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The study reports on the valorization of municipal grass waste (MGW) for the extraction of cellulose
nanocrystals (CNCs), as an eco-friendly and sustainable low-cost precursor for cellulose nanomaterial
production. The raw MGW was subjected to boiling in water pretreatment, and alkali and bleaching
treatments for the extraction of cellulose fibers, followed by isolation of the CNCs through
a conventional acid hydrolysis technique. Fourier transform infrared spectroscopy was used to analyze
the cellulose fibers extracted while scanning electron microscopy and transmission electron microscopy
images confirmed the presence of cellulose fibers and CNCs, respectively. The chemical composition of
MGW was ascertained through the TAPPI-222 om-02 standard for lignin content and determination of

iig:gt: ﬁ?&sﬁs\t/zrr:gzrr iggg a-cellulose. The diameters of CNCs are in the range of 5-15 nm with the length ranging from 100 nm to
500 nm, while a crystallinity index of 58.2% was determined from X-ray diffraction analysis. The
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Introduction

Over the last few decades, cellulose nanomaterials have shown
tremendous application prospects due to their remarkable
chemical and physical properties including high tensile
strength, good elastic modulus of approximately 150 GPa, large
specific surface area of up to several hundred m® g™, and low
density of around 1.61 g cm >.*? In addition, the presence of
reactive surfaces, combined with renewability, sustainability
and biodegradability, further expands its applicability.>* The
method of preparation, dimensions and functional capabilities
of the cellulose nanomaterials are very much dependent on the
source material and processing conditions.® Cellulose nano-
materials that are extracted from lignocellulosic biomass can be
classified into two main subcategories: (i) cellulose nanofibers
(CNFs), which are elongated fibrils comprising both amorphous
and crystalline regions,® and (ii) cellulose nanocrystals (CNCs),
which are highly crystalline nanoparticles of cellulose prepared
via strong acid hydrolysis.”®

CNCs or sometimes referred as cellulose nanowhiskers
commonly have length of several hundred nanometers and
diameters ranging from 1 to 50 nm,” which makes them
compatible in developing nanocomposites and high-
performance composites’®** due to their high crystallinity and
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addition to reducing the volume of cumulative waste in the environment.

high surface area. Besides, the intriguing and engineered
properties of CNCs makes it an ideal material to be considered
in niche fields of applications including but not limited to
biomedical," food packaging, reinforcing fillers,"
membranes,® optical’” and environmental.*®**

CNCs are generally produced by hydrolyzing the amorphous
or semicrystalline fraction of cellulose, which are very suscep-
tible to strong acid treatment. Therefore, acid hydrolysis is the
conventional and commonly applied procedure for the
production of CNCs,**** only slightly differentiated with a small
interval of temperature and duration of acid hydrolysis. Despite
can be derived from various sources; the selection of the
cellulose precursor for the extraction of CNCs has been actively
investigated. As commonly reported in the literature, the
extraction of CNCs were usually carried out by utilizing
cellulosic-based materials such as waste papers,*>® wood
pulps,>?*® cellulose powder,” microcrystalline cellulose,*
cotton,** hemp,* and sisal.*® However, all these sources have
their significant manufacturing cycle in production of cellulose
or recycling industries.

This work focused on the valorization of municipal grass
waste (MGW) as a promising source material for the extraction
of CNCs. The MGW is also known as grass clippings, and
considered as a green waste, which is a major constituent of
solid waste.>* The green waste management is rather complex
and expensive due to its constant generation and occupies large
volume.*>*¢ Albeit an alternative on composting the green waste
has also been considered, the presence of recalcitrance
component such as lignin and cellulose increase the processing

This journal is © The Royal Society of Chemistry 2020
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time, thusly hamper the effort.*” The limitations of the com-
posting efforts include long processing time, low product
quality and require a proper and optimum strategy.*” The piled-
up MGW is not only unsightly, but also contributes to the
problem of municipal solid waste disposal and flooding land-
fills. The MGW is an accumulated waste that has no significant
commercial uses or industrial importance. Besides, it is usually
left untreated and accumulated as stockpile without any specific
use afterwards or in worst-case scenario, it was collected and
burned, which inevitably contributes to open fire burning, air
pollution and global warming. Thus, an avenue to convert the
green waste into value-added product would be significant so as
to ensure sustainable consumption; adapting cradle to cradle
concept. Therefore, it is worth mentioning that valorization of
such green waste material is a favorable approach for the extrac-
tion of CNCs without impeding with the commercially or widely
used cellulosic-based material sources. Various other sources of
agro-waste materials for the production of CNFs or CNCs have also
been reported such as sugarcane bagasse,* rice straw,* oil palm
empty fruit bunch,* apple pomace,” cucumber peels,*> tomato
peels,® pineapple peels,** and royal palm tree.*

In addition, the accessibility for the isolation of cellulose
fibers from grass waste is an alternative initiative to other
commonly used precursors. Although the wood is the preferred
source of cellulose due to its availability, the wood fiber costs
ranged between 38-45% of the total production cost and the
feedstock cost is among the major cost drivers.*® Despite there
is no available information for the industrial production cost of
cellulose from grass waste, it is expected that the plant fiber cost
derived from the grass clippings would be lower based on the
fact that it is a waste utilization. Besides, a huge increase in
papermaking and cellulose production, both which are tradi-
tionally sourced from wood pulp, has resulted in the severe
exploitation of trees, thereby leading to environmental prob-
lems such as deforestation. To mitigate the deforestation
impact, the valorization of the grass waste can be a significant
alternative approach.

To the best of authors' knowledge, the extraction of CNCs
from the MGW or grass clippings has not been reported yet. In
this study, cellulose fibers were isolated from raw MGW using
several treatment processes and followed by controlled-
condition of acid hydrolysis for the extraction of CNCs. Struc-
tural analysis and characterization were carried out using
Fourier transform infrared (FTIR) spectroscopy, scanning elec-
tron microscopy (SEM), transmission electron microscopy
(TEM), and X-ray diffraction (XRD) analysis.

Experimental
Materials

The raw material of the MGW used in this study was sourced
from a stockpile of grass waste produced from post lawn-
mowing activity located in the city of Kuantan, Pahang, Malay-
sia. Sodium hydroxide, NaOH (R&M Chemicals), hydrogen
peroxide, H,0, (Merck), sodium chlorite, NaClO, (R&M Chem-
icals), and sulfuric acid, H,SO, (Merck) were used as received
without further purification.
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View Article Online

RSC Advances

Extraction of cellulose fibers

Pre-treatment. 25 g of the collected MGW were weighed and
boiled in 500 mL distilled water for 60 minutes. The filtered
MGW was then ground using mechanical grinder and re-boiled
in 500 mL distilled water for another 60 minutes. The sample
was then filtered and rinsed several times with distilled water.
The pretreated sample was completely dried in an oven at 80 °C
for 90 minutes. The dried pretreated sample is labelled as
PTMGW.

Alkali treatment. Extraction of cellulose was further con-
ducted through alkaline treatment by eliminating lignin and
hemicellulose from pretreated MGW. The PTMGW was treated
and boiled with 4 wt% NaOH solution under reflux system for
90 minutes. The alkali treated sample was then filtered and
washed with distilled water to remove any excess NaOH until
a neutral pH was achieved. The sample was then completely
dried in the oven at 80 °C for 90 minutes. The dried alkali
treated sample is labelled as ATMGW.

Bleach treatment. For the bleaching treatment, the proce-
dure was adapted from Candido and Gongalves®” for the isola-
tion and purification of cellulose fibers, whereby the ATMGW
was subjected for bleaching using 5% H,O, (v/v), 1.3% NaOH
(m/v), and 0.7% NaClO, (w/v) under reflux condition at 80 °C for
90 minutes. The bleached MGW was filtered and washed until
neutral pH was achieved. The bleaching treatment was repeated
for another 60 minutes to ensure the complete removal of lignin
or any undesirable components. The bleached sample was then
filtered and washed again until a constant pH was achieved. The
bleach treated MGW was then completely dried in the oven at
60 °C for 60 minutes. The dried samples for the first bleaching
treatment and the second bleaching treatment were labelled as
BT1IMGW and BT2MGW, respectively.

Isolation of cellulose nanocrystals (CNCs)

Acid hydrolysis. 5 g of the dried BT2ZMGW were weighed and
suspended with 10 mL of distilled water. The suspended
BT2MGW was then reacted with 64% H,SO, with a ratio of 3 : 8
(w/v) under constant vigorous stirring for 60 minutes at 45 °C.
The reaction was halted with the addition of distilled water 10
times to the volume of acid used. The hydrolyzed sample was
subjected to centrifugation (5300 rpm, 10 minutes) to remove
the excess sulphuric acid. The sample was then dialyzed against
distilled water until a constant pH was achieved.

Characterization of cellulose and CNCs

Fourier transform infrared (FTIR) spectroscopy. The FTIR
analysis (PerkinElmer Frontier) was carried out in the range of
4000-400 cm™' to identify the lignocellulosic components
present in the samples. The dried MGW, ATMGW, BTIMGW
and BT2MGW samples were ground and blended with KBr
powder before pressing the mixture into ultra-thin pellets.

Scanning electron microscopy (SEM). The morphology of
dried raw MGW, ATMGW, BTIMGW and BT2MGW were
examined by Zeiss Evo scanning electron microscope. The dried
samples were deposited on a metallic stub using carbon tape
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and gold coated to avoid sample charging, using a sputter
coater. The SEM analysis was operated under high vacuum
mode, with an acceleration voltage between 10-20 kV.

Transmission electron microscopy (TEM). TEM images of
the CNCs were recorded using TEM (Hitachi HT7700, Japan)
with an acceleration voltage of 100 kv. The sample was sub-
jected for 4 hours of magnetic stirring followed by ultra-
sonication for 30 minutes. A drop of the CNCs suspension was
deposited on copper grid and was then dyed using UranyLess
staining solution for 5 min.

X-ray diffraction (XRD). XRD analysis was carried out using
a Phillip PW 3040/60 MPD X'Pert High Pro PANalytical diffrac-
tometer with Cu Ko radiation, between 26 of 5-40°, with a 26
step size of 0.008° and a time of 20 s per step. The crystallite size
was estimated from the FWHM (full width at half maximum)
value of the 100% cellulose peak around 22.3°, using the
Scherrer equation:

K
~ hyjp cos 0

1)

where D = average size of the crystallites, K = Scherrer constant
(0.94 for spherical crystals), A = wavelength of radiation (0.154
nm), hy,, = FWHM, and # = Bragg angle (the peak position =
26). The crystallinity index (CI) was calculated using eqn (2).***

CI (%) = (5@11L§9> x 100 @)
Toox

where I, is the maximum diffraction intensity of the peak of 26

around 22°-23° while I, is the diffraction intensity of the 26

between 15° and 16° which represents the amorphous back-

ground, which is the minimum diffraction intensity for

cellulose.’®*°

Composition of municipal grass waste (MGW)

Lignin content. The procedure for lignin determination was
carried out according to the TAPPI-222 om-02 standard;
whereby 72 mL of 72% (v/v) H,SO, was mixed with 2 g of the raw
MGW in a round bottom flask with constant magnetic stirring
for 2 hours at room temperature. Subsequently, 560 mL of
distilled water was added and the mixture was heated to the
boiling point, followed by refluxed for 4 hours. After cooling, the
mixture was subjected to vacuum filtration and dried in the
oven at ~100 °C for 2 h before it was weighed for the lignin
content. The procedure was performed in triplicate.

a-Cellulose determination. 50 mg of the obtained cellulose
was weighed and placed in a beaker. Then, 4 mL of 17.5% (w/w)
NaOH was added and left aside to react for 300 min at room
temperature. Subsequently, 4 mL of distilled water was added
and the mixture was stirred with a spatula for 1 min and left to
rest another 30 minutes. The suspension was filtered and
washed thrice with 30 mL of distilled water each, and moist-
ened with an acetic acid solution for 5 min. The neutralized
fibers were washed again thrice with 30 mL distilled water each
and the amount of a-cellulose was determined when the sample
was completely dried in the oven at 100 °C for 4 hours. The
procedure was performed in triplicate.
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BTIMGW BT2MGW

MGW ATMGW

Fig. 1 Digital images of raw MGW, ATMGW, BTIMGW and BT2MGW
obtained from the different treatment stages.

Results and discussion
Isolation of cellulose fibers

The alkaline treatment was conducted to isolate, as well as
enhance, the cellulose quantity in the sample. This process
serves to reduce the non-cellulosic portions of the fibre, which
includes lignin, hemicelluloses, pectin, waxes, oils, and other
contaminants.®® A combination of hydrogen peroxide and
sodium chlorite was used during the bleaching treatment, for
the removal and fractionation of a considerable quantity of
residual hemicelluloses and lignin, persisting in the grass waste
sample. Hydrogen peroxide reactivity gives rise to the develop-
ment of an exceedingly reactive strain of superoxide radicals
(Oy"7). These superoxide radicals promote the oxidation of the
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Fig. 2 FTIR spectra of MGW, PTMGW, ATMGW, BTIMGW and
BT2MGW.
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Fig. 3 SEM micrographs of (a) MGW, (b) ATMGW, (c) BTIMGW and (d)
BT2MGW.

aromatic rings of lignin, and segments of hemicellulose for
carboxylic acids.* The bleaching treatment process facilitates
the removal of impurities, from the fibre of the raw material,
through the elimination of the chromophore groups. This

Fig.4 TEM images of CNCs produced from the municipal grass waste
at (@) x10k magnification and (b) x40k magnification.

This journal is © The Royal Society of Chemistry 2020
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process led to the realization of a whiter and less contaminated
material as can be seen in Fig. 1.

In terms of chemical composition, the raw municipal grass
waste (MGW) registered a lignin measure of 9.2 + 0.4%, and
52.7 = 0.07% of o-cellulose. Following purification, the
bleached fibre (BT2MGW) registered a 58.4 £+ 0.07% of a-
cellulose, with only a 0.01% of lignin content. This revealed the
combination of H,0,, NaOH, and NaClO, for the bleaching
treatment allow complete removal of lignin from the MGW. Yan
et al.* reported that efficient removal of lignin from grass waste
can also be achieved using a dilute NaOH supplemented with
H,0,. The FTIR analysis verified a considerable dip in the
quantity of lignin, after bleaching. The significance of the
bleaching treatment, for raw material purification, is associated
to the need for lignin reduction. As lignin is insoluble at the
sulphuric acid concentration in use, it can intervene and curtail
the extraction of cellulose nanocrystals.*

FTIR analysis

The FTIR analysis (Fig. 2) revealed alterations in the properties
of the materials, following the delignification of the MGW.
Peaks around 3440 to 3400 cm ™' zone, was observed in all
spectra, representing the C-H and O-H groups, associated to
the cellulose component.* This is an indication that the cellu-
lose content was preserved throughout the chemical treatments
performed. Peak at 2900 cm ™" derives from the C-H stretching
vibration corresponds to general organic content.>® As antici-
pated, this circumstance is similar for all the samples.

The reduction in strength of the C=0 band at 1734 cm ™,
denoting the carboxyl groups, brought about by the acetyl group
and the ester of the hemicelluloses, or the links between esters
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Fig. 5 Distribution of (a) diameter and (b) length of CNCs.
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Table 1 Geometrical dimensions of CNCs prepared from various source material
Source material Diameter (nm) Length (nm) CI (%) Ref.
Municipal grass waste 5-15 100-500 58.2 This study
Wood pulps 17 190-660 n.a. 27
Cellulose powder 10-25 >1000 65.8 29
Microcrystalline cellulose 5 276 72.1 30
Cotton 10 133 82.0 31
Hemp 15 100-200 87 32
Sisal 9.45 + 1.85 128.55 + 20.51 68 33
Wastepaper 4.40 + 3.91 356.27 + 137.28 92.6 22

3-10 100-300 75.9 23
Sugarcane bagasse 12 £ 1.6 222 £ 23 65 38
Rice straw 5.95 270 86 39
Apple pomace 7.9 +1.25 28 +2.03 78 41
Tomato peels 5-9 100-200 80.8 43
Royal palm tree 8.1+2.5 112.9 £+ 43.6 63.6 45

of the carboxyl groups of lignin and/or hemicellulose, implies
the disbanding or elimination of hemicellulose in the samples.>*
The peak at 1640 cm™ ', which is apparent in all the samples,
concerns the water absorption factor.”* Absorption between 1260
and 1274 cm ™, particularly at 1262 cm ™, relates to the elongation
of the C-O bond of the aryl group.* It is inclined to vanish or
decline in strength following alkaline and bleaching processes.
This suggests the reduction of lignin and hemicellulose during the
purification stages.** While a reduction of this band is apparent in
the spectrum, it is nevertheless more accentuated in the raw MGW
and BT2MGW spectrum, suggesting the effectiveness of alkali and
bleaching treatment. The peaks at 1155 cm™ ' and 1105 cm ™"
respectively correspond to C-C ring breathing band and C-O-C
glycoside ether band due to the presence of cellulose.*® Their rise
in intensity may be attributed to the boost in cellulose content of
the sample, after bleaching.

SEM analysis

Fig. 3a-d show the surface morphology of MGW, ATMGW,
BTIMGW and BT2MGW, respectively. Generally, the SEM
micrographs revealed that following the treatment processes,
the cellulose fibres extracted from the MGW took on a fibrous
structure. The surface morphology of ATMGW indicates the initial
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Fig. 6 X-ray diffractogram of (a) PTMGW, (b) BT2MGW and (c) CNCs.
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formation of fibres, resulting from the alkali treatment. The fibres
were then observed to transform into thinner fibrils with a retic-
ular configuration. This transformation, which is shown in Fig. 3¢
and d, suggests that the purification and bleaching procedures did
not trigger the severing of cellulose fibres.

TEM analysis

Fig. 4a and b show the TEM images of the CNCs produced from
the MGW at different magnification. The morphology of the
CNCs acquired through acid hydrolysis, led to their assuming
a rod-like structure as depicted in Fig. 4a and b. The longitu-
dinal arrangement of some agglomerated rods (Fig. 4a) may be
attributed to the presence of hydrogen bonding. The indepen-
dent, unconnected whiskers exhibited in Fig. 4b, are regular
features of the CNCs. The development of these features stems
from the high aspect ratio, the extensive surface area, and the
presence of a profusion of hydroxyl groups on the surface. Such
a situation facilitates the stacking or interacting of the nano-
particles, through van der Waals or hydrogen bonding interac-
tions.**  Although this consequently culminates in
agglomeration, dispersal is straightforward in an aqueous
medium. Agglomeration can also result from water evaporation
during the preparation of the samples.

The distribution of diameter and length of the CNCs
produced from the MGW are shown in Fig. 5a and b, respec-
tively. The diameter of the CNCs ranged from 5 to 15 nm while
the length ranged from 100 to 500 nm. The average diameter
and length of the CNCs were recorded as ~8.4 nm and ~236 nm
respectively. These measurements are comparable to those
documented in literature associated to CNCs. Briefly, the
average diameter of the CNCs obtained is similar when
compared to the value of CNCs produced from other agro-waste
materials. For examples, the average diameter of the CNCs
extracted from hemp is 15 nm,** and 9.45 nm for CNCs obtained
from sisal.*® The average diameter of CNCs extracted from rice
straw®® and royal palm tree** was found to be 5.95 nm and
8.2 nm, respectively. Table 1 provides a summary of the

This journal is © The Royal Society of Chemistry 2020
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Table 2 Crystallinity of pretreated MGW, BT2MGW and CNCs
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Average crystal

Sample 26002 Inos 20am Lim FWHM,o, size (nm) CI (%)
PTMGW 22.2 1901.1 14.9 1130.3 0.19 73.12 40.5
BT2MGW 22.1 3447.8 15.2 1681.1 0.38 29.52 51.2
CNCs 22.3 3766.1 15.5 1573.8 0.22 42.79 58.2

geometrical dimensions of CNCs, derived from a variety of
source materials.

Irrespective of the sources of the precursors utilized, the
production of similar geometrical CNCs, have also been ach-
ieved, by researchers utilizing unconventional approaches. For
instance, an undertaking by Lee et al.*” involved the use of
electron beam irradiation as the extraction method, to obtain
CNCs with a consistent width of 23 to 31 nm, and a tuneable
length of 128 to 747 nm. An acid-free preparation approach,
involving  TEMPO oxidation followed by cavitation, was
employed by Zhou et al.”® to acquire CNCs with a consistent
width of 3.5 to 3.6 nm, and an average length of 200 nm.
Isolation of CNCs using high energy ball milling method
showed rod-like morphology with length and diameter ranged
between 200 and 400 nm and 7 to 18 nm, respectively.>

XRD analysis

After the purification treatments, the CNCs were assessed for
their crystallinity. The hydroxyl groups bring about the occur-
rence of intra, as well as intermolecular hydrogen bonding, in
cellulose. This gives rise to a variety of ordered crystalline
configurations. As displayed in Fig. 6, the XRD analysis exhibi-
ted two kinds of peaks. The peaks with the greatest intensity
values of between 26 = 22.3° corresponds to the crystalline
structure of cellulose I, whilst the lower diffraction peak of 26 in
the range of 14° to 17°, are associated to amorphous back-
ground.®”® The peak appearing at 34° is also associated to the
presence of cellulose 1.°> At 22.3°, the main peak associated to
the crystalline structure of cellulose I became apparent in the
CNCs, which suggest the presence of a crystalline material
comprising nanoscale crystals, while the lower diffraction peak
(260 = 14-16°) represents the amorphous part.** The presence of
some form of amorphous material is also indicated by the
background ‘hump’, appearing in the vicinity of 20° to 30°. The
effectiveness of the acid hydrolysis treatment for the elimina-
tion of the amorphous region is made evident by the somewhat
more distinct crystalline peak in the CNCs.

Eqn (1) was applied to approximate the average cross-
sectional dimension of the elementary cellulose crystallites,
through their X-ray diffractograms. This is explained in XRD
Experimental section. Although the Scherrer equation used is
undependable for dimensions less than 100 nm, it is never-
theless applicable for determining the approximate average
crystallite size. As shown in Table 2, with the FWHM for the
PTMGW, BT2MGW and CNCs revealed as 0.19, 0.38 and 0.22
respectively, the crystallite size was found to be 73.12, 29.52 and
42.79 nm. The crystallinity index (CI) listed in Table 2 indicates

This journal is © The Royal Society of Chemistry 2020

that the crystallinity of the CNCs was increased from 40.5% to
58.2%, through purification treatments and acid hydrolysis.

The crystallinity index is lower when compared to other
CNCs produced from agricultural waste, as shown in Table 1.
Despite an optimum acid hydrolysis procedure might need to
be further investigated, this can also be expected since the
precursor used exhibited a lower crystallinity index (CI) of
40.5% as compared to other cellulose precursors. The low
crystallinity of CNCs was also reported by others. For instance,
Phanthong et al.* reported the CI of 65.8% for CNCs produced
from cellulose powder which having 73.7% crystallinity,
whereby the crystallinity was reduced as compared to the
precursor used. Besides, Li et al.®® and Han et al.** reported the
reduction of ~30-34% crystallinity, from the cellulose
precursor, which produce CNCs with 36% and 52.1% crystal-
linity, respectively.

However, it should be note that the increase of around 18%
of the crystallinity was found in the present study. Besides, the
increased percentage is similar to other reported literature such
as 20% increased for CNCs produced from cotton,*" and 22%
increased for CNCs prepared from sisal.*® Jiang & Hsieh** and
Danial et al.* reported the increase of only 10-12% crystallinity
for the CNCs produced from tomato peels cellulose and
wastepaper, respectively. Lu & Hsieh® reported that the crys-
tallinity of the CNCs can be increased by increasing the
hydrolysis time, which directly influence the crystallinity
degree. The crystallinity is related to the strength and stiffness
of the cellulose fibers.®* The importance of higher crystallinity
index, however, will be dependent on CNCs application. Since
the crystallinity affects the mechanical and physical proper-
ties,* the high crystallinity CNCs might be useful as reinforce-
ment in nanocomposites, while the low crystallinity CNCs can
be indicated to be applied as a food thickener or pickering
emulsion.®® Although the crystallinity might affect the strength
and fiber stiffness, the presence of the cellulose surface func-
tional groups also plays a significant role in determining the
applicability and reinforcing behavior of the CNCs.

Conclusions

This study reveals the viability of acquiring cellulose nano-
crystals from municipal grass waste or grass clippings. The
application of alkaline, bleaching, and acid hydrolysis treat-
ments effectively isolated CNCs from the municipal grass waste.
The efficiency of the treatment approach was verified through
the FTIR analysis, while the nano-scale dimensions of the CNCs
acquired were determined through the TEM analysis. The

RSC Adv, 2020, 10, 42400-42407 | 42405
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crystallinity value of the CNCs acquired was effectively raised
from 40.5% to 58.2%, through purification treatments and acid
hydrolysis. The CNCs obtained displayed the usual whisker- or
rod-like feature, with an average dimension of 8.4 nm for
diameter, and length ranging from 100 to 500 nm. Given the
abundance and the need to reduce the municipal grass waste,
this work demonstrated that the CNCs can be successfully ob-
tained from which not only contributing as a new source of
nanomaterials but also minimizing the environmental liability.
Although the nanomaterial production are compensated with
extensive use of chemicals from several treatment processes
and further considerable investigation might be required for
upscale production, this study might pave the way towards the
valorization of alternative precursor for the production of CNCs
without intermeddling with commonly used precursors such as
cotton, wood pulps and wastepaper that already have their
significant manufacturing cycle in production of cellulose or
recycling industries.
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