

 Cite this: *RSC Adv.*, 2020, **10**, 26699

 DOI: 10.1039/d0ra90074e
rsc.li/rsc-advances

Correction: A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively

 Shan Tao,^a Shao-qing Chen,^a Wen-tao Zhou,^a Fang-ying Yu,^a Lu Bao,^a Guo-xi Qiu,^a Qing Qiao,^b Fu-qiang Hu,^a Jian-wei Wang^{*c} and Hong Yuan^{*a}

 Correction for 'A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively' by Shan Tao *et al.*, *RSC Adv.*, 2020, **10**, 20445–20459, DOI: 10.1039/DORA00685H.

The authors regret that incorrect versions of Fig. 7, 9 and 10 were included in the original article. The correct versions of Fig. 7, 9 and 10 are presented below.

Fig. 7 Histological analysis of organs from all experimental groups. H&E staining of heart, liver, spleen, lung, kidney, indicating the carrier has good biocompatibility. Scale bar = 50 μ m.

^aCollege of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China. E-mail: yuanhong70@zju.edu.cn; Tel: +86-136-06804049

^bAnesthesia Department, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, 3 Qingchun East Road, Hangzhou, 310016, China

^cDepartment of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China. E-mail: zjwjjw@zju.edu.cn; Fax: +86-571-87022776; Tel: +86-159-58185118

Fig. 9 Alkaline phosphatase (ALP) activity (arrows) and tartrate-resistant acid phosphatase (TRAP) assay results (arrowheads) of bone tissue sections. Scale bar = 50 μ m. The ALP activity is much more high in SIM/LNPs and SIM/ASP₆-LNPs groups, while the TRAP activity is the opposite.

Fig. 10 Histological assessment of bone formation in all experimental groups. (A) HE staining of femur bone. Scale bar = 50 μ m. Histology of bone in the all ovariectomized groups had a higher amount of adipose tissue than Sham group. The trabecular bone is much more prominent in SIM/LNPs and SIM/ASP₆-LNPs groups. (B) Immunohistochemical staining for BMP-2 in typical newly-formed bone tissue (red arrows) and immunohistochemical staining for the osteogenic markers osteopontin (OPN, arrows) and osteocalcin (OCN, arrowheads). Scale bar = 50 μ m. The BMP-2, OPN, OCN are much more prominent in SIM/LNPs and SIM/ASP₆-LNPs groups.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

