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N,N0-disulfanediyl-bis(N0-((E)-
benzylidene)acetohydrazide) from (E)-N0-
benzylideneacetohydrazide and S8†
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and Cheng-Cai Xia *a

Herein we report an oxidative coupling reaction for N–S/S–S bond formation from (E)-N0-
benzylideneacetohydrazide and S8 to furnish substituted N,N0-disulfanediyl-bis(N0-((E)-benzylidene)
acetohydrazide). It provides a direct approach for the synthesis of disulfides with good yields.
Introduction

Disulde bonds are important structural units which were
found prevalently in natural or endogenous peptides.1 They
have been applied in digital light processing 3D printing,2 and
as bioactive agrochemicals,3 antimicrobials,4 and synthetic
intermediates.5 In addition, it is well-established that the
disulde linkage can be cleaved with the tripeptide glutathione
(GSH),6 which is over-expressed in cancer cells associated with
strong biomedical activities.7 Especially, a number of S,S0-
bis(heterosubstituted) disuldes with N–S–S–N units exhibit
a wide spectrum of biological activity (Fig. 1).8 Thus, developing
an efficient and practical procedure for the synthesis of disul-
des is highly desirable. Numerous strategies have been
harmaceuticals derived from S,S0-
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developed for the formation of disulde bonds.9 Among these
pathways, the most common approach involves the substitution
of a sulfenyl derivative with a thiol or thiol derivative and these
Scheme 1 Strategies for the preparation of disulfides.
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Table 2 Scope of various substituents on the benzene ring of the
aromatic aldehyde 1a,b
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predecessor's work have been summarized by Witt (Scheme
1A).10 In recent decades, oxidative coupling of thiols has devel-
oped into an efficient approach for producing disuldes. Many
oxidants such as oxygen or air,11,12 hydrogen peroxide,13 halo-
gens,14 high-valent sulfur compounds15 and other agents16 were
applied (Scheme 1B). In addition, methyl (E)-2-(2-hydrox-
ybenzylidene)hydrazine-1-carbodithioate17 and N-phena-
cylbenzothiazolium bromides18 have also been used as starting
materials to produce disuldes (Scheme 1C). Different from
these C–S–S–C bonds, there are only a few reports in the liter-
atures that describe N–S–S–N bond formation. In these cases,
secondary amines reacted with disulfur dichloride to afford S,S0-
bis(heterosubstituted) disuldes (Scheme 1D).8,19 As part of our
continuing efforts into the development of the C–S bonds
formation,20 herein we report an efficient method for generating
N,N0-disulfanediyl bis(N0-((E)-benzylidene) acetohydrazide from
(E)-N0-benzylideneacetohydrazide and S8. To the best of our
knowledge, it is the rst example of the formation of N–S–S–N
bonds from S8 in moderate yields, and the reaction conditions
are simple and mild (Scheme 1E).
a Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.)
in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 �C for 3 h.
Results and discussion

As an initial experiment, we treated the model substrate (E)-N0-
benzylideneacetohydrazide 1a and S8 using Ag2CO3 as the
Table 1 Optimization of reaction conditionsa,b

Entry Additive (equiv.) S8 (equiv.) Temp (�C) Time (h) Yieldb (%)

1 Ag2CO3 (1.0) S8 (0.3) 80 3 46
2 Ag2CO3 (2.0) S8 (0.3) 80 3 61
3 Ag2CO3 (2.5) S8 (0.3) 80 3 71
4 Ag2CO3 (3.0) S8 (0.3) 80 3 66
5 Ag2CO3 (4.0) S8 (0.3) 80 3 64
6 Ag2CO3 (0.5) S8 (0.3) 80 3 32c

7 Ag2CO3 (2.5) S8 (0.2) 80 3 42
8 Ag2CO3 (2.5) S8 (0.4) 80 3 63
9 Ag2CO3 (2.5) S8 (0.6) 80 3 60
10 Ag2CO3 (2.5) S8 (0.3) 60 3 40
11 Ag2CO3 (2.5) S8 (0.3) 90 3 49
12 Ag2CO3 (2.5) S8 (0.3) 100 3 52
13 Ag2CO3 (2.5) S8 (0.3) 110 3 53
14 Ag2CO3 (2.5) S8 (0.3) 120 3 50
15 Ag2CO3 (2.5) S8 (0.3) 80 2 41
16 Ag2CO3 (2.5) S8 (0.3) 80 4 68
17 Ag2CO3 (2.5) S8 (0.3) 80 6 61
18 Ag2CO3 (2.5) S8 (0.3) 80 12 59
19 Ag2CO3 (2.5) S8 (0.3) 80 3 46d, 48e

20 K2CO3 (2.5) S8 (0.3) 80 3 0

a Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.)
in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 �C for 3 h.
b Isolated yields. c Added K2S2O8 (2.5 equiv.). d Air. e O2.

b Isolated yields.

41042 | RSC Adv., 2020, 10, 41041–41046
oxidant in 1,2-dichloroethane at 80 �C (Table 1). First, the
screening of the loading of Ag2CO3 was carried out, and it was
found that 2.5 equiv. of Ag2CO3 provided the best result (Table
1, entries 1–5). Aer this, we only obtained 32% yield when it
added 2.5 equiv. of K2S2O8 and reduced the loading of Ag2CO3

to 0.5 equiv. (Table 1, entry 6). Meanwhile, we also evaluated the
amount of S8, and the use of 0.3 equiv. of the material gave the
highest yield (Table 1, entries 3, 7–9). The temperature also
played an important role in the reaction. Various temperatures,
such as 60, 90, 100, 110 and 120 �C were also screened, but the
yields are poor (Table 1, entries 10–14). Finally, there was no
obvious improvement on shortening the reaction time to 2 h or
prolonging the reaction time to 4, 6, or 12 h (Table 1, entries 15–
18). Impressively, control experiments revealed that the reac-
tions performed under O2 and air atmosphere provided slightly
decreased yields (Table 1, entry 19). And it has been shown that
K2CO3 replaced Ag2CO3 has no reaction (Table 1, entry 20).

With the standard reaction conditions in hand (Table 1,
entry 3), we subsequently investigated the scope of the benzo-
quinones (Table 2). Substrates derived from aromatic aldehydes
with the para-substituted groups, such as 4-OMe (2b), 4-C(CH3)3
(2c), 4-C2H5 (2d), 4-Br (2e), 4-Cl (2f), afforded the corresponding
products in good yields. Unfortunately, the product with an
electron-withdrawing group such as 4-NO2 (2g) could not be
detected. Gratifyingly, the substrates with meta-substituted
groups such as electron-withdrawing 3-Br (2h) and 3-CF3 (2j)
and electron-donating 3-OMe (2i) also give good yields. But, the
product with a 3-NO2 group (2k) could not be observed.
This journal is © The Royal Society of Chemistry 2020
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Table 3 Scope of various substituents of caprylic hydrazide 1a,b

a Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.)
in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 �C for 3 h.
b Isolated yields.

Scheme 3 Postulated reaction mechanism.
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Subsequently, many components with the electron-donating
groups such as 2-CH3 (2l) and 2-OC2H5 (2m) at the ortho posi-
tion on the benzene ring gave good yields. However, the
substrates with a halogen group such as 2-Br (2n) and electron-
withdrawing groups such as 2-CF3 (2o), 2-NO2 (2p) at the ortho-
position did not to provide the corresponding products. To our
delight, many disubstituted substrates such as 2q and 2r also
gave the related products in 62–65% yields. In addition, the
structure of the product (2d) was conrmed by X-ray crystal-
lography. Notably, the gram-scale synthesis was achieved under
the standard conditions, giving the product 2a in 46% yield.

Various acyl hydrazides were also examined to explore the
limits of the reaction. As shown in Table 3, benzohydrazide (2s),
Scheme 2 Mechanistic studies.

This journal is © The Royal Society of Chemistry 2020
2-methylbenzohydrazide (2t) all afforded good yields. Further-
more, the alkyl hydrazide such as formyl hydrazide (2u), valeryl
hydrazide (2v) also afforded the corresponding products in 49–
54% yields. Surprisingly, thiophene-2-carbohydrazide (2w)
picolinohydrazide (2x) failed to produce the requisite disuldes.

To understand the mechanism of the reaction, several control
experiments were carried out (Scheme 2). First, product 2a was
not obtained without Ag2CO3 (Scheme 2a), which indicated that
Ag2CO3 was crucial to facilitate this reaction. Second, we found
that the desired product 2a was only slightly decreased when the
radical scavenger such as TEMPO was added to the reaction
mixture (Scheme 2b). The result indictates that a free radical
pathway might be ruled out in this transformation. Third,
replacing (E)-N0-benzylideneacetohydrazide with (E)-N0-benzyli-
denebenzohydrazide produced the desired compound 2s in 65%
yield under the standard conditions. Additionally, the product 4
was not observed when (E)-1-benzylidene-2-phenylhydrazine 3
was used as the substrate under the standard reaction conditions
(Scheme 2c). Furthermore, when (E)-1-benzylidene-2-
methylhydrazine was used in the reaction, the target product 5
was not detected (Scheme 2d). Based on these results, we knew
that the acetyl group was essential for the reaction and an oxygen
atom of acetyl group was also necessary. Additionally, the reac-
tions carried out under O2 and air atmosphere have slightly
decreased the yields of the product and the by-products increased
(Table 1, entries 18 and 19).

On basis of these preliminary studies and previous
reports,21–28 a plausible pathway for the preparation of 2a from
(E)-N0-benzylideneacetohydrazide is proposed in (Scheme 3).
Initially, Ag2CO3 react with 1 to produce the intermediate (A).
Next, A reacts with S8 to provide the intermediate B. The inter-
mediate C is then produced through an electrophilic attack of
elemental sulfur.21,22 Finally, 2a was obtained via facile oxidative
coupling of the intermediate C.
Conclusions

In summary, we have developed a silver-mediated oxidative
coupling reaction for N–S/S–S bond formation using (E)-N0-
benzylideneacetohydrazide and S8 as the starting materials
under neutral conditions. In these processes, N,N0-disulfanediyl
bis(N0-((E)-benzylidene) acetohydrazides have been successfully
synthesized. Moreover, this method provides a direct way to
form the disuldes in moderate yields.
RSC Adv., 2020, 10, 41041–41046 | 41043
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