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In this work, a novel catalytic system for facilitating the organic multicomponent synthesis of 9-phenyl
hexahydroacridine pharmaceutical derivatives is reported. Concisely, this catalyst was constructed from
acacia gum (gum arabic) as a natural polymeric base, iron oxide magnetic nanoparticles (FesO4 NPs), and
sulfone functional groups on the surface as the main active catalytic sites. Herein, a convenient
preparation method for this nanoscale composite is introduced. Then, essential characterization
methods such as various spectroscopic analyses and electron microscopy (EM) were performed on the
fabricated nano-powder. The thermal stability and magnetic properties were also precisely monitored via
thermogravimetric analysis (TGA) and vibrating-sample magnetometry (VSM) methods. Then, the
performance of the presented catalytic system (FesOs@acacia—SOsH) was further investigated in the
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Optimization, mechanistic studies, and reusability screening were carried out for this efficient catalyst as

DOI: 10.1039/d0ra07986¢ well. Overall, remarkable reaction yields (94%) were obtained for the various produced derivatives of 9-
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1. Introduction

Recently, powder technology has received much attention in
heterogeneous catalytic systems; powders have great potential
to be applied in complex organic synthesis reactions and are
conveniently separated during the purification processes
through their heterogeneity."* One of the best-known members
of this family of materials is magnetic nanoscale powder, which
has been widely used for various scientific purposes such as drug
delivery,® disease diagnosis,* water desalination,” environment
cleaning,® and chemical catalysis.” In our previous work, we have
reported several different catalytic systems constructed with the
individual iron oxide (Fe;0,4) powder (in nanoscale) and applied
them in various catalytic processes.*** These nanoparticles could
also be composed of other fibrous materials and could be
immobilized into polymeric matrices. Through this method, the
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phenyl hexahydroacridine in the indicated optimal conditions.

general properties of the catalytic systems such as the phys-
icomechanical features of the individual Fe;O, powder are
improved. In this regard, numerous studies have been per-
formed, and it has been revealed that the efficiency of the Fe;0,
powder can be significantly modified through its composition
with other materials.'*° For instance, a composition of graphene
oxide, Fe;0, and silver nanoparticles was prepared and applied
for enhanced photocatalytic degradation of phenols in the past
year.”* Moreover, Javanbakht et al. composited magnetic nano-
particles with a chitosan matrix for the efficient removal of lea-
d(u) from water resources.” Here, we attempted to prepare
a suitable composite of Fe;O, nanoparticles and “acacia gum”
powder, and we applied this composition to facilitate the organic
synthesis of 9-phenyl hexahydroacridine (HHA) pharmaceuticals.

Acacia gum, also called “gum arabic”, is obtained from wild
trees, and its main origin is Somalia. From the organic chemical
aspect, there are several hydroxyl groups in the structure of this
polymer that can be used as appropriate sites for covalent binding
and catalytic applications.” From the physicomechanical aspect,
the suitable stability of acacia gum led us to apply it as an
appropriate substrate for immobilization of magnetic nano-
particles. Previously, acacia gum was used as a matrix for catalytic
systems. For instance, Banerjee and Chen used this polymer to
design a nanoscale absorbent system for the removal of copper
ions from water resources. They also magnetized acacia gum
through the composition of Fe;O, NPs for an easy separation from
the mixture.* In this work, we attempted to perform a chemical
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modification of acacia gum by sulfonation of the hydroxyl func-
tional groups and use the product as an acidic catalytic system for
the facilitated synthesis of HHA derivatives. The chemical struc-
ture of the acacia gum polymer is presented in Fig. 1(a).

To date, various types of hydroacridine derivatives have been
developed and investigated for their therapeutic properties. For
example, it has been revealed that 5,6-dihydroacridine derivatives
possess antidiabetic and antioxidant properties.>**® Therefore, it is
highly important to prepare appropriate conditions for fast and
direct synthesis of hydroacridine derivatives. Generally, HHAs and
a wide spectrum of active pharmaceutical ingredients (APIs) are
synthesized via multicomponent coupling reactions. Today, to
obtain purer products with high reaction yields and to shorten the
reaction time, many strategies are being introduced and applied.
One of the most effective strategies is to use heterogeneous
metallic catalytic systems.”* Briefly, through the existence of
heteroatoms in the structure of the preliminary reactants of
multicomponent reactions, constructive electronic interactions
provide suitable conditions for chemical bonding. In this regard,
sulfonated polymeric networks appear to be efficient for catalysis

of organic synthesis reactions. For instance, a polymer-
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(@) Chemical structure of the acacia gum polymer and (b) general structure of tetramethyl-9-phenyl-hexahydroacridine-1,8(2H,5H)-

impregnated sulfonated carbon composite was recently reported
as an acidic catalytic system for assisting the alkylation of phenol.*
In this study, our aim was to sulfonate acacia gum and apply it to
facilitate the multicomponent synthesis reactions of tetramethyl-9-
phenyl-hexahydroacridine-1,8(2H,5H)-dione. The general structure
of these pharmaceuticals is presented in Fig. 1(b).

Concisely, we introduce a convenient method to synthesize
an Fe;O,@acacia-SO;H heterogeneous magnetic catalytic
system. Then, it is clearly shown that the synthesis of HHA
derivatives is highly facilitated through applying this efficient
catalyst. 87-94% reaction yields were obtained for different
derivatives of HHA in reaction times of less than two hours.
Moreover, convenient separation and excellent reusability were
observed for this system through its magnetic properties.

2. Results and discussion

2.1. Preparation method of the Fe;0,@acacia-SO;H nano-
powder

As presented in Fig. 2, iron(u) and iron(m) chloride salts were
dissolved in deionized water at room temperature. Then, acacia
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Fig. 2 Schematic of the preparation route of the FesO4@acacia—SOzH nano-powder.
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Fig. 3 (a) Fourier-transform infrared spectra of (i) the neat acacia gum, (ii) FesO4@acacia binary composite, and (iii) Fes04@acacia—SOsH nano-

powder; (b) energy-dispersive X-ray spectra of (i) the FesO4@acacia binary composite and (ii) the fabricated FesO4@acacia—SOzH nano-powder.

gum powder was added and was also dissolved. In the next
stage, iron ions were precipitated via co-deposition and
produced Fe;0,4 nanoparticles, which were well composed with
the polymeric texture of acacia.®" Via this in situ method, a better
composition was obtained, and the dark particles of Fe;O, were
well immobilized. For this purpose, ammonia solution was
used to raise the pH value. Moreover, after separation and
drying of the precipitate, the particles of Fe;O,@acacia were
dispersed in chloroform and the temperature was reduced by an
ice bath. Due to the exothermic reaction of sulfonic acid, gentle
addition of this material at cool temperatures is required.
During the preparation process, the Fe;O, nanoparticles appear to
electrostatically combine with the acacia textures because both
species contain several hydroxyl groups in their chemical

(a)

structures. In the case of sulfone groups, they are most likely cova-
lently attached to the acacia and Fe;O, nanoparticles.®® In the next
stage, after completion of the addition of sulfonic acid and stirring
for 120 min, the particles of Fe;O,@acacia-SOsH composite were
magnetically separated, washed, and dried in an oven.

2.2. Characterization of the Fe;0,@acacia—-SO;H nano-
powder

2.2.1. FT-IR and EDX studies. To investigate the presence
of essential functional groups in the structure of the
Fe;O0,@acacia-SO;H nano-powder, Fourier-transform infrared
(FT-IR) spectra of the neat acacia gum (spectrum i), Fe;0,@-
acacia binary composite (spectrum ii), and Fe;O0,@acacia-SO;H
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Fig. 4
FezO4@acacia—SOzH nano-powder.
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(a) Thermogravimetric analysis curves and (b) room-temperature M—H curves of the (i) FesO4@acacia binary composite and (ii) fabricated
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nano-powder (spectrum iii) were acquired and are presented in
Fig. 3(a). As can be seen in the spectra, the presence of the O-
H, C-H (hybridation sp?), and C-O bands was confirmed by
the peaks appearing at 3400, 2929, 1050 and 1250 cm ',
respectively. Also, it appears that some of the hydroxyl groups
in the structure of the acacia gum were converted to C=0.
This claim is proven by the peak that appeared at ~1660 cm ™
in the spectrum (i). The composition of the Fe;0, NPs was
confirmed by the peak appearing at ~590 cm™* in the spec-
trum (ii), which is related to the Fe-O bond. As observed in
the spectrum (ii), the sharp broad peak of hydroxyl groups in
the structure of acacia gum became deformed; this result
may be due to the physicochemical composition of the Fe;0,
NPs. According to literature, the peak related to the S=0O
bond is appeared in the range of 1000-1200 cm ™. Accord-
ingly, as shown in the spectrum (iii), this peak appeared and
confirmed the successful sulfonation of the Fe;O,@acacia
binary composite. To obtain more confirmation of the
successful execution of the sulfonation process, energy-
dispersive X-ray (EDX) analysis was also performed. As
Fig. 3(b) shows, 5.3% of the total weight of the Fe;0,@-
acacia-SOz;H nanocomposite was formed of sulfur after
carrying out the sulfonation process. The existence of the
other essential elements, such as carbon, oxygen, and iron,
related to the desired structures of the Fe;O,@acacia binary
composite and Fe;O @acacia-SO3;H nano-powder are also
proven by EDX analysis.

2.2.2. TGA and VSM studies. To check thermal stability of
our prepared Fe;O,@acacia-SO;H nano-powder, thermogravi-
metric analysis (TGA) was performed in a thermal range of 0-
3500 °C (Fig. 4(a)). This method also gives some information
about the combination of the Fe;O, NPs and the sulfonated
acacia via monitoring of the decomposition process. For the
Fe;O0,@acacia binary composite (curve i), it can be clearly
observed that proportional to the temperature rise, two distinct
shoulders in the thermal ranges of 0-700 °C and 800-1700 °C
appeared; then, the weight percentage gradually decreased from
~1700 °C onwards. The first shoulder can be related to the
dehydroxylation process of the acacia gum. Reportedly, the
organic layers and the hydroxyl groups are separated from the
structure as hydrate molecules up to 700 °C.*® In the next stage,
in which ~55% of the total weight was lost, the acacia gum
likely decomposed and the individual Fe;O, NPs started to
collapse from ~1700 °C. In curve (ii), which belongs to the
fabricated Fe;O @acacia-SO;H nano-powder, it can be clearly
observed that the stability of the organic functional groups was
significantly enhanced and the dehydroxylation process was
prolonged to ~1500 °C instead of 700 °C. Then, the decompo-
sition process started from ~1600 °C, and the weight was
gradually reduced. It can also be seen that only 40% of the total
weight was lost up to 3500 °C; this indicates that the general
stability of the fabricated nano-powder was enhanced via the
composition process. The magnetic property of the desired
product was also studied by vibrating-sample magnetometry
(VSM), and a comparison was made with the Fe;O,@acacia
binary composite through their magnetic-hysteresis (M-H)
curves (Fig. 4(b)). As shown, the magnetic property of the
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Fig. 5 X-ray diffraction patterns of (a) neat acacia gum, (b) the FezO4
NPs, and (c) the fabricated FesO4@acacia—SOzH nano-powder.

Fe;O,@acacia binary composite (curve i) decreased slightly
(~4.0 emu g~ ") after performing the sulfonation process. The
most probable reason is removal of some of the Fe;0, magnetic
NPs that were not strongly attached to the polymeric fibers
during the sulfonation process. However, magnetic saturation
for the fabricated Fe;O,@acacia-SO;H nano-powder occurred
at ~23.5 emu g by applying a magnetic field with 10 000 (Oe)
power, and this value is enough to perform a convenient
magnetic separation process.

2.2.3. XRD study. The X-ray diffraction (XRD) pattern of the
prepared Fe;O,@acacia-SO3H nano-powder was also investi-
gated to check the effects of the composited ingredients on the
general crystal structure (Fig. 5). With a quick look at the
spectrum, the presence of a broad peak starting from 26 = 20°
and continuing to 40° is confirmed. According to the literature,
this broad peak is related to the crystal structure of neat acacia
gum.** This result indicates that the acacia polymeric network
does not include a well-defined crystal structure in comparison
with the inorganic components. Also, there are some other
peaks in the XRD spectrum that are relatively sharp and can be
considered as indicative signals of the Fe;O, inorganic crystal
structure. Via a comparison with the reference pattern of the
Fe;0, NPs (JCPDS #99-0073), it was revealed that the peaks
appearing at 20 = 30.7, 36.2, 43.4, 57.7, and 63.4° belong to the
crystal structure of the composited Fe;O, NPs. These peaks are
also associated with the Miller indices (22 0),(311),(400),(51
1), and (4 4 0), respectively.

2.2.4. EM study. One of the most preferred methods for
investigating the sizes, morphologies, and compositions of
microscale and nanoscale materials is electron microscopy

This journal is © The Royal Society of Chemistry 2020
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(EM). This is because EM gives direct information from the
samples without any need for further interpretation or inac-
curate estimations. Fig. 6 illustrates the field-emission scan-
ning electron microscopy (FESEM) (images a and b) and
transmission electron microscopy (TEM) images (images ¢ and
d) of the fabricated Fe;O,@acacia-SO;H nano-powder at
different magnifications. As can be observed in all the images,
the mean size of the captured Fe;O, NPs between the acacia
textures is around 86 nm. Also, high uniformity in the sizes
and shapes of the particles as well as a monotonous distri-
bution onto the acacia gum fibers are nicely illustrated in
image (a). Obviously, this good dispersion of the particles
provides an extremely active surface area for catalytic appli-
cations. The TEM images also clearly disclosed that the
spherical-shaped NPs were entrapped in the polymeric matrix.
This composition may lead to higher mechanical stability in
catalytic systems. This stability will be better highlighted in
the recycling process investigation.

View Article Online
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2.3. Catalytic application of the Fe;0,@acacia-SO;H nano-
powder in the organic synthesis of 9-phenyl
hexahydroacridine pharmaceutical derivatives

As discussed in the Introduction section, the main goal of the
design and fabrication of the Fe;O,@acacia-SO;H nano-powder
was to provide a suitably active substrate with high heteroge-
neity to increase the convenience of the organic synthesis of 9-
phenyl hexahydroacridine pharmaceutical derivatives. Here, it
is clearly demonstrated that high reaction yields were obtained
through applying the present catalytic system. Moreover, the
reaction time significantly decreased in comparison with the
catalyst-free conditions. A brief comparison was made between
our novel designed catalytic system and other recently reported
systems that highlights the high efficiency of the present
nanocomposite in organic catalysis (Table 1). Scheme 1 pres-
ents a general view of the targeted organic reaction that was
intended to be catalyzed by the Fe;O,@acacia-SO;H nano-
powder.

Fig. 6
O @acacia—SOzH nano-powder.

This journal is © The Royal Society of Chemistry 2020

(a and b) Field-emission scanning electron microscopy and (c and d) transmission electron microscopy images of the fabricated Fes-

RSC Adv, 2020, 10, 40055-40067 | 40059


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ra07986c

Open Access Article. Published on 04 November 2020. Downloaded on 2/7/2026 10:49:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

2.3.1. Optimization. Concisely, various conditions,
including catalyst-free reactions, reactions catalyzed by the neat
Fe;0, NPs and acacia gum powder individually, and catalytic
systems with different amounts of Fe;O,@acacia-SOzH, various
reaction media and different reaction times were precisely
monitored in the synthesis reaction of 9-(4-methoxyphenyl)-
3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-
dione, which was considered as a model reaction. Table 1 briefly
reports the obtained results from each case and also shows that
94% yield was obtained through using 0.02 g of Fe;O,@acacia-
SO;H nanocomposite under reflux conditions.

2.3.2. Synthesis of 9-phenyl hexahydroacridines catalyzed
by Fe;0,@acacia-SO;H nano-powder. To investigate the cata-
lytic performance of the fabricated Fe;O0,@acacia-SO;H nano-
catalyst, various derivatives of the aldehyde component,
including bromine, chlorine, methyl, methoxy, and nitro
groups, were studied under the optimal conditions. For initial

View Article Online

Paper

assessment of the desired products, melting point measure-
ments were used. Then, some of the products were selected and
identified via spectroscopic methods. Table 2 reports the
synthesized products via the presented catalytic process.

2.3.3. Suggested mechanism of the catalytic activity of the
Fe;O0,@acacia-SO;H nano-powder. The Fe;O,@acacia-SOzH
nano-powder is an acidic catalytic system in which the catal-
ysis proceeds via H-bonding interactions with the involved
ingredients in the synthesis reactions. As a plausible mecha-
nism, Fe;O,@acacia-SO;H starts with activation of the alde-
hyde component in the first stage. Dimedone enters the cycle
by performing a nucleophilic attack on the activated aldehyde
(stage 2). Next, a m-conjugated system is formed during
a dehydration process (stage 3). Afterward, in stage four,
another dimedone performs a nucleophilic attack on the
structure of the conjugated compound; then, NH, enters the
cycle and forms the structure of the target 9-phenyl

Table 1 Optimization information for the catalyzed synthesis reaction of 9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-

droacridine-1,8(2H,5H)-dione®

Entry Cat. system Cat. weight (g) Medium Temp. (°C) Time (min) Yield? (%)
1 — — EtOH 25 110 N.R.

2 — — EtOH 75 110 N.R.

3 Fe;04 NPs 0.02 EtOH 75 110 Trace

4 Acacia gum 0.02 EtOH 75 110 Trace

5 Fe;0,@acacia-SO;H 0.01 EtOH 75 110 88

6 Fe;O,@acacia-SO;H 0.02 EtOH 75 110 94¢

7 Fe;O0,@acacia-SO;H 0.02 EtOH 75 300 94

8 Fe;0,@acacia-SOz;H 0.03 EtOH 75 110 94

9 Fe;0,@acacia-SO;H 0.03 EtOH 50 110 91

10 Fe;0,@acacia-SO;H 0.02 H,0 80 110 62

11 Fe,0,@acacia-SO,H 0.02 DMF 130 110 75

12 Fe;0,@acacia-SO;H 0.02 DCM 35 110 79

13 Fe;0,@acacia-SO;H 0.02 Toluene 130 110 76

14 Fe;0,@acacia-SO;H 0.02 CH;CN 75 110 79

15 Nano-Fe;0,-TiO,-SO;H 0.01 Solvent free 110 55 86 (ref. 35)
16 Fe;0,@Si0,-MoO;H 0.02 Solvent free 90 40 90 (ref. 36)
17 Cell-Pr-NHSO;H 0.05 Ethanol Reflux 48 88 (ref. 37)

“ Abbreviations: Cat.: catalyst; Temp.: temperature, DMF: dimethylformamide; DCM: dichloromethane; N.R.: no reaction. The reaction progress
was controlled by thin-layer chromatography, and the desired hexahydroacridine product was purified via flash-column chromatography.

b Isolated yield. © Optimum conditions.

Fe;04@acacia-SO3H (0.02 g)

(0] H 0
X
| +
R// 0
EtOH,
1.0 mmol 2.0 mmol
R: H, Br, CI,

OCHj, CHs, NO,

NH4OAc (1.1 mmol)

reflux, 110 min

Yield: 94%

Scheme 1 General schematic of the organic synthesis reaction of the 9-phenyl hexahydroacridine derivatives catalyzed by the FezO4@acacia—

SOzH nanocatalyst.
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Table 2 Various derivatives of 9-phenyl hexahydroacridine synthesized via the catalytic process using the FesO @acacia—SOszH nanocatalyst

Melting point (°C)

Entry Product structure Product code Time (min) Yield” (%) Found Reported Ref.
1 a 110 93 279-281 277-279 38
Cl
0] O
2 b 145 87 264-266 263-264 39
Me | | Me
Me l\|l Me
H
3 c 135 91 290-292 295-297 40
Cl
Cl
4 0 o d 150 87 318-320 319-321 41
Me | | Me
Me I\|l Me
H
5 e 125 91 211-213 210-213 41
6 f 120 92 301-303 300-302 42

This journal is © The Royal Society of Chemistry 2020
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Table 2 (Contd.)
Melting point (°C)

Entry Product structure Product code Time (min) Yield? (%) Found Reported Ref.
7 g 150 86 286-288 287-289 36
8 h 150 86 281-283 282-284 43
9 i 110 94 288-290 287-290 44
10 j 140 90 321-324 322-324 45

“ Isolated yield.

hexahydroacridine. Scheme 2 schematically presents the
explained catalytic cycle.**-*

2.3.4. Recyclability of the Fe;O,@acacia-SO;H catalytic
system. The stability of the fabricated catalytic system was
precisely investigated by successive running of the catalytic
process in the synthesis reaction of product i. As can be seen in
Fig. 7(a), acceptable reaction yields were obtained in a total of
ten runs of the reaction. After recycling and reusing the nano-
particles ten times, FT-IR and EDX spectra of the recovered
nanocomposite were prepared and investigated. From these

40062 | RSC Adv, 2020, 10, 40055-40067

analyses, it was clearly revealed that no significant changes
occurred in the structure of the Fe;O,@acacia-SOs;H catalytic
system. As can be observed in Fig. 7(b and c), all of the distinct
indicative peaks appeared in both spectra. Moreover, induc-
tively coupled plasma (ICP) analysis was performed to investi-
gate the metal leaching from the system. After completion of the
catalytic process (after run 1), the particles were separated and
the supernatant was filtered and analyzed. Briefly, it was
observed that only 0.15 mg of the iron element leached from
0.05 g of the catalytic system.

This journal is © The Royal Society of Chemistry 2020
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Scheme 2 Plausible mechanism of the catalytic activity of the fabricated FesOs@acacia—SOzH nanocatalyst in the synthesis reactions of 9-

phenyl hexahydroacridine derivatives.

3. Experimental
3.1. Materials and equipment

All commercially available chemicals, solvents, reagents and were
purchased from Sigma-Aldrich and Merck Company. All the
applied materials and equipment are summarized in Table S1.t

3.2. Practical methods

3.2.1. Preparation of Fe;O,@acacia binary composite. In
a round bottom flask (50 mL), FeCl,-4H,0 and FeCl;-6H,0 salts

(1.0 mmol and 2.0 mmol, respectively) were dissolved in deionized
water (10 mL) via vigorous stirring at room temperature. Then,
acacia gum powder (0.6 g) was added in several portions and also
dissolved. In the next stage, the reaction mixture was gradually
heated to around 80 °C under a neutral atmosphere of N,. Then,
ammonia solution (13 mL) was added dropwise until the pH value
reached ~12. The dark mixture was then stirred under the same
conditions for an additional 1 h. Finally, the magnetic particles
were collected via holding an external magnet at the bottom of the
flask after cooling to room temperature. The particles were washed
with ethanol and water several times and dried in an oven at 60 °C.
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3.2.2. Preparation of Fe;O,@acacia-SO3;H nano-powder. In
a round bottom flask (50 mL), the particles of Fe;0,@acacia (0.6
g) were dispersed in chloroform (10 mL), and the temperature
was reduced by an ice bath. In a separate flask, chlorosulfonic
acid (99%) (2.0 mL) was mixed with chloroform (2.0 mL), and
the resulting solution was added dropwise to the main reaction
flask with stirring. After completion of the addition, the ice bath
was removed, and vigorous stirring was continued for an
additional 2 h at room temperature. Ultimately, the product was
magnetically separated, washed, and dried as described above.

3.2.3. General procedure for the catalyzed synthesis of 9-
phenyl hexahydroacridine pharmaceutical derivatives. In
a round bottom flask (25 mL), aldehyde (1.0 mmol), dimedone
(2.0 mmol), ammonium acetate salt (1.1 mmol), and Fe;0,@-
acacia-SOz;H nano-powder (0.02 g) were mixed in ethanol (2.0
mL), and the mixture was refluxed. After the appropriate time
had passed (110 min), the particles of the catalytic system were
magnetically removed and the desired product was purified via
flash-column chromatography. The original 'H and "*C-NMR
spectra of the selected products are shown in Fig. S1-S20 in
the ESIT section.

3.2.4. Recycling of the catalyst. After completion of the first
round, the Fe;O,@acacia-SO;H particles were magnetically
separated and the rest were separated via decanting. Then, the
particles were washed well with deionized water and ethanol (20
mL) four successive times. Afterward, the particles were died in
avacuum oven for 24 h. To reuse the particles, redispersion was
initially performed by an ultrasound cleaner bath (50 kHz,
200 W L 1); then, the reactants were added to the flask.

3.3. Spectral data for selected products

3,3,6,6-Tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-
1,8(2H,5H)-dione (product a): M. P (°C): 279-281. "H NMR (300
MHz, DMSO), 6 (ppm): 9.30 (s, 1H), 7.00-7.13 (m, 5H), 4.60 (s,
1H), 2.40-2.48 (m, 2H), 2.27 (d, 2H), 2.12 (d, 2H), 2.00 (d, 2H),
0.98 (s, 6H), 0.83 (s, 6H). ">*C NMR (75 MHz, DMSO),  (ppm):
194.3, 149.3, 147.1, 127.6, 127.5, 125.4, 111.4, 50.2, 32.9, 32.2,
29.1, 26.4.
9-(2-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product b): M. P (°C): 264-266.
'H NMR (300 MHz, DMSO), 6 (ppm): 9.59 (s, 1H), 7.25-7.27 (d,
1H), 7.10-7.20 (m, 1H), 7.04-7.08 (m, 1H), 6.99-7.01 (m, 1H),
5.05 (s, 1H), 2.71-2.10 (m, 8H), 0.98 (s, 6H), 0.92 (s, 6H). *C
NMR (75 MHz, DMSO), é (ppm): 196.4, 152.4, 142.6, 132.0,
129.7, 128.2, 115.2, 50.6, 40.8, 32.2, 31.4, 29.3, 27.2.
9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product ¢): M. P (°C): 290-292.
'H NMR (300 MHz, DMSO), 6 (ppm): 9.92 (s, 1H), 7.27-7.30 (d,
2H), 7.18-7.19 (d, 2H), 4.50 (s, 1H), 2.50-2.59 (dd, 4H), 2.25-2.28
(d, 2H), 2.07-2.10 (d, 2H), 1.04 (s, 6H), 0.90 (s, 6H). >C NMR (75
MHz, DMSO), 6 (ppm): 196.1, 149.3, 147.1, 131.7, 129.6, 129.3,
128.2, 113.1, 50.2, 33.6, 32.8, 29.1, 27.3.
9-(2,4-Dichlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hex-
ahydroacridine-1,8(2H,5H)-dione (product d): M. P (°C): 318-
320. 'H NMR (300 MHz, DMSO), 6 (ppm): 9.95 (s, 1H), 7.34 (s,
1H), 7.28-7.33 (d, 1H), 7.19-7.22 (d, 1H), 5.58 (s, 1H), 2.38-2.43
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(m, 2H), 2.34 (d, 2H), 2.32 (d, 2H), 2.31 (d, 2H), 1.14 (s, 6H), 1.07
(s, 6H). >C NMR (75 MHz, DMSO), 6 (ppm): 189.8, 135.3, 134.1,
130.0, 129.5, 126.7, 115.4, 47.0, 46.9, 46.3, 31.7, 31.2, 28.9, 27.8.
9-(3-Methylphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product e): M. P (°C): 211-213.
'H NMR (300 MHz, DMSO),  (ppm): 8.07 (s, 1H), 7.26 (s, 1H),
7.09-7.11 (d, 1H), 7.03-7.08 (m, 1H), 6.86-6.88 (d, 1H), 5.05 (s,
1H), 2.32-2.40 (m, 2H), 2.26 (d, 2H), 2.22 (d, 2H), 2.16 (d, 2H),
1.05 (s, 6H), 0.95 (s, 6H). *C NMR (75 MHz, DMSO), é (ppm):
196.1, 149.5, 146.7, 137.3, 129.1, 128.0, 126.9, 125.2, 113.3, 51.1,
40.8, 33.6, 32.7, 29.8, 27.2, 21.8.
9-(3-Methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product f): M. P (°C): 301-303. 'H
NMR (300 MHz, DMSO), 6 (ppm): 8.94 (s, 1H), 7.25 (s, 1H), 7.22
(d, 1H), 7.01 (m, 1H), 6.98 (d, 1H), 5.07 (s, 1H), 3.91 (s, 3H), 2.22-
2.27 (m, 2H), 2.17 (d, 2H), 2.11 (d, 2H), 2.04 (d, 2H), 1.12 (s, 6H),
0.95 (s, 6H). *C NMR (75 MHz, DMSO), 6 (ppm): 196.1, 158.72,
149.9, 143.8, 134.9, 128.5, 127.7, 125.2, 112.8, 50.8, 40.2, 33.0,
32.3, 29.4, 27.9, 20.9.
9-(4-Nitrophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product g): M. P (°C): 286-288.
1H NMR (300 MHz, DMSO), 6 (ppm): 9.90 (s, 1H), 7.19-7.21 (d,
2H), 7.12-7.14 (d, 2H), 4.76 (s, 1H), 2.42-2.49 (d, 4H), 2.14-2.32
(d, 2H), 1.95-1.98 (d, 2H), 0.99 (s, 6H), 0.84 (s, 6H). ">*C NMR (75
MHz, DMSO), 6 (ppm): 194.4, 149.5, 146.1, 129.9, 129.5, 127.5,
115.5, 111.1, 50.1, 40.0, 32.6, 32.2, 29.0, 26.4.
3,3,6,6-Tetramethyl-9-(3-nitrophenyl)-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product h): M. P (°C): 281-283.
'H NMR (300 MHz, DMSO),  (ppm): 9.31 (s, 1H), 8.00-8.01 (d,
2H), 7.65-7.66 (d, 1H), 7.54-7.57 (t, 1H), 4.65 (s, 1H), 2.50-2.59
(dd, 4H), 2.27-2.30 (d, 2H), 2.08-2.12 (d, 2H), 1.04 (s, 6H), 0.91
(s, 6H). "*C NMR (75 MHz, DMSO), 6 (ppm): 196.0, 149.4, 149.0,
131.1, 129.7, 122.3, 112.9, 51.0, 40.9, 33.9, 32.8, 29.7, 27.3, 21.1.
9-(4-Methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product i): M. P (°C): 288-290. 'H
NMR (300 MHz, DMSO), 6 (ppm): 9.20 (s, 1H), 7.05-7.07 (t, 2H),
6.76-6.80 (t, 2H), 4.46 (s, 1H), 3.70 (s, 3H), 2.56 (d, 2H), 2.49-
2.51 (m, 2H), 2.27 (d, 2H), 2.09 (d, 2H), 1.03 (s, 6H), 0.91 (s, 6H).
3C NMR (75 MHz, DMSO), 6 (ppm): 196.2, 157.5, 149.6, 139.2,
128.8, 125.2, 113.0, 50.8, 40.36, 32.6, 32.4, 29.5, 26.9.
9-(4-Bromophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahy-
droacridine-1,8(2H,5H)-dione (product j): M. P (°C): 321-324. '"H
NMR (300 MHz, DMSO), ¢ (ppm): 9.33 (s, 1H), 7.23-7.26 (dd,
2H), 6.87-6.92 (m, 2H), 4.73 (s, 1H), 2.26-2.46 (m, 4H), 2.19-2.22
(m, 2H), 2.15 (m, 4H), 1.10 (s, 6H), 0.99 (s, 6H). *C NMR (75
MHz, DMSO), 6 (ppm): 194.4, 149.6, 149.3, 147.1, 127.9, 127.8,
126.0, 111.9, 50.7, 32.2, 31.2, 29.2, 27.3.

4. Conclusions

In this work, we designed and fabricated a novel catalytic
system with high heterogeneity and magnetic features to facil-
itate the MCR synthetic reactions of 9-phenyl hexahy-
droacridine pharmaceutical derivatives. A combination of
acacia gum (gum arabic) with iron oxide magnetic particles on
the nanoscale was used as a magnetized natural matrix. From
the physicochemical aspect, through effective H-binding

This journal is © The Royal Society of Chemistry 2020
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interactions, the organic and inorganic ingredients were firmly
fixed and combined well with each other. EM imaging
approaches indeed disclosed the composition of the composite.
Then, the prepared Fe;O,@acacia binary composite was
equipped with sulfone groups, which are considered to be the
main active catalytic sites. Afterward, the high catalytic perfor-
mance of the formed cluster-shaped composite was investigated
in the organic synthesis reactions of 9-phenyl hexahy-
droacridine derivatives. The mechanical and thermal stability
of the fabricated Fe;O,@acacia-SO;H nano-powder was also
studied, and this substantial stability was highlighted in the
recycling process. Overall, herein, we have made an effort to
comprehensively study the structural features of the Fe;0,@-
acacia-SOz;H nano-powder and demonstrate the catalytic
performance of this product. Due to the high convenience of the
synthesis process and the low prices of the used raw materials,
this product is recommended for industrial applications.
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