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While quantitative structure–property relations (QSPRs) have been developed successfully in multiple fields,

catalyst synthesis affects structure and in turn performance, making simple QSPRs inadequate.

Furthermore, catalysts often have multiple active sites preventing one from obtaining insights into

structure–property relations. Here, we develop a data-driven quantitative synthesis–structure–property

relation (QS2PRs) methodology to elucidate correlations between catalyst synthesis conditions, structural

properties and observed performance and to provide fundamental insights into active sites and a

systematic way to optimize practical catalysts. We demonstrate the approach to the synthesis of nitrogen-

doped catalysts (NDCs) made via pyrolysis for the performance of the electrochemical hydrogen evolution

reaction (HER), quantified by the onset potential and the current density. We determine crystallinity,

nitrogen species type and fraction, surface area, and pore structure of the NDCs using XRD, XPS, and BET

characterization. We demonstrated that an active learning-based optimization combined with various

elementary machine learning tools (regression, principal component analysis, partial least squares) can

efficiently identify optimum pyrolysis conditions to tune structural characteristics and performance with

concomitant savings in materials and experimental time. Unlike previous reports on the importance of

pyridinic or graphitic nitrogen, we discover that the electrochemical performance is not driven by a single

catalyst property; rather, it arises from a multivariate influence of nitrogen dopants, pore structure and

disorder in the NDC materials. Identification of active sites can help mechanistic understanding and further

catalyst improvement.

1. Introduction

Quantitative structure–property relations (QSPR) have been
used widely by materials science and systems communities to
create a map that relates structure with performance. As an
example the composition of complex, multicomponent
materials of batteries can be linked to performance1,2 and the
properties fuels can be related to the mixture composition.3,4

QSPRs are powerful as they allow one to optimize materials
and design systems. The UNIFAC modeling platform,5–7 and

in general the group additivity framework, is such an example
of how molecular structure is correlated with thermophysical
properties for both fluid6,8 and catalytic systems.9–11 In
catalysis, such QSPRs are generally lacking. The catalyst
structure and composition dictate reaction performance but
the structure is often not the thermodynamically most stable
one; rather it is some metastable structure. As a result,
performance optimization12,13 requires careful control of the
catalyst synthesis and/or of the pre-treatment. This fact
requires extension of typical QSPRs to link synthesis to
structure and structure to performance, i.e., to develop QS2PR
(quantitative synthesis–structure–performance relations).
Another complexity in catalysis is that multiple active sites
can be present on a catalyst and play a different role in
performance. Identification of the active site(s) is critical to
perform mechanistic studies and find ways to maximize their
density. Yet, relation between performance and active site is
frequently non-trivial. A methodology is needed to develop
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these correlations in an unsupervised or semi-supervised
manner to provide fundamental insights and a systematic
way to optimize practical catalysts. This is the overarching
goal of this contribution. We choose the hydrogen evolution
reaction (HER) to illustrate our approach.

HER is a key process for renewable energy technologies,14

such as fuel cells, batteries, and water-splitting. Nitrogen-
doped metal-free carbon catalysts (NDCs) have been found to
perform electrocatalytic HER,15–18 providing a cheaper but
equally efficient alternative to Pt-based materials.19 The
presence of N species changes the spin density, electronic
properties, and charge distribution of the carbon framework
by introducing electron-donor characteristics from its lone
pair electrons and enhancing the carbon catalytic activity in
electron-transfer reactions.14,20,21 Generally, three types of N
are found in NDCs: pyridinic N, pyrrolic N, and graphitic N
(Scheme 1), categorized based on the N species hybridization
and the number of neighboring C atoms. Graphitic and
pyridinic nitrogens are sp2 hybridized. Graphitic N binds to
three carbon atoms and shares the additional electron with
the carbon framework in a partially occupied π*-bond, while
pyridinic N typically occupies edges of the carbon framework,
forming σ-bonds22 with two neighboring carbon atoms.
Pyrrolic N is sp3 hybridized, contributing two electrons to the
π system, and bound into the five-membered ring, as in
pyrrole.

Despite progress in developing NDCs, identifying the
active N species driving the observed electrochemical activity
remains controversial.14,21,23 Reports suggest that the active
catalyst site is either pyridinic nitrogen20 or graphitic
nitrogen.17 Aside from the nitrogen doping content, other
parameters or features of a catalyst, such as the nitrogen
species distribution, the presence of surface defects, the
porosity, and the pore size distribution, may also influence
the electrochemical performance. Therefore, to navigate such
highly multidimensional systems, we often change
experimentally one parameter at a time, and this prevents us
from understanding (a) correlations between parameters, (b)
the active site, and (c) how to optimize catalytic performance

by changing all features at once. Factorial design of
experiments (DoE) has been proposed long ago24,25 and is
occasionally employed to optimize the catalyst performance,
for example the catalyst composition of multicomponent
catalysts.17,26–29 However, the traditional DoE is static in
nature. Therefore, methods, which capture interactions in
multidimensional systems and more importantly relate
synthesis conditions, characterization, and performance, are
clearly needed.

Active learning refers to the broad idea of a model
“learning” from data, proposing next experiments or
calculations and eventually improving model accuracy with
less training or less data.30,31 Bayesian optimization, known
also as kriging, is an efficient active learning methodology
applied32–34 in artificial intelligence35,36 and engineering
problems.37–41 It can produce accurate surrogate models and
efficiently locate global optima. Despite its application in
computational studies, its deployment in designing physical
experiments has been limited. This provides a great
opportunity to apply kriging-based active learning to facilitate
the design of physical experiments, e.g., in our testcase to
optimize the NDC synthesis, catalyst structure and HER
performance.

Here, we employed a data-driven experimental design
using kriging-based active learning optimization towards
synthesizing NDC electrocatalysts for the HER reaction. The
electrocatalytic performance was evaluated using the rotating
disk electrode (RDE), and the catalyst structural
characteristics were examined using X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), and nitrogen-
sorption measurements. Kriging-based active learning guides
the synthesis towards an optimum NDC structure. Using
principal component analysis (PCA), partial least squares
(PLS), and ordinary least squares (OLS) regressions on the
type of doped nitrogen, pore structure, porosity, degree of
crystallinity and catalyst synthesis conditions, we develop
QS2PRs that relate synthesis conditions to structure and
electrocatalyst properties. With such relations and additional
active learning optimization, we can tailor the hierarchical
structures and surface dopants of the NDC catalysts for
optimal HER performance. To the best of our knowledge, a
systematic data-driven experimental design combined with
machine learning analysis for physical experiments has not
been reported, specifically for developing and evaluating
NDC materials towards the HER in our case. Our machine
learning analysis reveals the inherent multi-dimensionality of
these systems as the observed HER performance (onset
potential and maximum current density) is driven by
combined contributions from nitrogen dopants, pore
structure and disorder incorporation in the NDC materials.

2. Materials and methods
2.1. List of chemicals

Solid crystalline urea (99.3 +%) and activated carbon
(Ketjenblack® EC-300J) were purchased from Alfa Aesar and

Scheme 1 Different types of nitrogen in the carbon framework (blue
circles are carbon atoms; orange circles are nitrogen atoms).
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Akzo Nobel, respectively, and were used as received. Nafion®
solution and sulfuric acid were purchased from Sigma
Aldrich.

2.2. Catalyst preparation

The N-doped catalysts were prepared by simple pyrolysis of
nitrogen precursors onto various supports under helium gas
at 300–500 °C. The preparation of N-doped catalysts is
typically as follows: 1 g of urea was dissolved in 10 ml of
deionized water and mixed with 0.5 g of activated carbon
followed by evaporation at 60 °C, overnight to remove water.
The obtained catalyst precursor was ground using a ceramic
mortar and pestle into fine powder, transferred into a quartz
boat crucible and pyrolyzed in a tube furnace (Thermo
Scientific Lindberg Blue M model) setup with an inert gas
(He) at conditions specified by the experimental design.

2.3. Catalyst characterization

SEM analysis of the materials was performed on an Auriga 60
microscope (Carl Zeiss NTS GmbH, Germany) equipped with
a Schottky field emission gun (FEG). All samples were
deposited on adhesive carbon tape and sputtered by a DESK
IV sputter unit (Denton Vacuum Inc. NJ, USA) equipped with
Au/Pd target. XRD patterns of the NDC catalysts were
recorded on a diffractometer (Bruker D8) equipped with a
CuKα radiation source (λ = 0.154 nm) at 40 kV and 40 mA. A
Thermo-Fisher K-alpha + X-ray photoelectron spectrometer
(XPS) equipped with a monochromatic aluminum K-alpha X-
ray source (400 μm) was used. N2 adsorption measurements
were performed using a micrometrics ASAP 2020 surface area
and porosity analyzer. The carbon : nitrogen ratio of the urea
impregnated carbon catalyst was obtained using a carbon,
nitrogen, hydrogen, and sulfur (CHNS) elemental cube
analyzer.

Analysis of the XPS data was carried out using the Thermo
Fisher Avantage surface chemical analysis program. All XPS
spectra presented were performed following subtraction of a
Shirley background and were fitted using components with a
mixed Gaussian–Lorentzian line shape with a standard peak
type. Full-width-half-maximum (FWHM) values42–44 were
constrained within the range 0.8–1.2 eV for C 1s, 1.0–1.4 eV
for N 1s, and 1.6–2.0 eV for O 1s spectra. These parameters
were consistently used for all spectra fittings. N 1s spectra
binding energy assignments were based on literature
reports14,17,43,45 and the Thermo Fisher Avantage XPS
knowledge library. The O 1s and C 1s spectra peak
assignments were based on Schlögl et al.43 and the Thermo
Fisher Avantage XPS knowledge library. These peak
assignments are summarized in Table 1.

2.4. Electrochemical measurements

Nitrogen doped carbon (2 mg) was ultrasonically dispersed in
a 50 : 50 by volume water and isopropanol mixture containing
10 μL of 5 wt% Nafion® solution until a homogeneous
catalyst ink was obtained. Thereafter, 10 drops of 5 μL of the

above dispersion was drop-casted onto a pre-cleaned glassy
carbon electrode (GCE) with 0.185 cm2 geometrical area. The
catalyst modified GCE was dried under ambient conditions
and served as the working electrode (WE). Electrochemical
measurements were carried out using a standard three-
electrode cell using a large area Pt wire as a counter electrode
and a saturated calomel electrode (SCE) as a reference
electrode for studying HER activity in acidic medium (0.5 M
H2SO4). Linear scanning voltammetry (LSV) experiments were
conducted at a potential window −0.3 to 1.1 V (vs. SCE) with
a scan rate of 5 mVs−1 in order to evaluate electrochemical
activity for the hydrogen evolution reaction (HER).

2.5. Kriging-based active learning methods and software

The initial DoE and subsequent sampling points were
generated using pyKriging, an open source kriging software
in Python.46 The mathematical foundation of the software
originates from the work of Jones47,48 and Forrester.49

2.6. Machine learning analysis

PCA and PLS regression were carried out using the Minitab
software.50

3. Selection of variables and
mappings via expert knowledge

Improving the performance of the catalyst is the overarching
objective of this work. In order to achieve this, first we need
to define the number and specific variables of each of the
three spaces, synthesis, structure, and performance. The
number of (linearly independent) variables defines the
dimensionality of a space. We elaborate on the variables for
our specific example and the topic of linear independence of
variables framed in a more general way.

Expert knowledge is used to define the variables of each
space, based on what matters in a process, what important
variables can be controlled in synthesis, and what are good
structural features that can be measured. For electrochemical
performance, we focus on the onset potential and the current
density, which together define a two-dimensional (2D)
performance space. Other metrics, such as process cost and
sustainability, could also be considered.

For synthesis, the final temperature, the heating rate
during pyrolysis, and the hold time at the maximum pyrolysis
temperature are selected as tunable parameters. These
parameters define a three dimensional (3D) experimental
synthesis space. One could easily consider additional

Table 1 C 1s, O 1s, N 1s peak assignments (eV)

C 1s O 1s N 1s

sp2-C 284.8 C–O 532.8 Pyridinic N 398.3
sp3-C 285.7 C–OH 533.7 Pyrrolic N 399.8
C–O 286.2 Adsorbed H2O 534.8 Graphitic N 401.1
CO/C–N 288.3
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synthesis parameters and let the important synthesis
parameters be auto-selected as described below. For example,
the ratio of reagents and drying conditions in preparation of
the catalyst precursor could have also be considered but this
was not done here as we found that the urea concentration
was unimportant above a certain value and pyrolysis
conditions control chiefly the material made. The feasible
bounds of these parameters are shown in Table 2. Tuning the
synthesis conditions within the bounds would lead to desired
structural features, and ultimately to improved
electrochemical performance.

Since the nitrogen species are the active sites for the
electrochemical HER reactions,17 we hypothesize that the
type and amount of nitrogen potentially control HER
electrochemical performance. Note that the three types and
the total content of N are not independent as the sum of the
three types equals the total. The current hypothesis is that
the higher the N content, the higher the
performance.14,17,20,51–53 However, the active site is somewhat
controversial, as mentioned above, and we would be
interested in identifying the active site using our approach.
Aside from the total amount and type of N atoms, the pore
volume, the surface area, and the degree of crystallinity could
affect performance. We define these six collective variables as
our structural features, which are often referred to as
materials characteristics, traits, or descriptors in literature.
This defines a 6D materials structure space. Depending on
the problem to be tackled, we propose to include also other
spectroscopic features, if available, in the characterization
space.

Upon defining the variables for each space, our goal is to
develop mappings between spaces. Each mapping is, in a
mathematical sense, a set of data-driven models describing
the relations between two spaces (Fig. 1). Active learning,
denoted by the double-sided arrows, enables the data flowing
in both directions, connecting synthesis and characterization,
and synthesis and performance in our case. While one could
directly connect synthesis with performance without
characterization, developing both synthesis–structure and
structure–performance maps is essential in identifying the
active site and deriving other fundamental insights. These
may lead to tailored synthesis methods for increasing the
active site concentration and enhancing the overall
performance.

4. Prototypical characterization
results

The NDC synthesis was initially exploited with respect to urea
loading during the wet impregnation step. A fixed amount of
carbon precursor – 0.5 g activated carbon was added to
different concentrations of urea (0.1, 0.2, 0.4 and 0.6 g ml−1)
and oven dried. After drying the urea-impregnated carbon
materials, the C : N ratio was determined using the CHNS
analyzer. The results indicate that above a urea concentration
of 0.2 g ml−1, the C : N ratio plateaus with increasing urea
concentration (Fig. S1†). This is likely a result of the carbon
being saturated with urea at high loadings, as urea deposits
are seen after drying the impregnated catalysts for loadings
>0.1 g ml−1 (Fig. S2†). Therefore, we use 0.5 g carbon
precursor in 10 ml of 0.1 g ml−1 urea solution for further
studies. The surface morphology of the catalyst raw materials
(urea and activated carbon (ECBJ-300)) is shown in Fig. 2.
The activated carbon precursor has a well-defined porous
structure (Fig. 2A), while urea exists as dense non-porous
solid blocks (Fig. 2B).

The obtained NDC catalysts were characterized using
different techniques. XRD shows two broad diffraction peaks
at 2θ of 24.8° and 44.1° (Fig. S3†) indexed54 to the (002) and
(101) facets of graphite. The crystallinity of NDC catalysts has

Table 2 Experimental bounds of pyrolysis (synthesis) experiments for
optimization studies. After ramping from room to final temperature
(based on the heating rate), heating is held for the set hold time at the
final temperature

Lowest value Highest value

Final temperature (°C) 300 500
Heating rate (°C min−1) 3 8
Hold time (h) 2 6

Fig. 1 Mapping between synthesis conditions, material characterization, and performance. The total N content is the sum of the three N types,
and thus, the structure space is at most 6D for this example.
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been shown to change by the addition or removal of
structural defects54 and nitrogen incorporation52,55 and is
hereafter used as a measure of defect/disorder.55,56 The
Scherrer equation provides an estimate of the degree of
crystallinity of each catalyst, and our XRD patterns indicate
that nitrogen doping changes the degree of crystallinity
(Table S1†).

The surface area and porous structure of the resulting
samples were also characterized by N2 adsorption/desorption
measurements. N2 physisorption isotherms are shown in
Fig. 3A and S4.† All catalysts exhibit well-defined adsorption–
desorption isotherms with a clear hysteresis loop associated
with capillary condensation of inert species at higher relative
pressures in the mesopores. Rapid nitrogen uptake (P/P0 ∼
0.1) confirms the existence of micropores in NDCs. The
existence of micropores greatly enhances the specific surface
area, providing channels for electron transport. The pore
geometry, surface area, and micropore volume were analyzed
using the BET (Braunauer, Emmett and Teller) equation and
BJH (Barrett–Joyner–Halenda) pore-size distributions
measurements (Fig. 3B). The pore size distribution indicates
that the NDC catalysts possess large pores mainly composed

of mesopores and macropores. Mesopores facilitate transport
of reagents and reaction intermediates toward and from the
catalytic sites. Sharp rise in N2 adsorption uptake at higher
relative pressure indicates the presence of macropores.57

Altogether, it is expected that such a hierarchical structure
enhances diffusion of H2 and the HER activity.

XPS was performed to investigate the chemical
composition and bonding configurations of elements in the
NDC catalysts. Fig. 4 and S5† confirm the presence of C, O,
and N in the NDCs. The corresponding atomic percentages of
N are listed in Table S1.† The fitted high-resolution C 1s
spectrum shows four peaks43 at about 284.8, 285.7, 286.2,
and 288.3 eV, corresponding to sp2-C, sp3-C, C–O and CO/
C–N, respectively (Fig. 4B). The O 1s XPS spectra of the NDC
catalysts are shown in Fig. 4C. Three types of O species are
observed. The peak at 532.8 eV, 533.7, eV and 534.8 eV can be
assigned to C–O, C–OH, and adsorbed water species,
respectively.43

Successful doping of N atoms into the carbon skeleton is
evidenced from the corresponding high-resolution N 1s
spectrum (Fig. 4D). Pyridinic N (398.3 eV), pyrrolic N (399.8
eV), and graphitic N (401.1 eV) species are observed.14,17,43,45

Fig. 2 Scanning electron micrographs. A) Ketjenblack® EC-300J – carbon precursor. B) Urea – nitrogen precursor.

Fig. 3 Typical BET analysis of the nitrogen doped catalysts (NDC). A) N2 adsorption (blue)/desorption (yellow) isotherm. B) BJH pore size
distribution. Plots shown are for the NDC19, with synthesis conditions for this catalyst and others in Table S1.†
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5. Kriging-based active learning

Here we consider the NDC synthesis process as the objective
function with the synthesis conditions as the input
parameters and the total N content as the response that we
would like to optimize. Since the true objective function is
typically unknown, one needs to approximate it with a
surrogate model, which is cheap to evaluate in the
optimization process. Kriging methods can be used to
construct accurate surrogate models and locate global optima
given bounds of input parameters. The kriging-based active
learning algorithm is described in Fig. 5. The first step
requires a training set of initial sample points including both
the input parameter values and the response values from the
experiments. We use a latin hypercube design (Fig. S6†) to
sample the three-dimensional experimental space.49 Second,
a surrogate model is constructed using a normally
distributed multivariate function (a Gaussian process (GP))58

given this initial training set. By learning from the data and
measuring the similarity between points, GP can predict the
response value for an unseen point with an uncertainty
estimate. The uncertainty is low near the sampled regions
but high in regions with a low number of sampling points.
Third, the expected improvement (EI) acquisition function
helps the model decide where to sample next, i.e., what
experiments to do next. Generally, EI directs additional

sampling in regions of higher uncertainty or better
performance, and by doing so, it significantly reduces the
number of experiments required to identify the optimum
with improved accuracy. Sampling in regions of high
uncertainty is usually referred as “exploration”, whereas
sampling in regions of high expected performance is referred
as “exploitation”. EI offers a good balance between the
exploration and exploitation tradeoff.59,60 Next, the response
values at these additional sampling points are obtained from
a new set of experiments and added to the training set. The
model is then updated, and the process is iterated until the
observed optimum converges.

For our specific example, with an initial design of 10
points, we trained an initial surrogate model and further
used kriging to generate 3 additional points per iteration, i.e.,
a third of the initial test size, to adequately capture changes
as the experimental design evolved. All sampling points are
visualized in the 3-dimensional space shown in Fig. S6.†

In each iteration, the surrogate model can be visualized
in 2D by varying the final temperature and hold time at a
constant heating rate. As described in the kriging method
above, the total N content was optimized as the response
variable and the model predicted values are plotted as
response surfaces (Fig. 6A–E). The N content found in
experiments in each iteration is plotted as a function of the
number of iterations (Fig. 6F). The model of the initial 10

Fig. 4 Typical XPS spectra for NDCs. A) Full survey scan. B) High resolution C 1s scan. C) High resolution O 1s scan. D) High resolution N 1s scan.
Plots shown are for NDC19 with synthesis conditions for this catalyst and others in Table S1.†
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points (Fig. 6A) indicates an optimum N content around 2
wt%. Therefore, the algorithm suggests an optimum around
the edge points where one of the input parameters takes its
extreme value. After the first iteration (Fig. 6B), the nitrogen
content increases (intensified orange color on the heat
map), and shifts to the top and bottom left corners. After
the second iteration (Fig. 6C), a stronger intensity in the
heat map is observed at the top left corner where a higher
N content of 2.8 wt% is discovered. In the following
iterations, since the algorithm has sampled enough in the
region (i.e., exploitation), it explores other regions
improving the overall accuracy of the model (from
Fig. 6C and D) and the response surfaces remains
unchanged (from Fig. 6D to E). This can also be seen in
Fig. 6F, as the N content decreases in the third and fourth
iterations, suggesting an exploration with no increased N.
This process highlights the utility of a data driven approach
for optimizing the catalysts synthesis. If a traditional central
composite design with three factors was used, a total of 40
experiments would had been needed to obtain a response
surface which might not cover the true optimum. With
kriging based active learning, we efficiently reduced
experimental time (<20 runs to identify an optimum) and
consumables. Optimal conditions for synthesizing NDCs
from activated carbon and urea precursors with maximum
N content are at a final temperature of 300 °C, heating rate
of 8 °C min−1, and a hold time of 6 h. Extending the hold
time did not improve the N content further, as the N
content was at 2.79 wt% at a hold time of 8 h (vs. 2.82 wt%
at a hold time of 6 h).

The kriging model relates the synthesis conditions to the
N content; however, its mathematical expression is elusive.
To obtain an explicit expression, we build a simple model
(eqn (1)), using multivariate OLS regression with three
synthesis conditions as the independent variables and the
total N content as the response variable, as typically done in
building response surfaces in design of experiments.

Total N Content = 2.78 + 8.01 × 10−3 Temperature
− 0.343 Heating rate
− 0.806 Hold time
− 1.02 × 10−5 Temperature2

− 3.26 × 10−4 Temperature·Heating rate
− 4.17 × 10−4 Temperature·Hold time
+ 3.34 × 10−2 Heating rate2

+ 2.57 × 10−2 Heating rate·Hold time
+ 0.113 Hold time2 (1)

The total N content, temperature, heating rate, and the
hold time are in units of wt%, °C, °C min−1 and h. We use
MAE (mean absolute error) to quantify errors in model
predictions. The model gives a reasonable MAE of 0.31 wt%.
These equations are used later to gain insights into how to
optimize the HER performance.

5.1. Synthesis–structure causalities via machine learning

To understand how synthesis affects the catalyst structural
characteristics (Table S1†), PCA was performed. PCA is a
useful statistical tool for identifying the number of
independent factors, reduction of dimensionality,61 and
revealing correlations62 and the importance of various
factors. It emphasizes variation between parameters and
brings out patterns in a dataset, making data easy to explore
and visualize. In our case, the dataset consists of 9 features;
six are the structural features (BET surface area, micropore
volume, crystallinity, graphitic nitrogen content, pyridinic
nitrogen content, and pyrrolic nitrogen content) and three
are the synthesis conditions (final temperature, hold time,
and heating rate). The scree plot (Fig. S7†) shows that three
principal components explain 75% of the variation and are
sufficient for an exploratory analysis. Generally, factors that
are clustered together show strong positive correlation and
those orthogonal to each other show little or no correlation.

Fig. 5 Kriging-based active learning algorithm.
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Factors on opposite side of the PCA plot possess an inverse
correlation.

The two principal components that account for most of
the variability in the dataset are shown in the loading plot
(Fig. 7A). The results clearly show three clustered groups:
group 1 includes the surface area, the micropore volume,
and the final temperature; group 2 includes the graphitic
and pyridinic N content; and group 3 includes the defect/
disorder capturing the % crystallinity and the pyrrolic N
content. Fig. 7 reveals several interesting points. The final
pyrolysis temperature is positively correlated with the
surface area and the micropore volume. As the temperature

increases, the nitrogen species embedded in the pores and
the carbon framework gasify, resulting in a higher surface
area and a more porous catalyst.63–65 The final temperature
(group 1) is nearly antiparallel with the graphitic and
pyridinic N in group 2 and the pyrrolic N in group 3,
indicating an inverse relationship between them, i.e., as the
final temperature increases, all three types of N are
reduced. This fact also indicates that there is tradeoff
between increasing surface area and microporous volume
and controlling the N content.

There is a clear relation between the pyridinic and
graphitic nitrogen content with the hold time; the longer the

Fig. 6 2D visualizations of nitrogen content (%) heatmaps at a chosen heating rate (8 °C min−1) in the 3D space. A) Initial design. B) After 1st
iteration. C) After the 2nd iteration. D) After the 3rd iteration. E) After the 4th iteration. The values in the heatmaps are predicted by the kriging
surrogate models. The color bar indicates the value of nitrogen content. From A–E, as more points are added, the surrogate model becomes more
accurate. F) Optimal nitrogen content (%) observed in experiments in each iteration. The error bar indicates the standard deviation of the N
content from 3 measurements.
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hold time, the more these types of N form. These two N
species are the most dominant nitrogen species in NDC
materials,20 with pyrrolic nitrogen sometimes converting into
the graphitic and pyridinic species over time.26 The heating
rate is almost orthogonal to these N types, i.e., it does not
affect them. An underlying assumption made is that the N
species distribution measured macroscopically, using XPS, is
represented by three N types. Obviously, each type captures
the spatial average distribution, including any defects, of the
local environment of N atoms that cannot be identified by
measurements. Computational studies and atomic scale
microscopy, which can elucidate species distribution in finer
detail, will be important for future work.

The degree of crystallinity and the pyrrolic nitrogen
content (group 3) are strongly correlated. As pyrrolic nitrogen
is doped onto the carbon material, disorder is induced in the
framework.56 Pimenta et al. had observed a localization of
the d-band intensity at the edges of the carbon framework.56

Also, pyrrolic N is thermolabile17,26,54 and evaporates from
the carbon material with increasing temperature, leaving
behind surface defects. The heating rate affects positively
and the final pyrolysis temperature negatively these two
structural characteristics. On the other hand, the hold time
does not affect these structural features.

The covariance matrix (Fig. 7B) indicates that the 3
structural feature pairs are strongly correlated with each
other, including (1) BET surface area and pyrrolic N content
(covariance = −0.92), (2) pyridinic N content and graphitic N
content (covariance = 0.84), and (3) micropore volume (VM)
and BET surface area (covariance = 0.71). The observations
agree with the PCA results shown in Fig. 7A. The features in
pair (1) are in 180 degrees in the principal component (PC)
1-principal component (PC) 2 space suggesting a strong
negative correlation; and the features in pair (2) and (3) are
found in the same clustered groups suggesting a strong
positive correlation.

Mathematically, since the synthesis conditions control the
structural characteristics, it is more appropriate to refer to
these relations as causalities rather than correlations. We
used PCA to provide physical insights into which synthesis
conditions control the key physical characteristics of the
catalyst. In this respect, we use PCA as an interpretive tool of
the synthesis-characterization mapping.

5.2. Electrochemical performance–structural characteristics
correlations

The electrochemical HER activity and specifically the onset
potential (V vs. SHE) and the maximum current density (mA
cm−2) were evaluated for each of the 22 NDC catalysts
(labeled as NDCx, x = 1,…,22) synthesized in He-saturated
0.5 M H2SO4 electrolyte. Since both variables are negative, we
choose the onset potential and the absolute value of the
maximum current density as the performance metrics, since
a desired NDC catalyst should have higher values in both
metrics (an onset potential as close to zero as possible and as
high current density as possible). As displayed in.

Fig. 8A and S8,† each synthesized catalyst exhibits
different electrochemical performance, manifested with a
different onset potential and maximum current density
(Table S2†).

In order to evaluate the HER activity of the synthesized
NDC catalyst, we compared the onset potentials (evaluated at
a current density of 1 mA cm−2) of each catalyst. Fig. 8B
shows the polarization curves obtained for the NDC19, fresh
carbon (undoped) precursor (Ketjenblack® EC-330J), Vulcan
XC-72, and multiwall carbon nanotubes (MWCNTs). The HER
performance is significantly improved after the doping of the
fresh carbon with nitrogen. Interestingly, the onset
overpotentials (η = Eo–Ep) of the NDC samples are relatively
low and comparable to values reported in literature (Table
S3†). The results suggest that nitrogen doping could provide

Fig. 7 A) Principal component analysis of the correlations between synthesis conditions and catalyst features. B) Covariance matrix of
standardized structural features. The green and red colors indicate strong positive and negative correlation between two features, respectively.
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HER active sites facilitating charge transfer through the
catalyst. Electron supply for the hydrogen evolution current
has been shown to depend linearly on the current density,66

necessitating high current density for faster reaction rates.
Fig. 8C shows the onset potential of the 22 NDCs plotted

against the maximum current density (absolute value)
indicate some correlation between the two metrics.
Importantly, one could have high onset potential and high
current density (absolute values) at once, i.e., there is not a
Pareto line. The Pearson coefficient, which is a measure for
linear correlation, is determined to be −0.4, indicating a weak
linear correlation. This trend is also consistent at lower onset
potentials (Fig. S9†). It is important to note that comparing
the onset potential and the maximum current density has
some limitations related with the insufficient transfer of the
produced H2 on the electrode surface to the bulk electrolyte.67

Eqn 2 and 3 relate the catalyst structural features to the
onset potential (V) and maximum current density (absolute
values) (mA cm−2), respectively. The N species content (NPyridinic,

NPyrrolic, NGraphitic) is expressed as the fraction of the total N
content. The BET surface area, micropore volume, and
crystallinity are in units of m2 g−1, cm3 g−1, and percentage. Note
that the coefficients are for the original (unscaled) values. The
standardized coefficients are represented in Fig. 9.

Onset potential = 0.486 + 0.0438 NPyridinic − 0.102 NPyrrolic

− 0.141 NGraphitic

− 1.03 × 10−3 BET surface area
+ 1.36 Micropore volume
− 1.80 × 10−3 Crystallinity (2)

abs(imax) = −119 + 87.6 NPyridinic − 98.0 NPyrrolic

− 192 NGraphitic − 0.103 BET surface area
− 56.8 Micropore volume
+ 5.50 Crystallinity (3)

The MAE for onset potential and maximum current
density are 0.03 V and 26.74 mA cm−2, respectively. These

Fig. 8 HER polarization curves of A) synthesized NDC18-20. The inset shows a blow up of the onset potential. B) Blank carbon electrodes in
comparison to NDC19 (carbon with the best electrochemical performance). C) Onset potential (V vs. SCE) versus the maximum current density
(absolute values), abs(imax) (mA cm−2) for the 22 NDCs.
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errors correspond to 14% and 16% of the observed range for
the two variables in our dataset. One should note that these
relations are linear and adequate for our system, but
nonlinear models could also be considered to potentially
improve the prediction accuracy.

From Fig. 9, we clearly observe the multivariate
contributions of various features on the observed
electrochemical performance. Contrary to prior research
attributing electrochemical performance to one or the other
N species, all N species21,68,69 affect the electrochemical
performance, a fact that may explain the conflicting reports
in the literature. However, their effect is not the same:
pyrrolic54 and graphitic17,53,54 Ns cooperate, whereas
pyridinic20,53 is antagonistic to the other two. In particular,
the graphitic N has the strongest influence amongst the three
N species, especially for the current density. The other
catalyst properties (micropore volume, surface area and
crystallinity) also influence the electrochemical performance;
crystallinity is more important for the current density and
surface area is the most important materials descriptor for
the onset potential.

Towards increasing the onset potential, PLS analysis
indicates that increasing both pyridinic N and micropore
volume (Fig. 9A) will provide the desired output. Likewise,
reducing the graphitic N, pyrrolic N, as well as surface area
will also increase the onset potential. The pore related
properties (surface area and micropore volume) have the
strongest influence on the onset potential, with the N species
contributing to a lesser effect. We believe that the
microporous structure provides interconnected paths and
short diffusion channels enabling the absorption of H+ and
desorption of H2, facilitating the mass and charge transfer.

Conversely, the N species have the strongest influence on
the current density, with the pore related properties having a
weaker effect. Current density is a kinetic property,
explaining its dependence on the distribution and

concentration of HER active sites (N species) for charge
transfer through the catalyst (Fig. 9B). To increase the
maximum current density, increasing both pyridinic N and
% crystallinity (Fig. 9B) will meet the desired target.
Unfortunately, the pyridinic and graphitic Ns are almost
colinear (Fig. 7B), which implies that one cannot increase
pyridinic N without also increasing the graphitic N. In
contract, one could decrease pyrrolic N without affecting the
other types of N. Catalyst crystallinity introduced by d-band
disorder facilitates shuttling of electron carriers between
crystallites in the material, reducing electrical resistivity,56

and consequently increases the maximum current density
(absolute value) of NDC catalysts. Similarly, reducing the
graphitic N and pyrrolic N also increases the maximum
current density.

We further performed kriging-based active learning to
optimize the HER performance using surrogate models
without performing additional experiments. In the first step,
we related the 6 structural features to synthesis conditions
using multivariate OLS regression (eqn (S1)–(S6), parity plots
shown in Fig. S10B–G†). Next, direct relations between
synthesis conditions and HER performance were constructed
by substituting eqn (S1)–(S6)† into eqn (2) and (3). The
resulting relations were used as surrogate models to optimize
HER performance and locate optimal synthesis conditions.
Due to their complexity, we do not display the functional
forms of these two models. The two models have reasonable
MAEs of 0.03 (V vs. SHE) and 26.74 (mA cm−2) for the onset
potential and maximum current density, respectively (parity
plots shown in Fig. S9†).

To enhance the performance, the onset potential and the
maximum current density (absolute value) need to be
maximized. We performed an initial sampling of 15 points
from a latin hypercube design and 75 active learning
iterations with a single point added per iteration. The
algorithm converged quickly to the optimum within the first

Fig. 9 Partial least squares (PLS) standardized coefficient plot for A) the onset potential (V vs. SHE) and B) the maximum current density (absolute
value) (mA cm−2).
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20 iterations (see Fig. S10† for the learning curves). The
optimization (Fig. 10) can be accomplished separately for the
onset potential (scenario i), maximum current (scenario ii),
or simultaneously (scenario iii; multi-objective optimization)
by assigning equal weights of 0.5 to both normalized
performance variables and optimizing the sum (a scaled
performance metric). Scenario iv, as a comparison, represents
the synthesis conditions that gave the optimum N content in
Fig. 5. We show the optimal synthesis conditions with the
corresponding structural features, as well as the performance
in Table S4† for the 4 scenarios. The optimal HER
performance for scenarios i–iii are close in value (Table
S4C†), suggesting again that a Pareto front behavior does not
apply to this system. Interestingly, by co-optimizing both
performance metrics (scenario iii), the algorithm directs the
optimum between those of scenario i and ii, compromising
both performances. Fig. 10 indicates that scenarios i–iii
(optimizing all structural features) gives better HER
performance in comparison to scenario iv, where only the N
content was optimized, indicating that the HER performance
is not just driven by the N species, but has contributions
from other features of the NDC as proposed above. In other
words, the initial consideration of N as an optimization
metric turns out to be a suboptimal objective function. All
scenarios suggest that low temperatures (300 °C) in synthesis
and catalysts with high crystallinity give best HER
performances, with implications on energy savings. We
validated the predictions by synthesizing a catalyst using the
conditions of scenario iii of the multi-objective optimization
(Table S4A†). The NDC shows better electrochemical
performance compared to the original 22 catalysts with an
onset potential of −0.1 V (vs. SHE) and a maximum current
density of 227 mA cm−2 (the comparison with the original
optimum (NDC19) is shown in Fig. S11†). The predicted
optimal absolute maximum current density value (133.6 mA
cm−2) is considerably lower than the experimental value (227
mA cm−2) for the validation point. The predicted lower

performance is attributed to the error in the surrogate
models. In addition, poor sampling near the optimum in the
experimental set could contribute to this. Irrespective of the
specific values, the general trends still hold. In order to
improve the model accuracy, additional experiments, with
recommended synthesis conditions from kriging, using
performance optimization as the goal, are recommended.

Summarizing these findings, the results expose the
multidimensional and complex nature of such systems
contrary to simplistic perceptions attributing performance to
one single feature (e.g., the graphitic or the pyridinic N) and
neglecting important contributions from other catalyst
features. The observed electrochemical performance is
effected not by a single feature (pyridinic or graphitic N) but
by a combined contribution of various nitrogen species, pore
structure and disorder of the NDC catalyst. Additional
synthesis parameters, e.g., using templating agents,
alternative nitrogen precursors, and vapor deposition
synthesis methods provide additional handles toward
breaking causal relations between key features and allowing
the tailoring of catalyst properties through controlled
synthesis.

6. Conclusions

We introduce a quantitative synthesis–structure–property
relations (QS2PR) framework, by combining active learning-
based experimental design and machine learning analysis
towards understanding active sites and improving catalyst
performance. We apply the framework to the synthesis of
nitrogen-doped carbon catalysts for the hydrogen evolution
reaction (HER). The synthesis space consists of three tunable
synthesis parameters: final temperature, the heating rate
during pyrolysis, and the hold time at the maximum pyrolysis
temperature. Using XRD, XPS, and BET characterization
techniques, we determine 6 structure features of the
catalysts: percent crystallinity, fraction of three types of

Fig. 10 Heat maps for A) the onset potential (V vs. SHE) and B) the maximum current density (absolute values) (mA cm−2) as a function of the
heating rate and hold time. Fig. 5 and Table S4† both indicate 300 °C as the best temperature for optimal HER performance, and hence we choose
to graph the heating rate and hold time at a fixed final temperature of 300 °C. The red colors indicate desired performance, whereas the blue
colors indicate poor performance. The points indicate optimization of the onset potential (scenario i), maximum current (scenario ii), both
(scenario iii; multi-objective optimization with equal weights of 0.5), or total N (scenario iv) which was the initial target.
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nitrogen species (pyridinic N, pyrrolic N, and graphitic N),
BET surface area, and micropore volume. The performance
metrics for the catalysts are the onset potential and the
maximum current density (absolute value), both of which
need to be maximized for electrochemical performance. We
relate the performance to structure features and these to
synthesis conditions by constructing surrogate models via
machine learning. In general, all N species as well as the
porosity and defects affect the electrochemical performance,
with the graphitic N having the strongest influence amongst
the three active N sites. We identify active catalyst sites;
specifically, the pyridinic N increases the current density,
whereas pyrrolic and graphitic Ns reduce the current density.
We discover that the pyridinic and graphitic Ns are colinear,
i.e., one cannot increase one without increasing also the
other. Fundamental studies are worth pursuing to
understand the reasons. Kriging-based active learning locates
the optimal synthesis conditions with less experimental time
and materials. We do not observe a Pareto front, hence both
onset potential and maximum current density (absolute
values) can be co-optimized (the optima are not identical but
are close enough). The co-optimization results suggest that
low synthesis temperature and NDC catalysts with high
crystallinity are important towards maximizing HER
performance by having relatively higher heating rates and
longer final hold times. This work highlights the inherent
multidimensionality of the catalyst synthesis design space
and the need for data-driven analysis to unravel correlations
and causalities in multivariate systems and potentially
identify the active sites.
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