to calculate one free energy difference for
the ligand in its bound/solvated state. We used 3 replicas of
every DDG calculation, in total investing 60 ns for one DG esti-
mate, which is equivalent to the simulation time employed by
one repeat of the FEP+ approach.

The temperature in the simulations was controlled by the
velocity rescaling thermostat82 with a time constant of 0.1 ps.
The pressure was kept at 1 bar by means of the Parrinello–
Rahman barostat83 with a time constant of 5 ps. All bond
lengths were constrained using the LINCS algorithm.84 Particle
Mesh Ewald (PME)85,86 was used to treat long-range electro-
statics: a direct space cutoff of 1.1 nm and a Fourier grid spacing
of 0.12 nm were used, and the relative strength of the interac-
tions at the cutoff was set to 10�5. The van der Waals interac-
tions were smoothly switched off between 1.0 and 1.1 nm. A
dispersion correction for energy and pressure was used. For the
alchemical transitions the non-bonded interactions were
treated with a modied so-core potential.18

For every transition, the derivatives of the Hamiltonian with
respect to the l parameter were recorded and subsequently used
to obtain the work associated with each transition. The
maximum likelihood estimator87 based on the Crooks
This journal is © The Royal Society of Chemistry 2020
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Fluctuation Theorem53 was used to relate the non-equilibrium
work distributions to the equilibrium free energy differences.
The standard errors of the DG estimates were obtained by
bootstrap. These were propagated when calculating the DDG
values for the individual and consensus force eld results. The
consensus approach comprises averaging the estimated DDG
values from different force elds and multiple replicas, where
every replica encompasses the full free energy calculation
procedure including equilibration, production and transition
runs.

The double free energy differences (DDG) were compared to
experimental measurements by calculating average unsigned
errors (AUE), Pearson correlation coefficients, and the
percentage of estimates deviating from experiment by less than
1 kcal mol�1 (4.184 kJ mol�1). The errors for these observables
were bootstrapped and reect the variability in the datasets
analyzed.
Results
Overall performance of the non-equilibrium free energy
calculations

Double free energy differences (DDG) were calculated for a set of
482 ligand modications across 13 protein–ligand datasets.
This large set of diverse modications allows for a reliable
comparison between the investigated alchemical approaches.
Fig. 1A summarizes the main ndings: in absolute terms
(average unsigned error, AUE), the pmx-based non-equilibrium
free energy calculations perform equivalently to the state-of-the-
art FEP+ approach. Predictions of both approaches, on average,
deviate from experiment by less than 1 kcal mol�1

(4.184 kJ mol�1). The individual force elds, GAFF and CGenFF,
are outperformed by FEP+ using the proprietary OPLSv3 force
eld. However, remarkably, the combination of free energy
Fig. 1 Average unsigned errors (AUE, upper plots) and correlations (low
free energy differences. In the FEP+ panels, the dark red circles represe
results when the DDG values per ligand are averaged over the three repl
results averaged over three replicas (60 ns perDG in total). In the consens
� 60 ns (square) of sampling time per DG estimate. (A) Averaging perfo
modifications in total. (B) Subset of systems analyzed by Wang et al.;3 33
the result reported by Wang et al. (C) Subset of systems added in this w

This journal is © The Royal Society of Chemistry 2020
estimates obtained with GAFF and CGenFF force elds (even
when considering equivalent sampling time) substantially
improves the accuracy. The agreement with experiment in
terms of Pearson correlation is slightly better for the FEP+
approach (0.69 � 0.03) than for the consensus force eld
approach based on the non-equilibrium free energy calcula-
tions (0.63 � 0.03). Similar to the AUE comparison, in terms of
Pearson correlation, the consensus force eld approach appears
to yield higher quality estimates than the individual force elds,
when considering all protein–ligand datasets together.

The comparisons described above took into consideration all
the simulations performed for each approach, i.e. a total of 3 �
60 ns for every DG estimate with FEP+, and 2 � 60 ns (i.e. 60 ns
for each force eld, GAFF and CGenFF: in total, 6 replicas of 20
ns each were combined for a DG estimate) for the pmx-based
free energy calculations. When considering the equivalent
time of 60 ns per DG value, the accuracies obtained by both
approaches are nearly identical: FEP+ returns an AUE of 3.72 �
0.15 kJ mol�1 and a correlation of 0.68 � 0.03; the consensus
force eld pmx calculations yield an AUE of 3.72� 0.15 kJ mol�1

and a correlation of 0.63 � 0.03.
The dataset analyzed in Fig. 1A can be decomposed into two

subsets: the set of 8 protein–ligand systems (330 mutations)
assembled and analyzed by Wang et al.3 and an additional set of
5 protein–ligand systems comprising 152 mutations. Wang
et al. used an earlier version of the OPLS force eld (v2.1) to
investigate the subset of 330 mutations, thus, it is interesting to
compare the evolution of the FEP+ method and force eld with
the accuracy of the open-source pmx-based calculations
(Fig. 1B). Wang et al. reported an AUE of 3.87 � 0.17 kJ mol�1.
Subsequently, Harder et al. reported an improved AUE of 3.36 �
0.15 kJ mol�1 for the same 8 protein–ligand systems with the
OPLSv3 force eld.88 However, the simulation time used for
obtaining the latter result is not reported, complicating a direct
er plots) between the calculated and experimentally measured double
nt the three separate replica calculations, and the dark red square the
icas. For the pmx GAFF and CGenFF panels, the circle symbols denote
us panel, the results were averaged to correspond to 60 ns (circle) and 2
rmed over all the investigated protein–ligand complexes; 482 ligand
0 ligand modifications. The light red circle in this panel corresponds to
ork; 152 ligand modifications.

Chem. Sci., 2020, 11, 1140–1152 | 1143
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comparison. In the current work, using FEP+ with the OPLSv3
force eld and combining free energy estimates from three
independent FEP+ runs resulted in an AUE of 3.66 �
0.14 kJ mol�1. The non-equilibrium free energy calculations
performed comparably to FEP+ and reached an AUE of 3.70 �
0.17 kJ mol�1 when using 60 ns per DG estimate, and 3.58 �
0.18 kJ mol�1 when using 2 � 60 ns. In terms of correlation, the
newer OPLSv3 shows improvement over OPLSv2.1: 0.65 � 0.04
versus 0.59 � 0.03. The pmx-based calculations show slightly
lower correlation of 0.55 � 0.04. In a recent study, the Wang
et al. dataset was investigated with equilibrium TI calculations
using the Amber18 simulation package.89 The authors reported
substantially worse performance than obtained in the current
work: AUE of 4.9 kJ mol�1 and correlation of 0.48, investing 74
ns per DG estimate.

For the dataset of 152 mutations (Fig. 1C) assembled from
the literature for this study, both FEP+ and non-equilibrium
calculations reach similar correlation: 0.79 � 0.04 and 0.76 �
0.04, respectively. Interestingly, for this subset the AUE of the
FEP+ predictions is lower than that of the consensus approach
by 0.57 � 0.33 kJ mol�1 (3.2 � 0.21 and 3.77 � 0.25 kJ mol�1 for
FEP+ and pmx, respectively). These observations suggest the
accuracy is dependent on the particular protein–ligand system
studied. It is also important to note that the number of data
points varies among the datasets, ranging from 7 in the case of
galectin, to 71 in the case of MCL1. This emphasizes the
importance of using large datasets for reliable method
comparison.

For all the sets depicted in Fig. 1, the GAFF force eld
outperforms CGenFF. Combining the results of both into
a consensus estimate consistently yields a higher, or at least
equivalent, accuracy compared to the GAFF force eld.
Increasing the simulation time invested to obtain a DDG esti-
mate has only a marginal effect on the results, given the time
scales considered (at least 60 ns per DG). We have also probed
the effect of simulation length on FEP+ accuracy by running 1
ns per l window and using 3 replicas, resulting in 36 ns per DG
estimate, as opposed to the standard protocol using 5 ns per l
window (180 ns per DG). Also in this case, the accuracy was only
marginally affected by the shorter simulations: AUE of 3.88 �
0.15 (1 ns) and 3.66 � 0.14 kJ mol�1 (5 ns), and correlation 0.68
� 0.03 and 0.69 � 0.03, respectively.

To further assess the sensitivity of the GROMACS calcula-
tions to the invested sampling time, we estimated DDG values
aer discarding half of the simulation time. Such a protocol
resulted in a setup using 3 replicas of 10 ns, which closely
matches the 1 ns FEP+ protocol (1 ns � 12 l-windows � 3
replicas). The AUE of the GAFF calculations was 4.03 �
0.16 kJ mol�1 and the Pearson correlation 0.59 � 0.03. The
CGenFF calculations had an AUE of 4.7 � 0.19 kJ mol�1 and
correlation of 0.53 � 0.04. The modest decrease in accuracy
matches well with the similar effect observed for the FEP+
calculations. It appears that even the shorter investigated
sampling times are sufficient to explore the local minima in the
vicinity of the starting structure to obtain a converged free
energy estimate. This is corroborated by our earlier explorations
of sampling strategies applied in drug resistance mutation
1144 | Chem. Sci., 2020, 11, 1140–1152
studies, where investing 54 ns per DG value yielded converged
results.35

The scatter plots of the calculated and experimental double
free energy differences provide an intuitive understanding of
the ranges spanned by the datasets and the calculated values
(Fig. 2). While taken separately the GAFF and CGenFF force
elds produce more outliers than FEP+ with OPLSv3 (Fig. 2 and
S1‡), the consensus results reduce the number of outliers. The
proportion of estimates falling within 1 kcal mol�1

(4.184 kJ mol�1) of experiment is 68 � 2% and 66 � 2% for the
FEP+ and the pmx-based consensus force eld approach
respectively. The overall range spanned by the estimated DDG
values is comparable between the methods and force elds as
well as similar to the distribution of experimental values
(Fig. S2‡). The consensus non-equilibrium estimates were more
accurate than FEP+ for the perturbations associated with
a small DDG (Fig. S4‡), whereas FEP+ was more accurate for
larger DDG perturbations.

A notable difference between the results of the methods is
the magnitude of estimated errors (Fig. 2 and S3‡): the non-
equilibrium free energy estimates have larger associated
errors than those predicted by FEP+. It is important to note that
error estimates for the individual DDG values comprise both the
uncertainty of the estimator and the standard error of the
estimates coming from the different simulation replicas.
Furthermore, the consensus approach increases the errors
because the GAFF and CGenFF estimates may differ from each
other more than the estimates obtained with individual force
elds. While this feature allows for an increased prediction
accuracy, it also increases the uncertainty associated with an
estimate.
Case-by-case analysis

The agreement between the free energy predictions and exper-
iment is system dependent. Fig. 3 summarizes the AUE and
Pearson correlation for every protein–ligand complex studied
(Fig. S8‡ shows average signed errors). Together with the
system-dependent accuracy, Fig. 3 again highlights the value of
the consensus force eld approach. In several cases the DDG
estimate between force elds varies greatly, leading to
substantially different AUEs (CGenFF shows larger AUEs for one
of the BACE sets, TYK2, MCL1, and P38, while GAFF for cMET).
This is also the case for the Pearson correlation. Taking the
consensus of the estimated free energy differences by using
a simple average of the values from the two force elds yields
a result outperforming or on par with the best result from
a single force eld.

The improved accuracy due to combination of results from
different force elds may seem counterintuitive. In fact, if both
force elds yield DDG estimates deviating from experiment in
the same direction, the consensus approach would yield only an
intermediate quality prediction falling in between the two
individual force elds. Such an outcome would still be prefer-
able in a prospective study, since relying on a single force eld
might lead the investigation in a wrong direction. In the current
work, however, employing a consensus approach generally
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Calculated DDG values plotted against the experimental measurements considering all 482 ligand modifications investigated in this work.
The FEP+ calculations used 3 replicas of 60 ns each for every DG estimate. The pmx-based calculations with GAFF and CGenFF used 3 replicas of
20 ns each, i.e. summing to 60 ns per DG estimate. The consensus results shown here use 2 � 60 ns per DG estimate. Text in the panels: AUE is
in kJ mol�1; “cor” is Pearson correlation; “1 kcal/mol” denotes the percentage of the estimates that fall within 1 kcal mol�1 (4.184 kJ mol�1) of the
experimental measurement; “values” refers to the total number of perturbations.
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resulted in an improved prediction accuracy over any of the
single force elds. This is only possible because in 33% of all the
calculated double free energy differences the values obtained by
GAFF and CGenFF force elds were pointing in opposite
directions from the experimental measurement (see also
Fig. S10‡ for a graphical depiction of the signed deviations from
experiment for both force elds plotted one against the other).

The variable performance of calculated DDG for individual
protein–ligand complexes can be seen from the scatter plots in
Fig. 4 (for the FEP+ estimates see Fig. S6‡). In the majority of
cases, the estimates fall within 1 kcal mol�1 (4.184 kJ mol�1) of
the experimental measurement. This indicates that the accu-
racy is mainly reduced by a small number of outliers. The latter
observation holds for both the consensus approach based on
Fig. 3 Average unsigned error (AUE) and Pearson correlation for the DDG
top and bottom panels denote the number of ligand modifications cons

This journal is © The Royal Society of Chemistry 2020
the non-equilibrium calculations (Fig. 4) and FEP+ using the
OPLSv3 force eld (Fig. S6‡). Interestingly, both approaches
have difficulties with the MCL1 dataset where only half of the
estimates fall within 1 kcal mol�1 (4.184 kJ mol�1) of the
experimental measurement. 45% of the non-equilibrium esti-
mates fell outside this range for the BACE set of Hunt et al.64 and
for the cMET set. FEP+ had comparable difficulties with the
BACE set of Cumming et al.90 and PDE2.33

The range spanned by the DDG values also has an inuence
on the prediction accuracy (Fig. S5‡). An illustrative example for
this effect is a set of thrombin inhibitors. The experimental range
of the double free energy differences is narrow. The non-
equilibrium approach captured the DDG values very accurately
in terms of AUE (2.23 � 0.57 kJ mol�1). However, no correlation
estimates split by protein–ligand system. The numbers in between the
idered for the corresponding system.

Chem. Sci., 2020, 11, 1140–1152 | 1145
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Fig. 4 Performance of the pmx-based consensus force field calculations for each protein–ligand system studied. TheDDG estimates are plotted
against their experimentally determined values. Text in the panels: AUE is in kJ mol�1; “cor” is Pearson correlation; “1 kcal/mol” denotes the
percentage of the estimates that fall within 1 kcal mol�1 (4.184 kJ mol�1) of the experimental measurement; “values” refers to the total number of
perturbations per dataset.
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for the small differences between the ligands was observed. In
contrast, FEP+ had a signicantly larger AUE of 4.51 �
0.82 kJ mol�1. However, it was able to achieve moderate corre-
lation (0.45 � 0.18). In general, FEP+ obtained higher correla-
tions: the averaged correlation coefficient was higher for 9 out of
13 datasets (Fig. S7‡). In terms of AUE, on average, FEP+ was
more accurate than the pmx-based calculations for 7 out of 13
datasets. When compared to the previous generation of the OPLS
force eld (v2.1),3 the consensus force eld approach performs
better in 6 out of 8 cases in terms of AUE and 3/8 in terms of
correlation. It is worth noting that the earlier FEP+ results re-
ported byWang et al. weremore accurate for BACE and thrombin
than those obtained here with the newer OPLS version.
1146 | Chem. Sci., 2020, 11, 1140–1152
Determinants of prediction accuracy

Protonation effects. For one system (PTP1B), we looked in
detail at the molecular determinants inuencing the free energy
calculation accuracy. In particular, we investigated the effects of
the protonation state of the catalytic cysteine. PTP1B is a tyro-
sine phosphatase that harbors a catalytic cysteine (Cys215) that
can be oxidized, thus inhibiting the enzyme.91 When in the apo
state, Cys215 has been shown to be deprotonated (pKa ¼ 5.4)
and make a covalent bond with the main chain nitrogen of
Ser216.92 The protonation state of Cys215 is not known for the
set of PTP1B inhibitors probed here. From the crystallographic
structures resolved with four of the ligands in the set,93 the short
This journal is © The Royal Society of Chemistry 2020
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distance between the cysteine's sulfur and the closest carboxyl
group oxygen of a ligand (3.5–3.9 Å) suggests a possible
formation of a weak hydrogen bond (Fig. 5).

We further probed whether the ligand's carboxyl group or
Cys215 is more likely to be protonated. The empirical pKa

predictor PROPKA 3.1 94,95 suggested that the pKa for the
carboxyl group is less than 5.0 for every ligand in the set. The
low carboxyl pKa was also conrmed by the ChemAxon's
predictor.96 In contrast, the pKa for Cys215 in the complexed
system was predicted to be between 9.8 and 10.5, depending on
the inhibitor. Taken together, these observations suggest that
Cys215 ought to be protonated for the inhibitor set synthesized
by Wilson et al.93

Wang et al.,3 however, modeled a deprotonated variant of
Cys215 in their free energy calculations, whilst also keeping the
ligand's carboxyl group deprotonated. Although the carboxyl
groups of the ligand are not modied in the alchemical simu-
lations it is plausible that structurally diverse inhibitors may be
affected differently by the two negative charges nearby. Using
the Wang et al. setup with the deprotonated Cys215 we obtained
similar quality free energy estimates (Fig. 6). Briey, the Cys(�1)
results from Wang et al. had an AUE and correlation of 3.87 �
0.52 kJ mol�1 and 0.64 � 0.06, respectively, compared to 3.66 �
0.56 kJ mol�1 and 0.61 � 0.08 from the pmx consensus
predictions, also with similar outliers as seen in the correlation
plots. Interestingly, the FEP+ calculations performed here using
OPLSv3 showed substantially better accuracy (AUE of 2.8 �
0.27 kJ mol�1 and correlation of 0.91 � 0.03), suggesting the
newer force eld includes updates that have an improved
representation of interactions between the deprotonated thiol
and carboxyl group for the investigated set of ligands. Since our
empirical prediction suggests that Cys215 could be protonated
we have also calculated free energy differences with this
protonation state. Interestingly, upon protonation of Cys215 the
quality of FEP+ OPLSv3 prediction drops (Fig. 6): AUE 3.68 �
0.49 kJ mol�1, correlation 0.8 � 0.07.

The pmx calculations using the consensus force eld
approach follow a different trend. When Cys215 is deprotonated
Fig. 5 Detail of a PTP1B structure (PDB ID: 2qbs) depicting the close
proximity of the thiol group of Cys215 to the carboxyl group of the co-
crystallized inhibitor.

This journal is © The Royal Society of Chemistry 2020
and turned into a neutral residue (by redistributing charges on
the side-chain atoms), the agreement with experiment
increases. This articially constructed cysteine residue should
not be interpreted in physical terms (e.g. as a radical). It rather
represents a convenient intermediate step between the negative
deprotonated cysteine in the active site of PTP1B and the
properly protonated neutral Cys215. Agreement with experi-
ment further improves when Cys215 is protonated (Fig. 6): AUE
3.23 � 0.42 kJ mol�1, correlation 0.74 � 0.06. The increased
accuracy when protonating Cys215 could be an artifact of
a decient parameterization of the thiolate group in Amber and
CHARMM force elds.97 On the other hand, it may also suggest
that the thiol group of the cysteine residue is protonated upon
binding of the ligands from the investigated set of PTP1B
inhibitors.

It is also important to note that here we only analyzed the
effects of protonation changes of the cysteine's thiol group,
while the protonation state of the ligands was kept xed. For
a complete picture of the free energy landscape underlying the
affinity differences for this PTP1B ligand set it might be
necessary to include alternative protonation states for the
ligands98,99 and potentially allow the molecules to change their
protonation upon binding. Although in the current analysis we
veried ligand protonation states by means of empirical
predictors, future systematic free energy calculations including
ligand protonation effects may improve estimation accuracy.

Sensitivity to ligand parameterization. Disentangling the
reasons underlying the quality of free energy calculation
performance is not a trivial task. On the one hand inaccuracies
frequently arise due to insufficient sampling. While this can be
circumvented by increasing simulation time or adding more
replicas, the problem of imperfect force eld parameterization
represents another major source of errors. The calculated free
energies integrate contributions from the protein force eld,
ligand parameterization and water model, all of which are
prone to introducing errors that may lead to unexpected
outcomes. The galectin data set serves as an example for such
effects.

The set of galectin inhibitors contains only 8 ligands con-
nected by 7 perturbations. OPLSv3 performed particularly well
in this case: AUE of 1.2 � 0.5 kJ mol�1, correlation of 0.98
(Fig. 3). Both GAFF and CGenFF force elds show a lower
accuracy in terms of AUE (3.0 � 1.2 and 2.2 � 0.4 kJ mol�1,
respectively). In terms of correlation, GAFF has a below-average
agreement with experiment and a large associated uncertainty
(0.41 � 0.4). A closer look into the DDG estimates obtained with
the GAFF force eld highlights a peculiar case of possible error
cancellation in the free energy estimates (Fig. 7). A large AUE for
the perturbation transforming a methylamino group (–NHMe)
to methoxy (–OMe) suggests that the parameterization of one or
both of these moieties might be imperfect. However, perturba-
tions of these groups into more chemically similar substituents
gave more accurate DDG estimates: methylamine to di-
methylamine; methoxy to hydroxyl. The parameterization
errors pertaining to a specic chemical group cancel out until
transformations involving different chemistry (with different
parameterization errors) are introduced: e.g. free energy
Chem. Sci., 2020, 11, 1140–1152 | 1147
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Fig. 6 Details of the DDG calculations for the PTP1B protein–ligand system. The top row depicts the experimental DDG values plotted against
the calculated results. The two bottom panels summarize these calculations in terms of AUE and Pearson correlation. From left to right: Wang
et al.3 calculations using deprotonated Cys215; FEP+ with OPLS v3 using deprotonated Cys215; FEP+ with OPLS v3 with protonated Cys215;
pmx-based consensus force field approach with deprotonated Cys215; pmx-based consensus force field approach with deprotonated, but
neutral Cys215; pmx-based consensus force field approach with protonated Cys215.

Fig. 7 Average unsigned errors (AUE) for perturbations in the galectin
data set using GAFF force field. Values are in kJ mol�1.
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differences within the group of ligands containingmethylamine
in the current case are represented correctly. Similarly, the free
energy differences within the group of compounds containing
methoxy and hydroxyl groups are accurately estimated.
However, the free energy difference between these two sets of
ligands containing different chemical groups is not captured
accurately (at least not with the sampling time used in the
current study).

Directions for force eld optimization. The consensus force
eld approach provided more accurate predictions than the
individual GAFF and CGenFF force elds. As already
mentioned, an improvement in accuracy is only possible if the
two force eld estimates are opposite with respect to the
experimental result. The cMet protein–ligand dataset provides
an informative example: in 14 out of 25 (56%) cases GAFF and
CGenFF predictions had an error in different directions from
the experimental measurement. The cMet inhibitor set contains
12 ligands with a common scaffold (Fig. 8A) and a single
substitution site (Fig. 8B), except for compound 1_21, which
also has a cyano group in place of a scaffold uorine atom.
1148 | Chem. Sci., 2020, 11, 1140–1152
Overall, for this system FEP+ showed an AUE of 3.2 �
0.58 kJ mol�1, while CGenFF was only slightly worse with an
AUE of 3.78 � 0.59 kJ mol�1. Interestingly, this dataset gave the
worst performance for GAFF among all the investigated
protein–ligand complexes: AUE of 5.55 � 0.94 kJ mol�1.

A closer look at the major discrepancies between force elds
reveals some peculiar trends that could be useful for further
force eld ne tuning. For example, in all four transformations
with compound 4200_15, GAFF overestimates the binding
affinity of this ligand in comparison to both CGenFF and
experiment. Similarly, compound 400_10 is consistently (3
transformations) predicted by GAFF to be a higher affinity
binder than determined experimentally. In contrast, all 6
transformations involving ligand 5300_8 with GAFF suggest the
inhibitor to be a far worse binder than measured experimen-
tally. Although pinpointing the exact force eld parameters that
are responsible for these inaccuracies is not trivial, the trends
observed for certain chemical groups suggest likely candidates
for re-parameterization. Similarly, we can envisage future work
using large-scale scans of such calculated thermodynamic
properties of biomolecular complexes to aid force eld
development.
Discussion

Overall, the current investigation revealed several consistent
trends. The accuracy in terms of AUE was comparable for the
FEP+ and pmx-based calculations, while the correlation was
slightly higher for FEP+ when using the OPLSv3 force eld
(Fig. 1). The GAFF force eld yielded higher accuracy than
This journal is © The Royal Society of Chemistry 2020
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Fig. 8 cMet inhibitor dataset. (A) Common scaffold of the compounds. (B) Substituents for the 12 cMet inhibitors. (C) DDG for the trans-
formations. The cases where GAFF and CGenFF results point in the opposite direction from the experiment are marked with an “x”, while
differences between the force field results larger than 1 kcal mol�1 (4.184 kJ mol�1) are marked with “kcal”.
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CGenFF, however, the consensus approach of averaging the
results from both force elds performed better or equally well as
the best performing force eld. This indicates that the errors
made by the force elds in free energy estimates are in some
cases cancelling out, allowing for an increased accuracy. This
effect has been previously observed in the free energy estima-
tions for amino acid mutations in protein stability and protein–
ligand binding studies,27,35 as well as for nucleotide mutations
in protein–DNA interactions.29 Furthermore, the benets of the
consensus approach are emphasized in the case-by-case anal-
ysis of the protein–ligand complexes studied (Fig. 3). Here, it
becomes evident that in a prospective study of a particular
system relying on the results of a single force eld may lead to
a substantial decrease in the predictive accuracy. In fact, in the
current investigation, the two force elds gave opposite results
with respect to experiment for as many as 33% of the cases,
while in 10% of the cases the estimates from two force elds
showed a statistically signicant systematic difference. Admit-
tedly, using a consensus approach requires additional effort in
preparing the simulation system. With the currently available
soware packages,68,71 however, automation of such procedures
should not pose a considerable challenge.
This journal is © The Royal Society of Chemistry 2020
The signicant difference in standard errors obtained from
repeated calculations represents an interesting difference
between the FEP+ and non-equilibrium TI based free energy
results. With an average standard error of 0.57 kJ mol�1 per DDG
value, FEP+ provides predictions with high precision. That is, the
DDG estimates from FEP+ converge to highly similar values, with
little spread in the results. This might be a consequence of the
enhanced sampling technique (REST65) ensuring convergence of
the FEP+ simulations. pmx-based non-equilibrium calculations,
on the other hand, come with higher uncertainty: 2.36 kJ mol�1

on average for the consensus results. The larger spread of the
calculated DDG values, in comparison to FEP+, suggests that the
non-equilibrium calculations could still benet from an
increased convergence: longer simulations or an enhanced
sampling approach present a compelling direction for further
investigation. Considering that both FEP+ and pmx-based
calculations have, on average, a similar AUE of �3.7 kJ mol�1,
the high precision associated with FEP+ indicates that the
method is highly precise even for those predictions that are
substantially different from experiment. The pmx-based calcu-
lations give a larger prediction uncertainty, thus encompassing
the experimental observation within the condence interval of
Chem. Sci., 2020, 11, 1140–1152 | 1149
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the estimate. It remains to be explored whether increased
precision of the pmx-based calculations (using longer simula-
tions or an enhanced sampling technique) will have an effect on
the accuracy of free energy estimates.

The success of combining results from GAFF and CGenFF
indicates differences in the force eld parameterization. Natu-
rally, the simplistic forms of the potential energy functions used
by the classical molecular mechanics force elds cannot capture
the full complexity of molecular interactions, for which a more
complex representation would be required, e.g., polariz-
ability.100,101 Force eld parameterization based on a large
number of quantum chemical calculations is helpful, as illus-
trated by the high accuracy achieved by FEP+ with the OPLSv3
force eld. However, the simplied description of the potential
energy leads to unavoidable, inherent limitations. Thus, at this
time, combining estimates from different force elds may be an
attractive avenue to pursue. Given that parameterization of
different force elds relies on different theoretical premises,
combining their results may indirectly capture features of
molecular interactions that are inaccessible to a single force
eld. Finally, the signicant prediction differences obtained
when altering the protonation state of a single amino acid
sidechain highlight the sensitivity of alchemical methods to the
simulation setup and force eld parameterization details.
Furthermore, this example emphasizes the need for transparent
and open-source force eld parameters akin to those put
forward by the Open Force Field Consortium.102

Conclusions

In the current investigation, we have demonstrated that a non-
equilibrium free energy calculation method based on freely
available open-source soware performs on par with state-of-art
commercial soware. The results obtained from a large-scale
protein–ligand relative binding affinity scan highlight an
improvement in accuracy when combining results from
multiple force elds into a consensus estimate. The presented
approach is readily applicable in drug discovery lead optimi-
zation projects. Descriptive workows, comprising the technical
steps required for the free energy calculations, will further
provide an easy-to-use approach for ligand–protein binding
affinity prediction.

Author contributions

The manuscript was written through contributions of all
authors. All authors have given approval to the nal version of
the manuscript.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

We thank Dr James P. Edwards for reviewing the manuscript
and the GROMACS development team for making their soware
1150 | Chem. Sci., 2020, 11, 1140–1152
freely available. L. P. B. was partly funded by the European
Union's Horizon 2020 Research and Innovation Programme
under grant agreement No 675451 (CompBioMed project). The
project was also partly funded by Vlaams Agentschap Innoveren
& Ondernemen Project 155028. V. G. and B. L. d. G. were sup-
ported by the BioExcel CoE (http://www.bioexcel.eu), a project
funded by the European Union (Contract H2020-EINFRA-2015-
1-675728). M. A. was supported by a Postdoctoral Research
Fellowship of the Alexander von Humboldt Foundation.
References

1 G. L. Warren, C. W. Andrews, A.-M. Capelli, B. Clarke,
J. LaLonde, M. H. Lambert, M. Lindvall, N. Nevins,
S. F. Semus, S. Senger, G. Tedesco, I. D. Wall,
J. M. Woolven, C. E. Peishoff and M. S. Head, J. Med.
Chem., 2006, 49, 5912–5931.

2 G. Sliwoski, S. Kothiwale, J. Meiler and E. W. Lowe,
Pharmacol. Rev., 2014, 66, 334–395.

3 L. Wang, Y. Wu, Y. Deng, B. Kim, L. Pierce, G. Krilov,
D. Lupyan, S. Robinson, M. K. Dahlgren, J. Greenwood,
D. L. Romero, C. Masse, J. L. Knight, T. Steinbrecher,
T. Beuming, W. Damm, E. Harder, W. Sherman,
M. Brewer, R. Wester, M. Murcko, L. Frye, R. Farid, T. Lin,
D. L. Mobley, W. L. Jorgensen, B. J. Berne, R. A. Friesner
and R. Abel, J. Am. Chem. Soc., 2015, 137, 2695–2703.
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