RSC Advances

CORRECTION

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2020, 10, 37766

Correction: Influence of Cu doping on the visible-light-induced photocatalytic activity of InVO₄

Natda Wetchakun, (10 ** Pimonrat Wanwaen, a Sukon Phanichphant (10 **) and Khatcharin Wetchakun (10 **)

DOI: 10.1039/d0ra90108c

rsc.li/rsc-advances

Correction for 'Influence of Cu doping on the visible-light-induced photocatalytic activity of $InVO_4$ ' by Natda Wetchakun et al., RSC Adv., 2017, 7, 13911–13918, DOI: 10.1039/C6RA27138C.

The authors regret errors in Fig. 4, 7, and 9 in the previously published article. The corrections for the errors in the article are described as follows:

- (1) The diffuse reflectance spectra of pure InVO₄ and 1.0 mol% Cu-doped InVO₄ are shown in Fig. 4. The absorption margin of 1.0 mol% Cu-doped InVO₄ was shifted to a longer wavelength, indicating a decrease in the band gap with respect to pure InVO₄. The absorption margins of the pure InVO₄ and 1.0 mol% Cu-doped InVO₄ samples were 505 nm and 510 nm, corresponding to band gaps of 2.51 eV and 2.45 eV, respectively (Fig. 4a and b).
- (2) The band edge positions of the conduction band (CB) and the valence band (VB) of InVO₄ can be calculated by the following equation: $E_{CB}^0 = \chi E^C 0.5E_g$, where χ is the electronegativity of the semiconductor, E^C is the energy of free electrons on the hydrogen scale of 4.5 eV, E_g is the band gap of InVO₄, and the χ value of InVO₄ is 5.74 eV. The E_g value of InVO₄ evaluated from the UV-vis DRS analysis was about 2.51 eV. The valence band energy (E_{VB}) can be calculated by the following equation: $E_{VB}^3 = E_{CB} + E_{CB} + E_{CB}$, where $E_{CB}^3 = E_{CB}^3 + E_{CB}^3 +$

Fig. 4 Kubelka-Munk absorbance spectra and band gaps (insets) of the pure $InVO_4$ (a) and 1.0 mol% Cu-doped $InVO_4$ (b) samples.

Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: natda_we@yahoo.com

^bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand

Fig. 7 Schematic of the charge migration and separation on Cu-doped InVO₄

radical ion (O₂ $\dot{}$). In addition, the VB of InVO₄ (2.49 eV) is higher than the standard redox potential, E^0 (OH $^-$ /OH $^+$) = 1.99 V ν s. NHE at pH 7. This indicates that the photogenerated holes in the valence band of InVO₄ can oxidize the hydroxyl ion (OH $^-$) or water (H₂O) to form the hydroxyl radical (OH $^+$).

(3) Due to the contradiction between the scavenging test and the proposed photocatalytic mechanism, Fig. 9 was removed from the original article.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

Correction

- 1 H. Q. Jiang, H. Endo, H. Natori, M. Nagai and K. Kobayashi, Mater. Res. Bull., 2009, 44, 700-706.
- 2 F. Guo, W. Shi, X. Lin, X. Yan, Y. Guo and G. Che, Sep. Purif. Technol., 2015, 141, 246-255.
- 3 G. Magesh, B. Viswanathan, R. P. Viswanath and T. K. Varadarajan, Indian J. Chem., 2009, 48A, 480-488.