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Iterative experimental design based on active
machine learning reduces the experimental
burden associated with reaction screening†

Natalie S. Eyke, William H. Green and Klavs F. Jensen *

High-throughput reaction screening has emerged as a useful means of rapidly identifying the influence of

key reaction variables on reaction outcomes. We show that active machine learning can further this

objective by eliminating dependence on “exhaustive” screens (screens in which all possible combinations

of the reaction variables of interest are examined). This is achieved through iterative selection of maximally

informative experiments from the subset of all possible experiments in the domain. These experiments can

be used to train accurate machine learning models that can be used to predict the outcomes of reactions

that were not performed, thus reducing the overall experimental burden. To demonstrate our approach,

we conduct retrospective analyses of the preexisting results of high-throughput reaction screening

experiments. We compare the test set errors of models trained on actively-selected reactions to models

trained on reactions selected at random from the same domain. We find that the degree to which models

trained on actively-selected data outperform models trained on randomly-selected data depends on the

domain being modeled, with it being possible to achieve very low test set errors when the dataset is heavily

skewed in favor of low- or zero-yielding reactions. Our results confirm that this algorithm is a useful

experiment planning tool that can change the reaction screening paradigm, by allowing medicinal and

process chemists to focus their reaction screening efforts on the generation of a small amount of high-

quality data.

Introduction

In the pharmaceutical industry, rising drug discovery costs
have placed increasing pressure on process development
timelines,1 making it more urgent than ever to efficiently
identify synthetic routes that can be used to generate target
compounds in a manner that satisfies any or all of a number
of different objectives, including space–time yield, quality,
and process mass index (PMI). To address this, several groups
have developed automated high-throughput reaction
screening platforms and demonstrated their capacity to
screen large numbers of reactions in a time- and material-
efficient manner. This concept has been applied to screen for
efficient room-temperature palladium-catalyzed Buchwald–
Hartwig aminations,2 optimize palladium-catalyzed Suzuki–
Miyaura cross-couplings,3,4 discover reactions catalyzed by
nonprecious metals,5 and screen enzyme libraries for active
biocatalysts,6 among other applications.7,8

Despite the efficiency gains enabled by these platforms, it
is impractical and unnecessary to perform an exhaustive
screen of all of the influential reaction variables every time a
challenging chemical transformation must be designed or
improved. Murray et al. have estimated that exhaustively
screening just the major variables that may influence the
outcome of a single palladium-catalyzed Suzuki–Miyaura
coupling reaction would require running over six billion
experiments.9

To overcome the need for exhaustive reaction screening, a
variety of optimal experimental design algorithms have been
developed and adapted for use in this area. Many of these
algorithms are iterative in nature and designed specifically
for reaction optimization. Optimization is not the primary
objective of this work; instead, we are interested in modeling
the landscapes of broad reaction domains with high fidelity,
a task that can be viewed as a precursor to optimization.
However, these algorithms have much in common with our
approach in the sense that they are implementations of
iterative optimal experimental design. Several groups have
reviewed automated synthesis platforms for performing this
type of optimization.10–12

A method that combines design of experiments (DOE) and
sequential adaptive response surface methodologies has been
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developed to optimize simultaneously over continuous
reaction variables (e.g. temperature, residence time, catalyst
loading) and discrete reaction choices (e.g. ligands and
solvents).13,14 Such DOE-based techniques are efficient when
optimizing a reaction over a narrow scope of discrete and
continuous parameters. However, for high-dimensional
domains consisting of large numbers of discrete variables,
each with a large number of settings (such as the reaction
landscapes explored by Perera et al.3), machine learning-
based modeling techniques may be more appropriate. The
pattern recognition achievable with machine learning can
identify relationships between distinct reaction components
that can reduce the number of experiments needed to
achieve a desired model accuracy.

Other techniques, including Bayesian optimization and
genetic algorithms, have been successfully applied to reaction
optimization and related problems.15–18 As the quantity and
diversity of reactions that we are capable of efficiently
screening has grown, however, new iterative optimal
experimental design strategies that are simultaneously
compatible with large datasets, highly nonconvex objective
functions, the possibility of multiple (sometimes competing)
objectives, and large input dimensionality must be
developed.

Several research groups have demonstrated that machine
learning is capable of overcoming these barriers to accurately
model moderately-sized datasets cataloging the yields of
reactions spanning a narrow scope of chemical space.19,20

However, whether it is possible to minimize the amount of
data needed for these modeling efforts has yet to be
demonstrated.

By combining a machine learning-based reaction yield
prediction model with experimental design techniques from
the field of active learning,21 we demonstrate, through
retrospective analysis of existing reaction screening data, that
active machine learning can be used to make these screening
efforts more efficient. In lieu of exhaustively performing all
of the experiments in a domain, we show that active learning
can be used to select the most informative subset of all
possible experiments. These especially informative
experiments can be used to create a model that makes
accurate predictions across the entire domain. The outcomes
of the experiments that are not explicitly performed may then
be predicted using the model, and the overall experimental
burden is thereby reduced. Hence, machine learning
algorithms have the potential to replace the exhaustive
experimental planning approach that is increasingly common
in reaction screening efforts. It will allow medicinal and
process chemists to perform a small number of intelligently-
selected experiments as opposed to large numbers of
experiments which, due to the throughput required, tend to
produce results of middling and inconsistent quality.

We begin by describing the methods used for reaction
yield modeling and active learning, and the datasets selected
to validate our approach. For each dataset, we show results
from applying uncertainty sampling-based active learning to

produce accurate models with minimal training data.
Random learning, in which training data points are selected
at random from the datasets, serves as a benchmark against
which to evaluate active learning performance. We then
directly compare two different uncertainty estimation
strategies in terms of their performance in the context of
active learning as well as the quality of the uncertainty
estimates they produce. Finally, we conclude with an
assessment of the implications and future applications of
active learning for reaction screening.

Methods

Active learning is a general term for a suite of optimal
experimental design strategies that are deployed in
conjunction with machine learning models and typically
implemented in an iterative fashion,21 most generally with
the objective of improving the predictive accuracy of the
model. Often in the chemical sciences data is limited and
expensive to acquire, and active learning has proven to be a
valuable strategy for overcoming these limitations. It has
enabled the creation of predictive models for a variety of
chemical systems with minimal data generation. In recent
years, active learning has been deployed to facilitate drug
discovery22–29 (Reker et al. provide a pertinent review30), and
to create surrogates of quantum mechanical models such as
DFT (for example, to facilitate discovery of
electrocatalysts31),32–36 among other applications.37–39

A variety of active learning sampling criteria have been
developed. The most popular of these is uncertainty
sampling, in which the algorithm chooses to query the
instances about which it is most uncertain.40 This strategy is
popular because it tends to be fairly simple to implement. It
depends, however, on an adequate estimate of the model's
uncertainty in its predictions about the instances in the
unlabeled pool. Depending on the modeling objective, a
variety of strategies for estimating uncertainty have been
proposed, including both Bayesian41 and frequentist42

approaches. Scalia et al. compare several uncertainty
estimation strategies in the context of molecular property
prediction.43 A novel technique based on latent-space
distances has been developed for chemical applications as
well.44 The uncertainty sampling selection criterion can also
be easily tweaked to perform optimization (as opposed to
pure exploration); for additional details, see section 3 of the
ESI.†

Herein, we explore two uncertainty estimation strategies:
(i) Monte Carlo (MC) dropout masks,45 in which a series of
dropout “masks” are applied to a single trained model, and
the standard deviations in the outputs for each untested
reaction are used as a proxy for model uncertainty, and (ii)
ensembles, a natural benchmark for MC dropout in which a
series of models are independently trained, and the standard
deviations in the predictions for each unlabeled reaction are
treated as a measure of uncertainty. In our implementation
of the ensembles approach, the weights for each model
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within an ensemble were independently, randomly initialized,
and each model was trained using the entirety of the available
training data (i.e. we did not implement subsampling). A
diagram of the algorithm is given in Fig. 1. All of the models
used to select experiments for active learning leveraged an 80/
20 training/validation split of the non-test data (the size of
which varies as the algorithm progresses) with early stopping
based on the convergence of the validation error.

To validate our proposed experimental design framework,
we used data reported in two publications that describe
platforms for exhaustive high-throughput nanomole-scale
reaction screening.2,3 We chose to validate our active learning
approach by deploying it within two different datasets to
ensure that the results we obtained were demonstrative of
the true performance of the technique and not an artifact of
the dataset employed. The first of these two platforms is
designed to conduct nanoscale reactions in well plates.2

High-throughput reaction analysis was achieved using MISER
LC-MS. The authors used this platform to study the coupling
of 3-bromopyridine to a diverse set of sixteen nucleophiles in
the presence of 96 different catalyst-base combinations at
ambient temperature in DMSO for a total of 1536 reactions
(Fig. 2a). The screening experiment allowed the authors to
identify which catalyst-base combinations enabled successful
coupling under mild conditions for each of the nucleophiles
examined. Continuous variables such as temperature and
reaction time were held constant across the reactions.

In the second study, Perera et al. used a flow-based
screening platform to investigate a Suzuki coupling between
two substrates with various leaving groups in the presence of
a variety of ligands, bases, and solvents, for a total of 5760

reactions (Fig. 2b).3 Again, the influences of continuous
variables were not assessed as part of this study. Compared
to the 3-bromopyridine screen described above, this screen
covers a narrower chemical space with a higher density of
experiments (Fig. S1†). This difference between the datasets
arises from the objectives under which the datasets were
generated. In the case of the Suzuki data, the objective is to
optimize the production of a particular product, whereas the
3-bromopyridine objective is to screen a set of reagents for
compatibility with a variety of different coupling reactions.

Neural network performance

To begin our analysis, we assessed whether or not neural
networks could predict the outcomes of the reactions
reported in these datasets. We represented the molecules
involved in each reaction using Morgan fingerprints
(excluding those that were constant across the reactions,
such as the catalyst).46 The fingerprints of the molecules used
in each reaction were concatenated to generate reaction
feature vectors. Continuous variables, such as the
temperature and residence time, were not varied in either
study, so this information would not be informative to a
machine learning model and was not included in the
reaction featurization (for additional details, see section 2 of
the ESI†). After converting molecule SMILES strings to
Morgan fingerprints using RDKit,47 we trained a neural
network on each of the two datasets and optimized
hyperparameters using a random search (for details on
parameters examined and ranges explored, see section 2 of
the ESI;† once the best hyperparameters for a dataset were

Fig. 1 Overview of the active learning algorithm.
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identified, these were used for all the analyses of that
dataset). To obtain labels in the range [0, 1], for the
3-bromopyridine data we linearly normalized the LC area
count ratios, and for the Suzuki data we divided the reaction
yields by 100. In the results we present, for the Suzuki data,
we re-transformed the loss values into yield percentages. For
the 3-bromopyridine data, we did not re-transform the loss
values into LC area count ratios. We believe the normalized
values are more intuitive than the ratios, because they
represent the loss as a fraction of the range of ratios
observed. The model of the 3-bromopyridine data has a ten-
fold cross validation test set RMSE of 0.04 (4% of the range),
and the model of the Suzuki data is able to predict test set
yields with an average ten-fold cross validation root mean
square error (RMSE) of 0.1 (10 yield%) (Fig. 3). This confirms
that neural networks operating on Morgan fingerprints can

successfully predict the productivity of diverse coupling
reaction products.

Notably, Granda et al. have also modeled the outcomes of
the Suzuki reaction dataset we examine here. They achieved
similar results with a neural network operating on one-hot
encodings of the reagents.48 We opted for the Morgan
fingerprint representation instead because it is more general
and extensible than a one-hot encoding (i.e. the scope of the
model can be easily expanded without altering the model
architecture); this consideration makes Morgan fingerprints
advantageous compared to descriptor vectors, as well, since
extending the domain of applicability of a descriptor-based
model may require expanding the descriptor set to fully
capture the diversity of the extended domain.

Results and discussion
Active learning performance

Confident that we could accurately regress the outcomes of
the reactions reported in ref. 2 and 3 using a neural network
operating on Morgan fingerprints, we sought to ascertain
whether active learning could be used to reduce the number
of data points needed to train a model exhibiting high
accuracy over the entire reaction domain. In general, neural
network performance improves as the size of the dataset used
for training increases. To evaluate the performance of an
active learning algorithm, we can compare the performance
of models trained on a particular quantity of actively-selected
data to models trained on the same quantity of randomly-
selected data (“random learning”). For both datasets, active
learning outperforms random learning (Fig. 3). This confirms
that active learning reduces the number of experiments
needed to achieve a specified model accuracy. Therefore,
active learning can be useful for experiment planning in the
reaction-screening context by reducing the number of
experiments needed to generate a particular model.

In the case of the Suzuki data, active learning does not
begin to outperform random learning until a thousand or so
reactions have been added to the training dataset (which is
roughly 17% of the entire dataset) (Fig. 3d). We attempted to
overcome this by augmenting the experiment selection
criterion with various notions of the “distance” between a
candidate reaction and the reactions in the training data, but
these attempts were unsuccessful (for more information, see
section 3d of the ESI†).

Two related features of Fig. 3c and d stand out. First, the
degree to which active learning outperforms the random
learning baseline is significantly different between the two
datasets. We emphasize that this difference does not imply
that the technique is more or less useful in one context or
the other. Second, the test set error in the 3-bromopyridine
case can be driven close to zero when active learning is
employed.

To better understand the algorithm's performance on the
3-bromopyridine data, we generated parity plots comparing
test set target values to predicted values for the

Fig. 2 Overview of datasets used for algorithm development. (a)
3-Bromopyridine reaction scheme.2 (b) Suzuki reaction scheme: R1: –Cl
, –Br, –OTf, –I, –B(OH)2, –BPin, –BF3K; R2: –B(OH)2, –BPin, –BF3K, –Br.

3

(c) 3-Bromopyridine label distribution. Labels are HPLC area counts
(LC AC) ratios (product/internal standard), normalized by division by
the maximum observed value in the dataset. The histogram was also
discretized into finer bins to better show the preponderance of zero-
yielding reactions in the dataset (Fig. S2a†). (d) Suzuki label distribution.
Labels are yield fraction (yield divided by 100%).
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3-bromopyridine data across several iterations of the active
learning algorithm (Fig. S4†). These plots suggest that the
active learning algorithm is preferentially selecting the more
productive reactions (those with high normalized LC area
count values) for addition to the training dataset.

We confirmed that this was occurring by plotting the
distributions of target values of the reactions selected by the
active learning algorithm as the algorithm progressed
through the dataset (Fig. 4a–d). The results confirm that the
active learning algorithm preferentially selects the unique,
high-productivity reactions for addition to the training
dataset. The preferential selection of those reactions for
addition to the training dataset which, by virtue of their
rarity, end up being more difficult to model accurately with
the data available than the many low-productivity reactions,
leads to slightly elevated training and validation errors
compared to random learning (Fig. 4e), but the resulting test
set error is miniscule. Put another way, given the
preponderance of reactions with small amounts of product
formation, the model is able to make extremely accurate

predictions for the low-productivity reactions (which
dominate the test set), thus driving the test set error toward
zero. A contributing factor that applies to the system used to
generate the 3-bromopyridine data (and likely to other
experimental systems as well) is that the experimental error
associated with a reaction that produces no product at all is
lower than that for a reaction that produces a nonzero
amount of product (Fig. S2b and c†). More than sixty percent
of the reactions in the 3-bromopyridine dataset were zero-
yielding (Fig. S2a†), implying that the average experimental
error rate across the 3-bromopyridine dataset is very low;
further, the higher experimental error associated with the
high-productivity reactions may also contribute to the high
estimated uncertainties that result in preferential sampling
of these reactions by the algorithm.

We expect that it will be possible to use active learning to
drive test set error to extremely small values in any setting
where a preponderance of the dataset labels have identical or
nearly-identical values. To test this, we subsampled the
Suzuki data to create augmented versions of the dataset with

Fig. 3 Results of 10-fold cross-validation neural network training for (a) 3-bromopyridine data and (b) Suzuki data, and performance of active
learning (ensemble-based uncertainty sampling) versus random learning as measured by test set error for various sizes of the training dataset for
(c) 3-bromopyridine data and (d) Suzuki data.
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skewed, rather than uniform, label distributions. The results
show performance intermediate between that of the
3-bromopyridine data and the non-augmented Suzuki data,
which confirms the strong influence of the label distribution
and any relationship that may exist between the label
distribution and the average experimental error rate across
the dataset (section S3e†).

To further gauge the influence of experimental error on
active learning performance, we also studied the effect of
adding noise to the datasets. Not only does added noise
reduce the performance of the models overall, as we would
expect, it also reduces the degree to which active learning
outperforms random learning (Fig. S13†). We also studied
the effect of removing the zero-yielding reactions from the
3-bromopyridine dataset, which naturally results in a dataset
with higher average experimental error. The resulting active
learning trajectory shows a decay in test set loss that is much
more gradual than that in Fig. 3c (Fig. S12†).

Compared to the Suzuki data, the 3-bromopyridine data is
more difficult to model accurately for two reasons: first, the
3-bromopyridine data covers a broader scope of substrates
and reaction types with fewer data points. Unlike the Suzuki
data, which explores the performance of a single coupling
reaction under a variety of conditions, the 3-bromopyridine
data examines many different kinds of reactions, making any
given data point less informative to the other data points in
the set than is the case for the Suzuki data (Fig. S1†). Second,
the 3-bromopyridine dataset reports LC area counts rather
than product yields, such that the model must learn to model

the productivities of the various reactions as well as the
response factors of each product in order to produce accurate
predictions. Thus, the 3-bromopyridine dataset presents a
more challenging modeling problem than the Suzuki dataset,
leaving more room for active learning to outperform random
learning on the 3-bromopyridine data.

Put another way, the Suzuki data is very easy to model, even
with data points that are selected at random from the domain.
The high degree of similarity between each of the reactions
in the Suzuki dataset implies that much of the information
needed to model one of the reactions in the dataset is
useful for modeling many of the other reactions in the
dataset as well.

Uncertainty estimation strategies

We studied the use of two different uncertainty estimation
strategies: ensembles of neural networks (in which a series of
models are trained using the same dataset, but with different
weight initializations) and MC dropout masks. Fig. 5 shows
the results of conducting uncertainty sampling-based active
learning with these two techniques. When applied to the
Suzuki data, ensembles perform better than MC dropout
masks for n < 4500; the techniques perform similarly
thereafter. The two techniques perform similarly to one
another when applied to the 3-bromopyridine data. The
domain dependence of the relative performance of
uncertainty quantification strategies observed here is
consistent with prior research.49

Fig. 4 Results of active learning (ensemble-based uncertainty sampling) applied to the 3-bromopyridine data. (a)–(d): Log histograms of the
outcomes of reactions added to the training dataset by the active learning algorithm show preferential selection of productive reactions. (a) 100
randomly-selected initialization reactions. (b) First 100 reactions selected by active learning. (c) First 500 reactions selected by active learning. (d)
First 1000 reactions selected by active learning. (e) Distribution of total model loss across the training, validation, and test sets, for both random
and active learning.
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In order to understand the difference in the performance
of the two techniques on the Suzuki data, we sought to
evaluate the quality of the uncertainty estimates produced
using both the ensembles approach and the MC dropout
approach. Given that the predictions produced in both cases
are normally distributed (Fig. S5†), if the uncertainty
estimates are accurate or well-calibrated, the reported yield
should fall within two standard deviations of the predicted
mean roughly 95% of the time. One of the advantages of
developing this strategy via a retrospective analysis is that we
can readily evaluate whether this condition is satisfied
without sacrificing any of our training data (Fig. S6 and S7†).

Although the MC dropout uncertainty estimation strategy
performs slightly worse than ensembles, it is substantially
less computationally expensive. Therefore, we sought to
understand the influence of the number of dropout masks
on the frequency with which the resulting standard deviation
in the prediction effectively captured the distance between
the prediction and the true yield, as well as its influence on
the performance of active learning, with a specific interest in

whether increasing the number of masks would allow us to
meet or exceed the performance achieved with ensembles
consisting of 100 members. We found that committees of ten
masks yield better uncertainty estimates than committees of
two masks, but increasing the number of masks further (to
100 and to 1000) does not further improve the quality of the
estimates (Fig. S7†).

The greater accuracy of the uncertainty estimates
produced when ten versus two dropout masks are used to
estimate uncertainty does not translate to a meaningful
difference in active learning performance (Fig. 6). This
indicates that despite the magnitudes of the uncertainty
estimates exhibiting varying degrees of “correctness,” the
uncertainty estimation techniques rank the candidate
reactions in similar orders.

Influence of batch size

The number of experiments suggested by the algorithm in
a single iteration without a degradation in performance
compared to single-experiment batches is important to
evaluate. It determines the number of experiments that
can be performed in parallel, which is a critical feature of
experiment planning and design. We expect performance
to degrade with increasing batch size because there is a
possibility of redundancy among the experiments that are
recommended within a single iteration. Note that we do
not mean to imply that increasing the size of the training
dataset may inhibit performance, but merely that when
comparing two training datasets of equal size, one
generated with a large active learning batch size and one
generated with a small active learning batch size, we
expect the dataset generated with the smaller active
learning batch size to have a lower test set error. To
understand this, consider the following: if the model is
highly uncertain about one reaction, it is reasonable to
expect that the model is also highly uncertain about
reactions that are similar to that one, yet it may not be

Fig. 5 Comparison of uncertainty estimation strategies: ensembles
versus Monte Carlo (MC) dropout. (a) and (b): Loss trajectories; each
trajectory is the average of three runs of the corresponding algorithm;
bands represent 95% confidence intervals. (a) 3-Bromopyridine data.
(b) Suzuki data.

Fig. 6 Influence of the number of dropout masks on the performance
of active learning.
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necessary to add more than the first reaction to the
training set to eliminate the bulk of the uncertainty.

Good performance is achieved across the range of batch
sizes that were tested (Fig. 7). For the 3-bromopyridine data,
although all four of the batch sizes tested achieve roughly the
same final test set loss, the trajectory corresponding to a
batch size of 384 does show degradation in performance
compared to smaller batch sizes. Likewise, in the Suzuki
data, when the training/validation dataset contains fewer
than ∼2000 reactions, performance degrades by a small
amount with increasing batch size. The four trajectories
converge later on.

When chemists implement this technique prospectively,
the batch size parameter must be thoughtfully considered.
The experimental convenience of large batch sizes must
be balanced against the possibility for redundancy within
those batches. Focusing on the generation of small
batches of high-quality data accelerate convergence of the
model. In the long run, this strategy will generally prove
more efficient than executing larger batches of lower-
quality experiments.

Conclusions

The presented results confirm that uncertainty sampling-
based active learning is a useful experiment selection tool
that can be helpfully applied in a variety of reaction domains,
allowing medicinal and process chemists to focus their
reaction screening efforts on the generation of a small
amount of high-quality data. Furthermore, it is possible to
propose large batches of experiments upon each iteration
without a drastic reduction in performance, making it
possible to perform the experiments recommended by the
algorithm in a parallel fashion. Although a myriad of important
factors contribute to the design of high-throughput reaction
screening experiments, we recommend using this algorithm to
navigate broad reaction domains, because models with broad
domains of applicability are most useful long-term; the trade-off
is that the accuracy may be lower compared to using the same
quantity of experiments to train a model in a smaller domain.

Between the two different uncertainty estimation strategies
that we evaluated (ensembles and MC dropout masks),
ensembles delivered better active learning performance.
However, the performance boost associated with ensembles
needs to be balanced against the lower computational expense
of the MC dropout approach. For datasets of sizes similar to
those we work with here, computational expense is not a major
concern, but this would change with larger datasets.

Our analysis suggests that the relatively large difference
between random learning and uncertainty sampling observed
for the 3-bromopyridine data is largely an artefact of the
dataset's outcome distribution, and unproductive reactions
exhibiting low experimental error. However, we also
hypothesize that the general difficulty associated with
modeling a particular dataset might also be a contributing
factor to the amount by which active and random learning
performance differs, since random learning can perform
quite well for tasks where the individual data points have
much in common and are highly informative to one another
(as is the case for the Suzuki data).

The integration of this algorithm with a high-throughput
reaction screening platform would facilitate better
understanding of the myriad of factors that may contribute
to the difference between active and random learning when
operating on these kinds of datasets. Other factors of interest
not discussed here include those related to the initialization
of the algorithm, such as the number of reactions included
in the initialization and the design of the initialization.
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Fig. 7 Influence of batch size. (a) 3-Bromopyridine data; (b) Suzuki
data. Results generated using uncertainty estimation based on
ensembles of neural networks with committee size 10.
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