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Optimization of the direct synthesis of dimethyl
ether from CO2 rich synthesis gas: closing the
loop between experimental investigations and
model-based reactor design†

Nirvana Delgado Otalvaro, ab Markus Kaiser, *a Karla Herrera Delgado,*b

Stefan Wild,b Jörg Sauer b and Hannsjörg Freund a

Reaction kinetic modeling, model-based optimization and experimental validation are performed for the

direct synthesis of dimethyl ether from CO2 rich synthesis gas. Among these disciplines, experimental

methods and models are aligned in a stringent way of action, i.e., the same setup and models are applied

throughout the whole contribution. First, a lumped reaction kinetic model from the literature is modified

and parametrized to fit a vast array of 240 data points measured in a laboratory fixed bed reactor. The data

were acquired using a mechanical mixture of the commercial catalysts CuO/ZnO/Al2O3 and γ-Al2O3. For

this setup, a predictive model is derived and applied within dynamic model-based optimization. Here, the

single-pass COx conversion serves as objective function while the operating conditions and composition of

the mixed catalyst bed are the optimization variables. Finally, the optimization results obtained numerically

are validated experimentally verifying the identified performance enhancement qualitatively. The remaining

quantitative deviations yield valuable insights into model and methodological weaknesses or inaccuracies,

closing the loop between kinetic investigations, model-based optimization and experimental validation.

1 Introduction

A good mathematical model covers the description of all
relevant physicochemical processes with an adequate level of
detail to answer a specific question, while its numerical
manageability is not compromised by an unnecessary high
complexity. Consequently, models are often simplified by a
number of context dependent assumptions that facilitate
their solution. In the context of model-based optimization of
chemical reactors as for example during multi-level reactor
design (MLRD),1–3 a proper degree of detail is crucial. This so
called model adequacy is especially relevant when the models
are extrapolated. Therefore, it is of general importance to
review optimization results critically by using experimental
data for the validation of the predictions and analysis of the
models extrapolation capabilities. For this purpose, it is
necessary to closely link the gathering of experimental data,
the development and parametrization of mathematical

models and the model-based optimization in a systematic
approach as proposed in Fig. 1.

Dimethyl ether (DME) serves as an example system in our
work since it is subject of current research due to its
manifold possible applications in a world of changing fuel
feedstocks, especially in the vehicle technology as a diesel
alternative, as well as in the chemical industry as feedstock
for the manufacturing of short-chain olefins.4–6 Dimethyl
ether is one of the so called multi-source fuels since it can be
produced from different raw materials such as petroleum,
natural gas, coal and also from renewable resources such as
biomass.7

DME can be produced directly from syngas over a dual
catalyst system in one reactor. This process is
thermodynamically more favorable than the traditional two-
step process used in industry (i.e. methanol synthesis,
followed by dehydration), allowing a better utilization of the
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synthesis gas at comparable conditions.8–12 The direct route
is more efficient and selective in comparison with other
methods used in the production of synthetic fuels.13–15

New possible applications of DME lead to an increase of
the global production, but also to the search for new
ways to optimize the processes efficiency, especially if
CO2 is used as co-feed.

One of the most challenging aspects during the direct
DME synthesis is the prevention of deactivation phenomena
which affect the catalyst service life and yield. It has also
been shown that the synergetic effect of the metallic
components in methanol catalysts strongly depends on the
feed composition, temperature and mixing methods of the
dual catalyst system.16,17 In previous studies, the direct
DME synthesis process has been studied using different
reactor configurations and corresponding kinetic models,
and optimized reactor configurations have been
proposed.18–20 However, to the best of our knowledge there
is hardly any study in which a kinetic model has been
correlated using a vast array of data points and in which
the obtained model-based optimization results were
validated experimentally in order to assess both its
extrapolation capability and the model fidelity.

The scope of our work is to establish the link between
experimental investigations, model development and
model-based optimization by setting a joint basis for each
of the disciplines. Compared to other DME synthesis
works, we further address the fundamental difficulties
associated with possible model shortcomings caused by
assumptions and uncertainties of a mathematical system
description in application-oriented research. The
experimental validation of optimization results helps to
develop enhancement strategies for avoiding loss in
catalytic performance and yield for the direct synthesis of
dimethyl ether, while also serving for the identification of
possible model weaknesses and critical factors influencing
the quality of model predictions.

2 Laboratory reactor for the one-step
DME synthesis

In the following sections, the laboratory reactor setup is
presented (section 1) and the corresponding model for this
reactor is developed and explained (section 2.2). The setup
and its corresponding model are applied in all further parts
of this contribution ensuring consistency between
experimental and model-based results.

2.1 Experimental setup

The reactor setup is depicted in Fig. 2. It consists of a tube
made of stainless steel with an inner concentric tube which
allows to ensure isothermal conditions. The reactor is divided
into four independent heating zones, each of which is
surrounded by brass jaws equipped with heating cartridges
for temperature control. Gas is supplied via mass flow

controllers (MFC) by using proportional integral derivative
(PID) control. The product composition was measured by
means of a gas chromatograph (GC) G1530A from Agilent
equipped with a thermal conductivity (TCD) and flame
ionization (FID) detectors. Within the scope of this study a
mechanical 1 : 1 mixture of two commercially available
catalysts was used. The catalysts were a CZA (CuO/ZnO/
Al2O3) catalyst for the methanol synthesis and ALOX (γ-
Al2O3) for the selective methanol dehydration to dimethyl
ether. Both catalysts were milled and sieved to a particle size
dp between 250 and 500 μm. To ensure an isothermal mode
of operation, the catalyst mixture was diluted with silicon
carbide (SiC) of the same grain size. Details of the
experimental setup and further information about the used
materials can be found in the ESI.†

2.2 Predictive model for laboratory reactor

As a major objective of this work is to establish a joint basis
for the reaction kinetic investigations and model-based
design of chemical reactors via optimization, the laboratory
reactor has to be described in terms of a predictive model.
Using different implementations, this model will be used for
both, the parametrization of the reaction kinetic model and
the model-based optimization of the laboratory reactor. It
hence constitutes the aforementioned link between these
disciplines and is introduced in the following sections.

2.2.1 Balance equations. eqn (1) represents the species
mass balance formulated in terms of the molar fraction that
is valid for the considered system under the assumptions of
steady state, isothermal and isobaric operation, no relevant
gradients in radial direction and negligible back-mixing
effects. In order to justify the assumption of plug flow, the
Bodenstein number (Bo) was calculated for the worst case
scenario (lowest inlet volume flow). In this case, the Bo
computed is 436, a value at which according to Baerns
et al.21 the influence of back-mixing in the gas phase can be
neglected. The assumption of plug flow applies. The
influence of internal mass transport was ruled out in all
measurements on the basis of the Weisz criterion,21,22 which
was fulfilled in each case (maximal reported value: 0.87).
Additionally, an expression for the change of the gas velocity
(u in m s−1) along the reactor coordinate, is derived based on
the total mass balance to account for the effects of volume
contraction caused by reaction, and presented in eqn (2).

Fig. 2 Schematic representation of the reactors geometry.
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dyi
dz

¼ RTZ
up

Ri − yi
Xcomps:

k

Rk

 !
(1)

du
dz

¼ RTZ
p

Xcomps:

i

Ri (2)

In eqn (1) and (2), R represents the universal gas constant in
J mol−1 K−1, T the temperature in K, p the pressure in Pa, Z
the mixture's compressibility factor (eqn (8)), and yi the mole
fraction of component i. The molar rate of depletion or
formation of component i due to chemical reaction (Ri in
mol m−3 s−1) is defined by:

Ri ¼
Xrxns
j

νi; jrj: (3)

In eqn (3), νi, j represents the stoichiometric coefficient of
component i in reaction j, and rj represents the rate of the
same reaction.

For the solution of the system of equations, Dirichlet
boundary conditions (eqn (4) and (5)) at the reactor inlet (z = 0)
are used.

Species mole fraction : yi,0 = yi,in (4)

Gas velocity : u0 = uin (5)

2.2.2 Thermodynamic considerations. The equilibrium
constants Kf, j of each reaction j were computed based on the
stoichiometry of the involved reactions with the commercial
software Aspen Plus® using the built-in reactor model REquil
in the relevant temperature range of 200–300 °C at 50 bar,
and fitted to the simplified function given in eqn (6). The
parameters Aj and Bj are reported in Table 2.

K f; j ¼ 10
Aj
T −Bj

� �
(6)

The Peng Robinson equation of state23 is used to describe
the real gas behavior of the gaseous mixture, and Van der
Waals mixing rules are employed to account for inter-
molecular interactions. Relevant information obtained from
these equations are the fugacity coefficients ϕi which are used

for the calculation of the fugacities fi based on eqn (7), and
the mixture's compressibility factor Z which characterizes the
nonideality of the gas mixture.

fi = ϕi yi p (7)

Z3 − (1 − B)Z2 − (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0 (8)

The parameters A and B are defined by:

A ¼ ap
R2T2 ; and B ¼ bp

RT
: (9)

The mixture parameters a and b are calculated with the
mixing rules:

a ¼
X
i

X
k

yi yka
0:5
i a0:5k 1 − δikð Þ; and b ¼

X
i

yibi; (10)

where δik is the empirically determined binary interaction
coefficient for the species i and k, taken from Meng and
Duan24 and Meng et al.25 The pure component parameters
are defined by:

a = a(Tc)α(Tr,ω), b = b(Tc), (11)

a Tcð Þ ¼ 0:45724
R2T2

c

Pc
; b Tcð Þ ¼ 0:07780

RTc

Pc
; (12)

α Tr ;ωð Þ ¼ 1þ 0:37464þ 1:54226 − 0:26992ω2� �
1 −

ffiffiffiffiffi
Tr

p� �� �2
;

(13)

while the fugacity coefficient of a component i in a mixture is
given by eqn (14):

ϕ i ¼ exp
bi
b

Z − 1ð Þ − ln Z −Bð Þ − A

2B
ffiffiffi
2

p ln
Z þ 1þ ffiffiffi

2
p� �

B

Z þ 1 −
ffiffiffi
2

p� �
B

 !
2
X

i
yiaki

a
− bi
b

 ! !
:

(14)

The required data on chemical substances in the gas mixture
such as the critical temperature Tc, critical pressure Pc and
the acentric factor ω were taken from the Yaws Handbook.26

3 Reaction kinetic investigations

For predicting the system behavior in the proximity of a well-
known operating point it is best practice to use kinetic
models developed under the assumption of a given
environmental setting, i.e., a given range of operating
conditions, a given setup, and so on. In the context of model-
based reactor optimization, however, this assumption not
necessarily holds true since the aforementioned

Table 1 Conditions for kinetic measurements

Param. Value Unit

T 220, 230, 240, 250, 260 °C
Vin˙ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 SLPMa

yCO2in 0, 1, 3 %
yCO,in 4, 8, 15 %
dp 250–500 μm
mALOX/mCZA 0, 1 gALOX/gCZA
p 50 bar

a Standard liters per minute, T = 0 °C and p = 1.01325 bar.

Table 2 Fitted parameters for the equilibrium constants calculated with
Aspen Plus®

Reaction (1) Reaction (2) Reaction (3)

A 3014.4029 1143.9494 2076.2131
B 10.385667 0.9925 2.0101
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environmental setting might be changing due to the selected
optimization variables. Accordingly, the formulation of suitable
reaction kinetic models is much more challenging and subject
to increasingly sophisticated demands. In this regard, besides
accounting for measurable quantities, the effects of optimized
design variables also have to be considered already at the
development stage of a reaction kinetic model. In case of the
direct synthesis of DME, this triggers, e.g., the consideration of
the composition of the mixed catalytic bed. Hence, the scope
of the reaction kinetic investigations in this work is set onto
the identification of a suitable model and a corresponding set
of parameters that satisfy these specific needs. The reaction
kinetic model developed in section 3.2 is compiled from
literature and modified accordingly.

3.1 Reaction kinetic measurements: procedure and operating
conditions

Prior to any measurement, the catalysts were reduced at
atmospheric pressure. The initial reduction was performed
with 5% hydrogen (H2) diluted in argon (Ar); the temperature
was increased from 100 °C to 200 °C with a heating rate of 20
°C h−1. In the second step, the hydrogen concentration was
increased to 50% and the temperature was increased from
200 °C to 240 °C with a heating rate of 12 °C h−1. The catalyst
was kept at this temperature for 5 h, then the reactor was
flushed with Ar and cooled down to 220 °C.

The measured kinetic data are provided in the ESI.† The
kinetic experiments were carried out at the conditions
outlined in Table 1. These conditions were chosen in order to
minimize the amount of water and methanol produced as by-
products, since an accurate measurement of these species
was not possible with the analytical equipment used in this
study. To avoid stoichiometric limitations, the hydrogen
content in the feed gas was calculated using eqn (15),

yH2,in = 2.3 (yCO,in + yCO2,in) + yCO2,in. (15)

Catalyst reduction and the experimental procedure were
controlled using an automated measurement routine to set
up the experimental conditions (i.e., temperature, total
volumetric flow and inlet feed). Each operating point was
measured under steady state conditions. In all kinetic
experiments, the carbon balance featured a maximal
deviation of 2.5%.

3.2 Reaction kinetic model and parameter estimation

Reviewing the reaction kinetic approaches in literature,20,27–30

the model proposed by Lu et al.20 was found to be
particularly suitable. In contrast to the original formulation
using partial pressures, in our work the influence of higher
pressure levels is accounted for by using fugacities. The
modified rate expressions are described by eqn (16) to (18)
for the methanol synthesis from carbon dioxide (reaction 1),
the methanol dehydration to dimethyl ether (reaction 2) and
the water gas shift reaction (reaction 3), respectively.

Reaction 1) CO2 + 3H2 ⇌ CH3OH + H2O

Reaction 2) 2CH3OH ⇌ CH3OCH3 + H2O

Reaction 3) CO + H2O ⇌ CO2 + H2

r1 ¼ k1

fCO2 f H2
3 − f H2O f CH3OH

K f ;1

1þ KCO2 fCO2 þ KCO fCO þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KH2 f H2

p� �3 (16)

r2 ¼ k2 fCH3OH
2 − f DME fH2O

K f ;2

	 

(17)

r3 ¼ k3

fH2O − f CO2 f H2

Kf ;3 f CO
1þ KCO2 fCO2 þ KCO fCO þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KH2 f H2

p (18)

To minimize strong correlation between the parameters in
the Arrhenius and the Van't Hoff equations for each reaction,
the reparametrization proposed by Pritchard and Bacon31 is
applied for a reference temperature (TR) of 503 K. The
reparametrized equations used for the reaction kinetic
modeling are described by eqn (19) for the Arrhenius, and by
eqn (20) for the Van't Hoff approach. Additionally, the
activation energy EA, j and the adsorption enthalpy ΔHAds,i

were scaled according to eqn (21) and (22) in order to reduce
the difference in magnitude between these parameters and
the frequency factors kj,TR

and adsorption coefficients Ki,TR

respectively. According to Espie and Macchietto32 this
procedure increases the numerical stability of the fitting
procedure and increases the statistical significance of the
estimated parameters.

kj ¼ kj;TR exp −EA; j;n
TR

T
− 1

	 
� �
(19)

Ki ¼ Ki;TR exp −ΔHAds;i;n
TR

T
− 1

	 
� �
(20)

EA; j;n ¼ EA; j

TRR
(21)

ΔHAds;i;n ¼ ΔHAds;i

TRR
(22)

The parameters A and B associated to eqn (6) for the
calculation of the equilibrium constants (Kf, j) are reported in
Table 2 for reactions (1) to (3).

The expressions for the reaction rates were extended as
illustrated by eqn (23) in order to enable the model-based
optimization of the catalytic bed composition by introducing
the term ξk(j) which characterizes this composition. In eqn
(23), rj represents the reaction rate as described in eqn (16) to
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(18) in mol kg−1 s−1, and rj,mod is the modified reaction rate
of reaction j in mol m−3 s−1:

rj,mod = [(1 − εbed) ρcat,k( j) ξk( j)] rj. (23)

Here, the term ξk( j) is defined as the catalyst volume
fraction related to the total volume of solid in the mixed
catalytic bed (eqn (24)), εbed is the porosity of the catalytic
bed and ρcat,k( j) the density of the catalyst which promotes
reaction j. As reported in the literature,33 the water-gas shift
reaction is promoted by the methanol catalyst only. Hence, a
possible influence of the dehydration catalyst on its reaction
rate is neglected.

ξk jð Þ ¼
Vk jð Þ

VCZA þ VALOX þ VSiC
(24)

k jð Þ ¼ CZA; j ¼ 1 V j ¼ 3

ALOX; j ¼ 2:




Parameter estimation was carried out with gProms® using
the built-in maximum likelyhood function, based on the
outlet mole fraction of the main species,

yi(z = Lbed) i = CO, CO2, DME, H2. (25)

3.3 Reaction kinetic investigations results

The derived reaction kinetic model was fitted to a total of 240
experiments. The experimental data basis considered 10
different feed compositions at 5 different temperature levels
and 6 residence times. The estimated parameters for the
modified Arrhenius and Van't Hoff approaches (eqn (19) and
(20), respectively) are reported in Table 3, along with the
corresponding 95% confidence intervals. The goodness of fit
of this model is illustrated by means of parity plots (Fig. 3)
where the measured molar fraction of CO, CO2, DME and H2

in the product stream is plotted against the one predicted by
the reaction kinetic model for all experiments. This Figure
depicts a very good agreement between measurements and
predictions without noticeable systematic deviations. A
particularly wide random scattering can be observed in the
low concentration range (<0.5%) of DME which can mainly

be attributed to measurement limitations, since these
concentrations are outside the calibration range of the
analytics. Additionally, the estimated enthalpy ΔHads,CO2,n

indicates a weak to almost nonexistent temperature
dependence of the CO2 adsorption. In general it can be
observed that the selected kinetic approach delivers a
satisfactory fitting of the experimental data within a broad
validity range (Table 4). The reaction kinetic model as
presented here is employed in section 4 for the model-based
reactor optimization.

4 Model-based reactor optimization

With the newly developed reaction kinetic model described
in section 3, the laboratory reactor setup can now be
optimized using the reactor model of section 2.2. It is to be
highlighted that, since the same laboratory reactor applied
for kinetic measurements is optimized here, any errors
resulting from the transfer of an unknown setup with
unknown flow field and other unknown nonidealities are
reduced to a minimum. That way it is possible to disregard
these transfer errors in the interpretation of the optimization
results. Accordingly, a general uncertainty when comparing
model-based with experimental results is also reduced to a
minimum, increasing the reliability of the findings in this
work.

Table 3 Estimated parameters in reparametrized form and 95%
confidence intervals

Reaction (1) Reaction (2) Reaction (3)

ln(kj,TR
) −6.94 (±0.03) −2.07 (±0.31) −2.75 (±0.11)

EAj,n 21.81 (±0.84) 42.77 (±9.1) 10.82 (±2.51)

CO CO2 H2

ln(ki,TR
) −15.32a −0.57a −19.51a

ΔHads,i,n −14.03a 0a −14.68a

a Parameters were fixed, no statistical information available.

Fig. 3 Parity plots for measured and predicted CO, CO2, H2 and DME
concentrations in the product stream. Experimental conditions
reported in Table 1.

Table 4 Validity range of parametrized kinetic model

yCO2
yCO yH2

yDME yCH3OH yH2O T V̇in p

% % % % % % °C SLPM bar

Min. 0.8 2.2 11.0 0.0 0.0 0.0 220 0.2 50
Max. 6.6 16.2 48.4 4.3 1.4 2.0 260 0.7 50
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4.1 Problem statement

In this Section, the optimization scenario consisting of the
objective function, optimization variables and constraints is
described.

4.1.1 Objective function. Since the direct synthesis of
dimethyl ether does not involve any significant problems
with selectivity at the studied conditions, the main purpose
of the optimization problems considered in this work is to
identify the reaction concept that yields the highest single-
pass carbon conversion,

XCOx ¼
nĊO þ n ̇CO2ð Þin − nĊO þ n ̇CO2ð Þout

n ̇CO þ n ̇CO2ð Þin
: (26)

4.1.2 Optimization variables. The temperature (T), total
gas flow (V̇in) and the composition of the catalytic bed (ξk(j))
are obvious optimization variables considering that these
are the control variables of the experimental facilities,
which is advantageous and even necessary for the posterior
experimental validation of the optimization results.
Additionally, these are the key parameters for the reactor
operation. By optimizing the temperature, the inherent
trade-off associated to exothermic reversible reactions is
taken into account. In general, high process temperatures
lead to high reaction rates, which for a defined constant
residence time or reactor size allows for high conversions
to be reached. However, the equilibrium conversion is
lower at higher temperatures. The total gas flow on the
other side affects directly the DME productivity due to its
reciprocal influence on the residence time, the gas load
and selectivity. Finally, the composition of the catalyst bed
was also considered as an optimization variable because of
its direct influence on the modified reaction rates rj,mod

(eqn (23)). In a mixed catalytic bed like the one used in
this work, the optimization of the catalyst distribution
serves the enhancement of the synergy effects that
characterize the direct DME synthesis. Here, two cases are
evaluated: an axially constant catalytic bed composition
where the ratio between the three materials (two catalysts
and inert material) in the catalytic bed is constant along
the reactor coordinate, and an axially variable catalytic bed
composition where the ratio between the three materials is
adjusted continuously along the reactor coordinate,
resulting in a distribution profile. Since the kinetic
measurements were all carried out at a constant pressure
of 50 bar, this parameter was not optimized in order to
avoid extrapolation of the kinetic model. Furthermore, an
optimization of the pressure gives trivial results since for
the considered reaction system a higher pressure is always
thermodynamically favorable.

4.1.3 Constraints and further considerations. Both the
temperature and total gas flow are limited by the design
specifications of the described experimental setup. In order
to avoid the extrapolation of the formal kinetic model, the
variable bounds are here determined by the validity range of

the derived reaction kinetic model. The bounds as displayed
in eqn (27) and (28) apply:

220 °C ≤ T ≤ 260 °C, (27)

0.2 SLPM ≤ V̇in ≤ 0.7 SLPM. (28)

The validity range of the kinetic model is also limited
regarding the concentration of the different species in the
system. However, for the model-based optimization an
extrapolation in this regard cannot be avoided. Otherwise,
only a trivial optimization result could be obtained within
the experimentally explored operation range.

An extrapolation of the kinetic model regarding the
catalyst distribution is also inevitable when pursuing the
optimization of this variable since the kinetic measurements
were all carried out with the same catalytic bed. However, to
avoid obtaining too small amounts of catalyst and in order to
stay above the measuring accuracy of the employed electronic
balance used in the laboratory in context of the experimental
validation, the amount of each catalyst was set to:

mcat,k(j) ≥ 0.5 g. (29)

Additionally, the share of inert material (SiC) was kept
constant over the length of the catalytic bed (eqn (30)). The
optimization of an axially variable share of inert material
along the reactor coordinate could be used to avoid hot spot
formation, however, this approach is out of the scope of this
work.

ξSiC(z) = const. ∀ z ∈ [0, Lbed]. (30)

The species balance and velocity field (section 2.2.1) along
with the thermodynamic considerations (section 2.2.2) and
the derived reaction kinetic model (section 3.2) constitute a
predictive model to describe the system behavior. Based on
this and the optimization scenario described in this section,
a continuous nonlinear optimization problem can be
formulated as:

Obj = max XCOx

T, V̇in, ξk(j)
s.t.:

Component mass balance eqn (1)
Velocity field eqn (2)
Boundary conditions eqn (4) and (5)
Reaction kinetics eqn (16) to (24)
Thermodynamics eqn (6) and (7)–(14)
System constrainst eqn (27) to (30).

4.2 Case studies

Two examples (A and B) with two optimization cases each
were considered. The examples differ in the chosen reference
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case regarding the feed composition. In Example A, the
experiment of the kinetic measurements at which the highest
COx conversion was achieved was chosen as a reference case
in order to evaluate if an optimized catalyst distribution can
lead to an even higher conversion within the same range of
conditions. In Example B, the reference case is based on a
recent campaign performed in the DME pilot plant at KIT
(bioliq®34), where the feed gas was under stoichiometrical
regarding the hydrogen amount. The optimization cases, on
the other hand, differ regarding the optimization variables.
In case 1, the optimization variables were the temperature,
the total gas flow and an axially constant catalytic bed
composition (opt. variables: T, V̇in, ξk(j)), while in case 2 the
catalyst distribution was axially variable (opt. variables: T, V̇in,
ξk(j) (z)). Table 5 provides an overview of the considered case
studies.

4.3 Numerical solution approach

The techniques for discretization and solution of the
optimization problem are adopted from the works on multi-
level reactor design (MLRD)2,35 and will be introduced in the
following.

For discretization, the method of orthogonal collocation
on finite elements is employed, whereby the optimization
problem (including reactor model, control variables and
constraints) is transformed into a system of algebraic
equations. By that, the numerical solution of the system of
differential equations in a function space spanned by
polynomials at a set of collocation points distributed over the
discretized domain36 is facilitated. The discretized problem
was then implemented within the modeling environment
AMPL® (a mathematical programming language) which uses
a high-level algebraic representation for the description and
solution of large-scale optimization problems. The modeling
language for mathematical programming uses a syntax
similar to mathematical or algebraic notation and allows the
use of solvers based on different mathematical approaches
suitable for different kinds of optimization problems.37 The
solver used in this work is called IPOPT (Interior Point
OPTimizer). It is an open source nonlinear solver that
converges to local optima using an interior-point method,
whose foundations are the newton approach based on the
local quadratic Taylor-series model.38

4.4 Optimization results

4.4.1 Example A. Example A allows to determine if an even
better performance can be obtained in the same range of

conditions in which the kinetic measurements were taken by
simultaneously optimizing the catalyst distribution and the
operating conditions (temperature and total gas flow). Since
the reference case is taken from the measurements carried
out for the development of the reaction kinetic model, this
example does not represent a model extrapolation and it
therefore delivers a suitable basis for comparison in section 5
(experimental validation of optimization results). The
optimization results of the reference and the optimized cases
for this example are displayed in Table 6.

4.4.1.1 Optimization case A1. As reported in Table 6, the
optimal temperature is below the maximally allowed value,
suggesting that this operating point is not dominated by
kinetics, and thermodynamic equilibrium is approached. The
lower constraint for the total gas flow is active, i.e., this
variable is set to its lower bound. Regarding the catalytic bed,
the optimal configuration consists of a higher share of
methanol catalyst (and a lower share of dehydration catalyst)
than in the reference case.

For a comprehensive understanding of the optimization
results, the modified reaction rates (rj,mod) in eqn (23) along
the axial coordinate are presented in Fig. 4 for both the
reference and the optimization case A1. Reviewing the first 4
centimeters of the catalytic bed, the reaction rates for the
configuration in A1 (dashed lines) are higher than the
respective rates in the reference case (solid lines). This effect
was expected for the methanol synthesis and the water-gas

Table 5 Overview of optimization examples, cases and variables

Ex. yCO,in yCO2,in yH2,in Case Opt. variables Case-ID

A 16.07 2.82 48.42 1 T, V̇in, ξk(j) A1
2 T, V̇in, ξk(j) (z) A2

B 12.00 3.00 13.00 1 T, V̇in, ξk(j) B1
2 T, V̇in, ξk(j) (z) B2

Table 6 Example A – optimization results

Param. Unit Ref. Case Opt. Case A1 Opt. Case A2

T °C 260.0 256.0 256.1
V̇in SLPM 0.2 0.2 0.2
ξCZA — 0.16 0.38 Fig. 5
ξALOX — 0.42 0.20 Fig. 5
ξSiC — 0.42 0.42 0.42
XCOx

% 48.5 59.5 59.5
YDME % 45.4 55.2 55.2
SDME % 69.3 70.9 70.9

Fig. 4 Example A – modified reaction rates. Solid lines: reference case,
dashed lines: optimization case A1. Conditions reported in Tables 5
and 6. Lbed = 5.5 cm.
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shift reaction, which are both promoted by the catalyst with
an increased share in the optimal configuration. Additionally,
a higher reaction rate of the methanol dehydration to
dimethyl ether is also noticeable, although the share of the
dehydration catalyst was significantly reduced in comparison
to the reference case. This can be explained by the synergetic
effects characteristic of the direct DME synthesis: a faster
production of methanol and consumption of water enhance
the potential term in the methanol dehydration reaction,
creating a strong driving force for the overall reaction, and
allowing for a higher conversion of the synthesis gas. These
effects not only compensate for the decrease of the reaction
rate of the methanol dehydration caused by the lower
amount of dehydration catalyst, but they also lead to an
overall rate increase of the direct synthesis of dimethyl ether
from synthesis gas. The computed enhancement of the
performance indicators conversion of COx, yield and
selectivity of dimethyl ether are shown in Table 6.

At the reactor outlet, the modified reaction rates of the
optimized case (dashed lines) are all at a level close to zero,
indicating (as well as the optimal temperature not taking the
maximal possible value) a proximity to the thermodynamic
equilibrium. This is confirmed and illustrated in the state
space diagram in Fig. 6, where the COx conversion is plotted
against the temperature for the optimal total gas flow and
the catalytic bed composition of the reference and the two
optimization cases. The conversion achieved through
optimization exhibits indeed a proximity to the
thermodynamic equilibrium and represents the maximal
possible conversion of COx that can be achieved regarding
the systems inherent limitations (particle size, pressure, etc.)
and the considered optimization variables (T, V̇in, ξk(j)).

4.4.1.2 Optimization case A2. The optimal conditions for
case A2 are also summarized in Table 6, while the obtained
optimal catalytic bed composition profiles are illustrated in
Fig. 5, in comparison to the composition of the reference and
the optimization case A1.

The first half of the catalytic bed exhibits a continuously
increasing amount of methanol catalyst followed by the
second half of the bed, which shows a nearly constant
fraction of this catalyst. For all cases, the axial share of the
dehydration catalyst is complementary this profile. The
composition of the second half of the bed represents the
optimal catalyst ratio that potentiates the synergy effects of

the direct synthesis of dimethyl ether and it is similar to the
constant composition obtained in case A1. The optimized
temperature and total gas flow as well as the performance
indicators (refer to Table 6 and Fig. 6) are also very similar to
the ones obtained in case A1, showing that virtually no
further performance improvement is achieved by an axially
variable catalytic bed composition.

4.4.2 Example B. The composition of the syngas used in
the DME pilot plant at KIT was used in this example as a
basis for optimization. Since the syngas produced from
biomass exhibits lower hydrogen content than
stoichiometrically necessary for the synthesis, this example
aims to evaluate to what extent the optimization of the
chosen optimization variables can enhance the process
performance for a hydrogen-lean feed. This is of particular
interest for the synthesis of biofuels, considering that
industrially, the customization of the synthesis gas is carried
out by adding hydrogen produced by expensive technologies
such as steam reforming or electrolysis which compromises
the profitability of the process.34,39

For the simulation and optimization of the DME synthesis
from syngas obtained in the pilot plant, the feed species that
can not be taken into account by the reaction kinetic model
(e.g. methane, propane, etc.) are replaced in the simulations
by inert gas. The adapted feed gas composition used for the
optimization (reported in Table 5) was used to simulate the
DME synthesis in the laboratory reactor setup. The predicted

Fig. 5 Example A – optimal catalytic bed composition. Left: methanol
catalyst, right: dehydration catalyst. ξSiC(z) = 0.42 ∀ z ∈ [0, Lbed].

Fig. 6 Example A – state space diagram for different catalyst
distributions. V̇ in = 0.2 SLPM, Lbed = 5.5 cm. Feed composition in
Table 5.

Table 7 Example B – optimization results

Param. Unit Ref. Case Opt. Case B1 Opt. Case B2

T °C 250.0 260.0 260.0
V̇in SLPM 0.2 0.2 0.2
ξCZA — 0.12 0.29 Fig. 7
ξALOX — 0.31 0.14 Fig. 7
ξSiC — 0.57 0.570 0.57
XCOx

% 9.58 17.09 17.12
YDME % 8.89 16.26 16.24
SDME % 67.80 66.31 66.17
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performance indicators are outlined in Table 7 along with
the optimization results of the two optimization cases
described below.

4.4.2.1 Optimization case B1. In this case study, the
optimal temperature was determined to be at its upper limit
and the optimal total gas flow corresponds to the maximal
residence time possible. Similarly to example A, the catalyst
distribution was optimized by an increased amount of
methanol catalyst and a decreased amount of dehydration
catalyst, promoting the same synergetic effects explained
before and leading to an enhancement of the COx conversion
and the yield of dimethyl ether (Table 7).

The fact that the optimal temperature is at the upper limit
of the available range indicates that the conversion is not yet
significantly influenced by the thermodynamic equilibrium.
The optimal operating point for this case is primarily
dominated by the reaction kinetics. This suggests that at the
given pressure, feed composition and length of catalytic bed,
even at the maximal possible residence time, highest
temperature and optimized catalyst distribution the low
amount of hydrogen in the feed inhibits the reaction rate to
such an extent that the equilibrium conversion can not be
achieved. The state space diagram is depicted in Fig. 8. The
conversion achieved at different temperatures was calculated
for the reference and optimized catalyst distributions
obtained in this example. In this plot, it can be observed how
the optimized catalyst distribution leads to a positive shift of
the conversion for each temperature. However, Fig. 8 also
outlines the further optimization potential of this example,
which, however, can only be exploited by including additional
optimization variables such as e.g., the hydrogen content in
the feed.

4.4.2.2 Optimization case B2. This case delivered very
similar results to the ones obtained in case B1 (refer to
Table 7). The optimal temperature and total gas flow are
the same, and the catalyst profiles, displayed in Fig. 7
also exhibit a high similarity to the optimal constant
catalytic bed composition of case B1. Consequently, the
enhancement achieved here with an axially variable
catalytic bed composition is not significantly better. A
comparison of the reference and both optimization cases
is outlined in the state space diagram for this example in
Fig. 8.

5 Experimental validation of
optimization results

The experimental validation of optimization results was
carried out to close the loop between kinetic
investigations and reactor optimization via rigorous
mathematical modeling. For this aim, the conditions of
the reference and the first optimization case (with an
optimized axially constant catalytic bed composition) of
both examples are realized in the experimental facilities
in which the kinetic measurements were performed. The
optimization results were hereby assessed both
qualitatively and quantitatively.

The measured values of the relevant process parameters
(composition of the inlet gas stream, temperature and
composition of the catalytic bed as arranged for the
experiments) are outlined in Table 8. Simulations were
carried out for the reported process parameters in order to
account for the deviations between set point and actual
measured value in order to provide a suitable basis for
comparison.

Table 8 Experimental validation - measured operating conditions, setup
and performance

Param. Unit

Example A Example B

Ref. Case Case A1 Ref. Case Case B1

yH2,in % 46.5 46.5 14.0 14.0
yCO,in % 15.6 15.6 12.3 12.3
yCO2,in % 3.4 3.4 3.2 3.2
T °C 261.5 260.6 250.1 259.3
p bar 49.9 50.1 50.1 50.0
V̇in SLPM 0.2 0.2 0.2 0.2
Lbed cm 5.2 5.4 7.4 7.8
ξCZA % 16 38 11 29
ξALOX % 41 20 29 14
ξSiC % 43 42 60 57

Fig. 7 Example B – optimal catalytic bed composition. Left: Methanol
catalyst, right: Dehydration catalyst. ξSiC(z) = 0.57 ∀ z ∈ [0, Lbed].

Fig. 8 Example B – state space diagram for different catalyst
distributions. V̇ in = 0.2 SLPM, Lbed = 8 cm. Feed composition in
Table 5.
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5.1 Validation results example A

To assess the quality of the model predictions in this
example, the simulated and experimentally achieved COx

conversion, yield and selectivity of DME are presented
graphically in Fig. 9 for both, the reference and the optimized
operating points.

Qualitative validation. The experimental validation of the
optimized results demonstrate a successful performance
enhancement of the direct synthesis of dimethyl ether. The
COx conversion and the yield of dimethyl ether were indeed
increased by operation at the determined optimal conditions
and catalytic bed configuration. However, the performance
enhancement was compromised by an unexpected slight
decrease of selectivity.

Quantitative validation. Regarding the quality of the
model predictions, the following observations can be made:

• Ref. case – no extrapolation.
Since the reference operating point was also considered in

the modeling of the reaction kinetics, simulation at these
conditions do not represent an extrapolation of the model,
thus leading to an almost perfect agreement between the
predicted and the measured performance with an absolute
error of 0.1% regarding the single-pass conversion of COx.
The higher deviations between measured and predicted yield
and selectivity of dimethyl ether are due to the model's
inferior ability to predict DME compared to CO and CO2, as
described in section 3.3.

• Opt. case A1 – extrapolation to consider an optimized
catalyst bed composition.

The catalytic bed configuration obtained in optimization
case A1 differs from the composition used for the reaction

kinetic measurements and modeling. Thus, simulating the
performance of this operating point means forcing the model
to predict the behaviour of a setup that lies outside its
validity range. The experimental validation resulted in a
discrepancy between predictions and measurements (Fig. 9)
where the simulated performance indicators COx conversion,
selectivity and yield of DME were all higher than the
measured ones. Additional practical reasons for the observed
deviations are nonidealities regarding the mixing and
dilution of the catalyst bed.

5.2 Validation results example B

The analysis of the extrapolation capability of the model, is
again conducted for the two measured operating points. The
measured and predicted performance indicators are
displayed for both, the reference and the optimized operating
points in Fig. 10.

Qualitative validation. The synthesis gas used in this
example exhibited a hydrogen content lower than the one
stoichiometrically required for the conversion of COx, which
directly affects the process performance. Additionally, all
kinetic measurements were carried out with a higher
hydrogen to COx ratio than the one presented in this
example. Thus, conducting simulations with such a
hydrogen-lean feed represents an extrapolation of the
reaction kinetic model, even though the hydrogen amount is
within its validity range. These aspects, along with
nonidealities regarding the packing of the mixed catalyst
bed, affect the performance enhancement and the agreement
between model predictions and measurements. Nevertheless,
experimentally, the single-pass conversion of COx and the
yield of dimethyl ether could be increased using the optimal
conditions, while a marginal decrease of the DME selectivity
was observed.

Quantitative validation.
• Ref. case – extrapolation to consider a hydrogen-lean feed.
The extrapolation of the reaction kinetic model for the

consideration of a hydrogen-lean synthesis gas leads to an
underprediction of the COx conversion and of the yield of
DME, while an overprediction of the selectivity is observed.

• Opt. case B1 – extrapolation to consider a hydrogen-lean
feed and an optimized catalyst bed composition.

Predicting the performance of this operating point
implies the extrapolation of the kinetic model regarding
two factors, thus, a higher deviation than the one observed
for the reference case was expected. However, as displayed
in Fig. 10, the agreement between prediction and
measurement for this operating point is slightly better than
in the reference case.

From the deviations exhibited for the reference case, it
can be concluded that an extrapolation regarding a low
hydrogen content in the feed leads to an underprediction of
the performance indicators. On the other hand, the
validation of A1 shows that the extrapolation regarding the
optimized catalytic bed composition leads to an

Fig. 9 Example A – experimental validation of optimization results.
Conditions and feed composition according to Table 8 – example A.

Fig. 10 Example B – experimental validation of optimization results.
Conditions and feed composition according to Table 8 – example B.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 7

/2
1/

20
25

 1
1:

34
:0

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0re00041h


React. Chem. Eng., 2020, 5, 949–960 | 959This journal is © The Royal Society of Chemistry 2020

overprediction. The combination of these two opposite effects
leads in this case to a partial mutual compensation, resulting
in a better agreement between prediction and measurement
than for the reference case.

6 Summary and conclusions

The model-based optimization of a laboratory reactor for the
direct synthesis of dimethyl ether from CO2 rich synthesis
gas was carried out and experimentally validated. Referring
to the sections above, the novelty and main results of this
contribution are summarized as follows.

Reaction kinetic investigations

To improve versatility, a kinetic model from the literature
was modified in order to account for the nonideal behavior
of the gaseous mixture and improved to increase numerical
stability. The resulting model was used to fit a vast array of
data points (i.e. 240 experiments, available in the ESI†) in a
range of conditions broader than usually covered in
literature. A further modification of the model allows its
application for the model-based optimization of the catalyst
bed composition along the reactor coordinate.

Model-based reactor optimization

Although the optimization of direct DME synthesis has been
subject of research for years, this contribution is, to the best
of our knowledge, the first to apply a dynamic scheme for
rigorous optimization of the operating conditions and the
composition of the mixed catalytic bed along the reactor
coordinate. Model-based optimization, as applied here,
indicates for which parameters the validity range of the
model should be extended, namely for catalyst bed
compositions with larger CZA-to-ALOX ratios.

Experimental validation of optimization results

Critically reviewing the extrapolation capability of the models
is of general importance, but not a common practice in the
open literature. In this contribution, the optimization results
were validated experimentally and the predictive power of the
derived model is evaluated both qualitatively and
quantitatively for operating conditions beyond its validity
range. Since the same setup was used for all tasks, it is to be
highlighted that the prediction error is mainly caused by
underlying model assumptions. The revealed prediction error
caused by the extrapolation highlights the necessity for high-
fidelity kinetic models that allow for extrapolation in a
sensible range. The predictions, however, were qualitatively
accurate and the enhancement of the single-pass conversion
of COx and of the yield of dimethyl ether at the optimal
conditions was demonstrated experimentally in both
examples, proving the adequacy of the model and the
qualitative correctness of the numerically obtained
optimization results.

Final remarks

Our findings encourage the use of mechanistically motivated
assumptions, broad validity ranges with respect to the
applied degrees of freedom during optimization and a critical
statistical evaluation of identified parameter sets.

In addition to established reactor modeling methods, this
work contributes with an extensive database which is being
made available to other researchers in the ESI.†

The systematic approach followed in this work can as well
be applied to other dual catalyst systems that have not yet
been thoroughly investigated in order to clarify promising
operating windows at an early stage of process design.
Furthermore, this approach is also generally applicable for
the identification of optimal catalyst dilution strategies
(relevant for exothermic reactions) or the optimal mixing of
different catalyst generations (extended catalyst lifetime).
This list of possible fields of applications illustrates that the
approach presented in this work is powerful and versatile.
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