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An aluminium-based metal–organic framework ((MOF), MIL-53(Al)), was hydrothermally synthesized,

characterized and applied for the remediation of the herbicides dicamba (3,6-dichloro-2-methoxy benzoic

acid) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous medium. Response surface

methodology (RSM) and artificial neural network (ANN) were used to design, optimize and predict the non-

linear relationships between the independent and dependent variables. The shared interaction of the effects

of key response parameters on the adsorption capacity were assessed using the central composite design-

RSM and ANN optimization models. The optimum adsorption capacities for dicamba and MCPA are 228.5

and 231.9 mg g�1, respectively. The RSM ANOVA results showed significant p-values, with coefficients of

determination (R2) ¼ 0.988 and 0.987 and R2 adjusted ¼ 0.974 and 0.976 for dicamba and MCPA,

respectively. The ANN prediction model gave R2 ¼ 0.999 and 0.999, R2 adjusted ¼ 0.997 and 0.995 and

root mean square errors (RMSEs) of 0.001 and 0.004 for dicamba and MCPA, respectively. In each set of

experimental conditions used for the study, the ANN gave better prediction than the RSM, with high

accuracy and minimal error. The rapid removal (�25 min), reusability (5 times) and good agreement between

the experimental findings and simulation results suggest the great potential of MIL-53(Al) for the remediation

of dicamba and MCPA from water matrices.
Introduction

Dicamba (3,6-dichloro-2-methoxy benzoic acid) and MCPA (4-
chloro-2-methylphenoxyacetic) (Table 1) are widely used as post-
emergence herbicides to selectively kill broadleaf weeds that
infest farmlands.1 They act by altering themetabolism, physiology
and cell wall plasticity of the weeds.2,3 The excess use of dicamba
and MCPA deteriorates the quality of water resources due to their
toxicity, slow biodegradability and persistence in aqueousmedia.4

This has led to uncontrollable non-point source effluent in the
form of agricultural run-off and leaching, which pollutes surface
and ground waters.5 Studies have indicated that dicamba and
MCPA are easily biomagnied and accumulate in living
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f Chemistry 2020
organisms through the food chain, causing negative impacts such
as endocrine disruption of aquatic animals and humans.6

Dicamba and MCPA have been listed as priority pollutants by the
European Union (EU) and are considered to have possible carci-
nogenic and mutagenic effects by the International Agency for
Research on Cancer.7 Due to adverse environmental and health
impact of these compounds, European Union (EU) directives have
set 0.1 mg L�1 as the maximum concentration allowed in drinking
water.8 Hence, it is crucial to apply appropriate treatment tech-
niques that can efficiently and effectively remove these contami-
nants from water.9,10

Over the years, methods such as adsorption, coagulation, oc-
culation, ion exchange, membrane ltration, and chemical
oxidation11 have been applied to remove recalcitrant herbicides
from water. Of these methods, adsorption has been singled out to
be the most practical due to its cost-effectiveness, simple opera-
tions, convenient recycling and availability.12,13 The most
frequently used adsorbent for the removal of dicamba and MCPA
is activated carbon;14 however, other adsorbents, such as organic
materials,4 graphene oxide,15 goethite,16 biochar,17,18 and clay
materials,19 have recently been proposed. It has been recognised
RSC Adv., 2020, 10, 43213–43224 | 43213
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Table 1 Some properties of the studied herbicides

Common name Chemical name Molecular formula Structure Solubility (mg L�1) pKa log P

Dicamba 3,6-Dichloro-2-methoxybenzoic C8H6Cl2O3 6100 1.87 2.21

MCPA 4-Chloro-2-methylphenoxyacetic acid C9H9ClO3 825 3.13 2.80
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that potential adsorbents must have high surface areas, large pore
volumes, and good thermal and water stabilities.20

Metal–organic frameworks (MOFs) typify the substantial
progress that has been made in the development of the new
generation of porous materials over the years.21 MOFs have
quickly attracted the attention of researchers for the removal of
different environmental pollutants.22,23 They are a class of highly
porous, crystalline materials with high surface areas, consisting
of metal clusters and multifunctional organic linkers.24 Recently,
the application of MOFs in the remediation of toxic contami-
nants in wastewater such as pharmaceuticals, dyes, and heavy
metals has been gaining attention.25

Aluminium-based MOFs such as MIL-53(Al), MIL-68(Al),
MIL-100(Al), and MIL-101(Al) (Materials Institute Lavoisier)
have been used for various applications, such as CO2 capture,
gas storage, separation, sensing, catalysis and wastewater
remediation, due to their potential and versatile proper-
ties.26,27 One unique feature of MIL-53(Al) is that it has high
thermal stability and structural exibility, which is also
referred to as the “breathing effect”,28 due to its ability to
expand and contract by adjusting the pore size to accommo-
date different molecule sizes and still retain its crystallinity.
MIL-53(Al), with a surface area of 500 m2 g�1, was recently
applied by Gao et al.29 for the removal of sulfonamide antibi-
otics from water. Equilibrium adsorption was reached
within 60 min. Guan et al.30 observed rapid removal and
high adsorption capacity of methyl blue (93.1 mg g�1) and
amaranth dyes (40.2 mg g�1) using MIL-53(Al). Li et al.31

recorded a high adsorption capacity (228.2 mg g�1) of Cu(II)
onto MIL-53(Al). Jia et al.32 also applied MIL-53(Al) for the
adsorption of triclosan with high removal efficiency of�99.2%
within 120 min, and the adsorbent was used repeatedly.

In most earlier studies, only one parameter was varied at
a time, which does not take into consideration the interaction
and inuence of other parameters simultaneously affecting the
adsorption process. This may be time-consuming and costly for
industrial applications.33 To remediate this challenge, this study
employs computational intelligent algorithms, i.e., response
surface methodology (RSM) and an articial neural network
(ANN), to design, optimize, predict and validate the non-linear
relationships between the independent and dependent
43214 | RSC Adv., 2020, 10, 43213–43224
variables as well as to study the shared interactions of the
adsorption parameters. This technique was seen to improve
process efficiency, determine the impact of combining several
parameters at a time, minimize the number of experimental
runs, and reduce the cost and time of process optimization.

RSM is used to construct mathematical models based on
a specic experimental design with linear, quadratic and
optimum interaction terms for predicting the effects of certain
observed variables on a response output.34 ANN mimics the
behaviour of the human brain in processing information, and it
can learn, predict and correlate the pattern of experimental data
when subjected to training.35 The ANN technique provides
a platform that can determine the impact of some optimized
adsorption parameters on the behaviour of a target output.36RSM
was used to optimize the design of the ANN architecture to obtain
the best input combination for training, testing and validation.
Although the superiority of the integration of RSM and ANN for
wastewater remediation has been demonstrated,37,38 scant
studies by researchers can be found in the literature. Here, the
predictive, sensitivity and generalization capabilities of RSM and
ANN in the removal of dicamba and MCPA by MIL-53(Al) were
compared, and this has not been reported before.
Materials and methods

All chemicals and solvents used were of analytical grade and
were used without further purication. Aluminium nitrate
nonahydrate (Al(NO3)3$9H2O, $98%), terephthalic acid (TPA,
99%), N,N-dimethyl formamide (DMF, 99%), methanol (99.5%),
hydrochloric acid and sodium hydroxide were supplied by
Avantis Laboratory (Ipoh Perak, Malaysia), while dicamba and
MCPA were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Preparation of MIL-53(Al) adsorbent

MIL-53(Al) was hydrothermally synthesized according to
a previous procedure.39 Thus, aluminium nitrate (Al(NO3)3) (13 g)
and terephthalic acid (TPA) (2.88 g) were dissolved in deionized
water (50 mL). The mixture was homogenized for 30 min with
amagnetic stirrer and the suspension was placed in a Teon-lined
stainless-steel autoclave, sealed and heated in an oven for 72 h at
493 K. Next, the reactor was allowed to cool to room temperature
This journal is © The Royal Society of Chemistry 2020
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and the product was ltered, then washed with DMF and distilled
water several times to remove possible impurities and unreacted
(1,4-benzenedicarboxylate) materials. The nal product was dried
for 2 h at 353 K and nally activated at 473 K for 8 h.
Characterization of MIL-53(Al) adsorbent

The thermal stability of the adsorbent was assessed by thermog-
ravimetric analysis (TGA) under N2 atmosphere using a Shimadzu
TGA-50 Analyzer and was heated from 30–800 �C at a heating rate
of 10 �C min�1. A Bruker D8 Advance X-ray diffractometer (XRD)
was used to determine the crystallinity of the material. The func-
tional group of the MIL-53(Al) was determined by scanning from
400 to 4000 cm�1 on a PerkinElmer FTIR spectrometer. Field
emission scanning electron microscopy (FESEM) was used to
determine the morphology using a Zeiss Supra 55 VP instrument,
while the BET surface area and pore size were analysed using N2

adsorption–desorption with a Micrometric ASAP 2020.
Batch adsorption studies

Stock solutions of dicamba and MCPA (1000 mg L�1) were
prepared by dissolving the analyte standard (0.1 g L�1) in
a 1000 mL volumetric ask and maintaining it in a refrigerator (0
�C) prior to usage. Adsorptions were carried out at different
concentrations by subsequent dilution of the stock solution with
distilled water. MIL-53(Al) adsorbent (0.01 g L�1) was suspended
in a conical ask (100 mL) of a solution containing 5–50 mg L�1

initial concentrations of dicamba and MCPA. The ask was then
placed inside a temperature-regulated incubator shaker (incubator
ES 20/60, Biosan) and agitated at 150 rpm for 5–60 min. At every
5 min interval, the sample solution (2 mL) was collected and
ltered with a nylon syringe membrane (0.45 mm). The absor-
bances of the dicamba and MCPA solutions were analysed at lmax

of 275 and 279 nm with a UV-vis spectrophotometer (Shimadzu,
Lamda 25), respectively. The effects of pH and temperature were
also studied by adjusting the initial pH from 2 to 12 using either
0.1 M HCl or 0.1 M NaOH, while the temperature was varied from
25 �C to 50 �C. The dosage was varied from 0.005 to 0.05 g L�1. All
the adsorption data were recorded in triplicate, from which the
average values were calculated. The optimum conditions used for
the batch experiment were set as pH: 4; concentration: 20 mg L�1;
dosage: 0.01 g L�1; temperature: 40 �C; and contact time: 25 min.

The quantities of dicamba andMCPA adsorbed at equilibrium
(qe), percentage removal (%R) and quantities adsorbed at a time
interval (qt) were calculated using the following equations:

qe ¼ ðCo � CeÞV
w

(1)

%R ¼ ðCo � CtÞ
Co

� 100 (2)

qt ¼ ðCo � CtÞV
w

(3)

where Co, Ct and Ce are the initial, time and equilibrium
concentrations of dicamba and MCPA (mg g�1), v is the volume
of the solution (L), and w is the weight of the adsorbent (g).
This journal is © The Royal Society of Chemistry 2020
Model design and optimization by response surface
methodology (RSM)

RSM uses mathematical and statistical modelling techniques
for the approximation and optimization of critical parameters
that affect the behaviour of a given response.40 Using this
model, central composite design (CCD) was applied to deter-
mine the best experimental data combination to be obtained
from the preliminary one-factor-at-a-time experiments. The
CCD was selected because of its ability to accommodate
a range of factors and give a precise prediction.41 In this study,
the CCD was tted using the second-order polynomial
quadratic equation (eqn (4)) with ve independent variables
comprising contact time, initial concentration, adsorbent
dosage, pH, and temperature, while the removal capacities of
dicamba and MCPA were the response variables. The
accuracy and signicance of the tted model were ascertained
by the analysis of variance (ANOVA) statistic. At a condence
level of 95%, the model with the highest F-value and lowest
P-value suggests a better combination of the parameters
used.42

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

Xk

j$ i

bijxixj þ 3 (4)

where i is the linear coefficient, j is the quadratic coefficient, k is
the number of factors, xi and xj are independent variables, y is
the predicted response, b0 is the constant, bi is the linear
coefficient, bij is the interactive coefficient, and 3 is the noise or
error detected in the reply.
Articial neural network (ANN)

ANN is an intelligent modelling technique that mimics the
behaviour of the biological nervous system (brain) in processing
information.43,44 ANN can learn and predict the pattern of experi-
mental data when subjected to training, which allows it to model
the complex non-linear relationship between the independent and
dependent variables.45 ANN has the ability to predict, cluster,
optimize and apportion the impact of certain optimization
parameters in the behaviour of an expected output. In this study,
a multilayer-perceptron feed-forward-neural network (MLP-FF-
ANN) with a back-propagation algorithm and log-sigmoid activa-
tion function46 was used to predict the adsorption capacities of
dicamba and MCPA onto MIL-53(Al) in comparison with the
experimental results.

The network structure of the MLP-FF-ANN consisted of
multiple neurons that are organized in layers. The input
neuron with ve parameters (contact time, initial concentra-
tion adsorbent dosage, pH and temperature) fed the network
with the required information. Signals were disseminated to
the hidden neuron via a system of weighted connections where
the actual processing was performed and were nally
disseminated to the output layer.47 The number of hidden
neurons was determined on the basis of trial and error, which
forms the training process.48 Two neurons that show the
adsorption capacities of dicamba and MCPA were predicted as
the output layer. The dataset was divided into training (60%),
RSC Adv., 2020, 10, 43213–43224 | 43215
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testing (20%) and validation (20%) sets. The network was
trained by adjusting the weight to learn the data pattern, while
the validation datasets were used to evaluate the network
efficiency. The R2, R2adj and RMSE values were selected as the
criteria to assess the model performance. The following
equations were used:

R2 ¼ 1�
P ðxi � yiÞ2 ​P

yi2 �
P

yi
2

n

(5)

R2adj ¼ 1� �
1� R2

��n � 1

n � p

�
(6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i ¼ 1
ðxi � yiÞ2

r
(7)

AIC ¼ n ln

�
SSE

n

�
þ 2np þ

2np
�
np þ 1

�
n
�
np þ 1

� (8)

where xi represents the observed data that were determined
experimentally, yi is the predicted data, n is the number of
observations and p denotes the number of parameters.
Reusability studies

The reusability of an adsorbent is studied to assess its potential
for regeneration. Aer the adsorption experiments, the super-
natant was decanted, and the MOF residue was soaked in
100 mL of acetone for 24 h. Subsequently, the adsorbent was
ltered and washed with distilled water several times. The
resulting MOF was vacuum-dried for 4 h at 80 �C and main-
tained in the desiccator prior to reuse. For the reusability study,
the regenerated MOF adsorbent was used for the adsorption
experiment based on the optimized conditions, similar to the
batch adsorption studies. The MOF was used for 5 cycles.
Results and discussion
Characterization of MIL-53(Al)

The XRD pattern indicates peaks that match those of a previous
study32 (Fig. 1(a)), which implies that MIL-53(Al) possesses high
crystallinity and that the structure was successfully formed. TGA
was used to assess the thermal stability of the MIL-53(Al)
(Fig. 1(b)). The rst weight loss is around 282 �C, attributed to
the desorption of adsorbed guest molecules from the pores. The
most signicant weight loss was observed from 350 �C to 555 �C,
denoting complete decomposition of terephthalic acid in the
framework. The MOF was completely decomposed at 800 �C, in
agreement with an earlier study.49 The FTIR spectrum of MIL-
53(Al) is displayed in Fig. 1(c). The strong and sharp peaks at
3679 cm�1 are due to the O–H stretching vibration.39 The peaks
at 2879 cm�1 and 2993 cm�1 are assigned to the C–H stretching
vibration.50 The peak at 1703 cm�1 shows the absorption band
that corresponds to the C]O stretching of the free 1,4-benze-
nedicarboxylate encapsulated inside the pores of the MOF.51
43216 | RSC Adv., 2020, 10, 43213–43224
Intense peaks were observed at 1601, 1510, and 1416 cm�1;
these are attributed to the asymmetric and symmetric stretch-
ing and bending vibrations of the carboxylate group, which can
be adsorption sites for the herbicides.51 The morphology of the
MOF as seen from the FESEM image (Fig. 1(d)) corresponds to
a hexagonal pyramid structure of well-formed MIL-53(Al). The
elemental composition on the surface of the adsorbent was also
veried using EDX (Fig. 1(d)), indicating the presence of
aluminium, oxygen and carbon. The nitrogen adsorption–
desorption isotherm of MIL-53(Al) was calculated at 77 K
(Fig. 1(e)) with no hysteresis; it exhibits a type I isotherm curve,
which is typical of highly porous materials. The BET surface
area of MIL-53(Al) is about 1104 m2 g�1, and the micropore
volume is 0.63 cm3 g�1.
Adsorption of dicamba and MCPA in water based on
experimental ndings

Effects of adsorbent dosage. The effectiveness of the adsor-
bent (MIL-53(Al)) for the removal of the analytes in water was
studied by varying the loading from 0.005 to 0.05 g L�1 in 50 mL
solution containing 20 mg L�1 of dicamba and MCPA. The
results obtained are presented in Fig. 2(a). High removal effi-
ciency was observed even at the smaller dosages of 0.005 g L�1

(98.2% and 97.7%) and 0.01 g L�1 (99.2% and 98.5%) for
dicamba and MCPA, respectively, within the rst 5–25 min of
contact due to the availability of vacant and active adsorption
sites in the adsorbent. Further increase in the dosage from
0.02–0.05 g L�1 had little impact on the removal efficiency.
Hence, 0.01 g L�1 adsorbent was used for all the subsequent
experiments.

Effects of temperature. The temperature at which adsorption
takes place plays an important role in the removal process. It is
used to study the thermodynamics behaviour and spontaneity
of the adsorption system. Thus, the effects of temperature (25
�C–50 �C) on the adsorption efficiency were studied, and the
results are depicted in Fig. 2(b). An increase in the temperature
leads to an increase in the adsorption capacity for both the
herbicides.

Effects of contact time. Variation of the contact time of the
adsorption was used to study the kinetics of the adsorption
process. Thus, the removal of dicamba and MCPA was studied
at different concentrations (5–50 mg L�1), with a contact time of
5–60 min, under the optimized pH, adsorbent dose and
temperature conditions (pH 4, 0.01 g L�1 and 40 �C). The results
obtained are plotted in Fig. 3(a) and (b), indicating rapid and
high removal of the herbicides. Between 5 and 10 min, rapid
removals of both dicamba and MPCA were recorded due to the
favourable interactions between the pollutants and the MOF.
The MIL-53(Al) MOF has large numbers of vacant and active
adsorption sites due to its porous nature. This is corroborated
by the high BET surface area of the adsorbent (1104 m2 g�1).
Hence, equilibrium was attained within 25 min for both
dicamba and MCPA. The contact time was extended until
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 (a) XRD pattern (b), TGA thermogram (c), FTIR spectrum (d), FESEM-EDX spectrum and (e) N2 adsorption–desorption isotherm of MIL-
53(Al).
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60 min to ensure better interactions of the MOF with the ana-
lytes aer the equilibrium was established.

RSM modelling and optimization. The factor levels and
experimental data matrix designed by RSM in Tables S1 and S2†
show a combination of ve input parameters and levels used to
predict the adsorption capacity of dicamba and MCPA. The
analysis of variance (ANOVA) results presented in Table S3†
show a signicant data combination, with model F-values of
This journal is © The Royal Society of Chemistry 2020
73.4 and 70.8 and p-values less than 0.05 for dicamba and
MCPA, respectively. This model implies that there is only
a 0.01% chance that an F-value this large could occur due to
noise. The small p-values obtained indicate that the quadratic
model is statistically signicant to track the design domain and
can be used to predict the adsorption capacity of dicamba and
MCPA. Model reduction was applied to eliminate some of the
noisy terms that are insignicant and to improve the model
RSC Adv., 2020, 10, 43213–43224 | 43217
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Fig. 2 (a) Effects of adsorbent dosage the red colour highlights in (a) should be black and (b) temperature on the removal of dicamba and MCPA
(herbicide concentration, 20 mg L�1; equilibrium time, 25 min; rpm, 150).

Fig. 3 Effects of contact time on the removal of (a) dicamba and (b) MCPA (dosage, 0.01 g L�1; equilibrium time, 25 min; temperature,
40 �C; rpm, 150).
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performance.33 In this case, the following combinations that
impact the adsorption capacity are described below.

Dicamba adsorption capacity (mg g�1) ¼

10.4 � 0.5A + 4.8B + 0.4C � 0.2D � 0.3E + 0.5AB

� 0.8AC + 0.7AD � 0.6BC + 0.5BD

+ 0.4BE � 0.7CD � 0.5CE + 0.5DE

� 1.1B2 + 0.9C2 + 0.7E2 (9)

MCPA adsorption capacity (mg g�1) ¼

10.5 � 0.6A + 4.9B + 0.4C � 0.2D � 0.3E

+ 0.5AB � 0.7AC + 0.7D � 0.6BC

+ 0.5BD + 0.4BE � 0.7CD � 0.5CE + 0.5DE

� 1.2B2 + 1.1C2 + 0.7E2 (10)

The results of the RSM model show signicant coefficients
of determination of R2 ¼ 0.988 and 0.987; R2adj ¼ 0.974 and
0.976; and R2pred ¼ 0.866 and 0.870 for dicamba and MCPA,
respectively. These results imply a good correlation between
the actual and predicted values of the response. Adequate
precision was also observed in the model (AP ¼ 24.5 and 24.7,
43218 | RSC Adv., 2020, 10, 43213–43224
respectively), which represents the signal-to-noise ratio for the
model adequacy. This is better described by the scatter plots in
Fig. S1(a) and (b),† which show a signicant relationship and
adequate estimate between the actual and predicted variables.
The optimum conditions for the dicamba and MCPA adsorp-
tion capacity based on the shared interaction between contact
time (25 min), initial concentration (50 mg L�1), adsorbent
dosage (0.01 g L�1), pH (4) and temperature (40 �C) are pre-
sented in Fig. 4. The three-dimensional graphs of the RSM
plots are in strong agreement with the experimental ndings.
Fig. 4(a) depicts an increase in the adsorption capacity when
the initial concentrations of dicamba and MCPA are varied
from 10–50 mg L�1 within a minimal contact time. The equi-
librium adsorption time is attained within �25 min, and no
change is observed when the contact time is extended to
60 min. Higher concentration may result in an increase in the
mass transfer driving force on the available vacant and active
porous sites of the adsorbent. In addition, MIL-53(Al) has
a exible lattice, which allows the MOF to expand and contract
its pore sizes to adsorb more molecules.29 The effects of pH
and contact time on the dicamba and MCPA adsorption
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Shared interaction plots of (a) initial concentration and contact time, (b) pH and contact time, (c) adsorbent dose *9 + 7 and initial
concentration (d) with the temperature and adsorbent dose.

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 43213–43224 | 43219
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Fig. 5 Artificial neural network topology.

Table 2 Optimum ANN architecture for the prediction of the dicamba
and MCPA adsorption capacities

No. Architectures

Dicamba removal MCPA removal

R2 R2adj RMSE R2 R2adj RMSE

1 [3] 0.999 0.932 1.133 0.996 0.862 3.341
2 [4] 0.997 0.988 0.788 0.998 0.994 1.769
3 [5] 0.998 0.992 0.474 0.990 0.993 1.917
4 [6] 0.996 0.994 1.182 0.993 0.991 0.520
5 [7] 0.999 0.997 0.001 0.999 0.995 0.004
6 [8] 0.921 0.901 0.485 0.934 0.906 0.553
7 [9] 0.998 0.993 1.902 0.998 0.994 1.795
8 [10] 0.998 0.997 1.907 0.997 0.995 2.248
9 [5 5] 0.941 0.922 1.668 0.961 0.931 0.884
10 [5 7] 0.975 0.964 0.392 0.941 0.920 0.221
11 [7 6] 0.966 0.942 1.866 0.972 0.954 1.022
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capacity are shown in Fig. 4(b). An inverse relationship is
observed, resulting in a decrease in the adsorption capacity as
the pH becomes more alkaline. When the pH of the solution
increases from 7 to 12, the surface charge of the MIL-53(Al)
adsorbent becomes negative, thereby retarding the possible
electrostatic interactions and resulting in low adsorption
capacity. This may be due to the strong competition for the
available active sites between the –OH and the herbicide
molecules.52 At a higher pH level, several functional groups,
such as hydroxyl and carbonyl, are in the protonated cationic
form, causing a repulsion in the adoption process. Thus, at
low pH (2–6), the herbicide solution will be predominantly in
the anionic form (negatively charged) due to deprotonation,
while the surface of MIL-53(Al) is positively charged. This
encourages possible electrostatic interactions, leading to high
adsorption capacity. The inuence of the adsorbent dose and
initial concentration on the adsorption capacities is described
in Fig. 4(c). At a minimal dose of 0.01 g L�1, the adsorption
capacities of dicamba and MCPA are very high due to the
porous nature of the adsorbent material.29 Further increase in
the adsorbent did not change the adsorption capacities. This
indicates that high adsorption capacities can be achieved with
43220 | RSC Adv., 2020, 10, 43213–43224
a very small dosage of MIL-53(Al). The impact of temperature
change (25 �C–50 �C) and dosage on the adsorption capacities
was also observed, and the resultant effects are described in
Fig. 4(d). Increasing the temperature range improves the
surface activities of the adsorbent material as well as the
kinetic energy of the solution. This indicates that temperature
plays an important role in determining the adsorption
capacity of MIL-53(Al).
Articial neural network model

The most crucial step to develop an ANN network with high
accuracy and minimal error is to determine the best input
combination, network architecture and model uncertainty.36

RSM was used to optimize the design matrix of the ANN
architecture to obtain the best data combination for training,
testing and validation. A total of 308 experimental data sets
obtained through the CCD were used for the prediction model.
The best network architecture was obtained by varying the
number of neurons in the hidden layer. This gave rise to
a three-structural layer with a 5–7–2 topology (Fig. 5). The rst
layer has ve input neurons (contact time, initial concentra-
tion, adsorbent dosage, pH and temperature), the second
makes up the hidden layer with seven neurons, and the third
layer consists of two neurons as the predicted response
(dicamba and MCPA adsorption capacities). The results show
a signicant prediction by the ANN model with high accuracy.
The coefficients of determination for the dicamba and MCPA
adsorption capacities are R2 ¼ 0.999 and 0.999; R2adj ¼ 0.997 and
0.995; and RMSE ¼ 0.001 and 0.004, respectively. Table 2 shows
the prediction levels of the ANN model, from which the best
architecture was obtained with seven neurons. Fig. S1(c) and (d)†
show the scatter plots of the ANN model, which depict the rela-
tionship between the actual and predicted response values.
Comparison of RSM and ANN prediction performance

The capability of RSM and ANN was assessed to determine the
model that best predicts the experimental adsorption capacities
of dicamba and MCPA. Although both models are statistically
signicant with good performance, the results presented in
This journal is © The Royal Society of Chemistry 2020
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Table 3 show that the predicted values of the ANN model are in
better agreement with the experimental ndings when
compared with RSM. At each data combination used for the
adsorption studies, ANN was able to predict the experimental
results with a high level of signicance and also validate them.
The coefficients of determination of the ANN model are higher
than those of RSM. The ANN has R2 ¼ 0.999 and 0.999; R2adj ¼
0.983 and 0.988; and RMSE¼ 0.001 and 0.004, while RSM has R2

¼ 0.988 and 0.987 and R2adj¼ 0.974 and 0.976 for dicamba and
MCPA, respectively. Also, the ANN model displays minimal
error response compared to the RSM. This is because the ANN
Table 3 Comparison of prediction capabilities by RSM and ANN

Dicamba adsorption capacity (mg g�1)

Actual

RSM ANN

Predicted Error Predicted Error

84.3 80.3 4.0 84.1 0.2
34.3 34.6 0.2 34.3 0.0
89.7 82.5 7.2 89.7 0.0
89.1 82.3 6.8 90.1 1.0
185.1 186.5 1.4 185.1 0.0
45.1 44.4 0.7 44.3 0.8
89.7 85.9 3.8 89.7 0.0
131.5 137.4 5.8 131.4 0.1
131.5 132.2 0.8 131.0 0.5
131.5 131.1 0.4 131.5 0.0
34.3 34.9 0.5 34.5 0.1
45.1 45.8 0.7 45.1 0.0
142.6 155.9 13.4 142.6 0.0
141.6 150.2 8.7 142.2 0.7
34.0 33.0 1.0 34.3 0.0
131.5 139.8 8.4 131.5 0.0
92.1 89.3 2.8 94.7 2.5
131.0 134.2 3.2 131.9 0.9
131.5 133.4 1.9 131.5 0.0
45.1 45.2 0.1 44.7 0.4
142.6 152.3 9.7 142.6 0.0
89.7 86.0 3.7 89.7 0.0
44.1 46.6 2.5 45.1 1.0
45.3 46.4 1.1 45.1 0.2
92.1 87.7 4.5 92.1 0.0
92.1 92.0 0.2 94.2 2.1
34.3 34.4 0.1 34.3 0.0
34.3 34.9 0.5 34.6 0.2
142.6 144.5 1.9 142.6 0.0
131.5 129.9 1.5 131.5 0.0
142.6 150.1 7.6 142.8 0.2
34.3 33.8 0.6 34.3 0.0
131.5 135.1 3.6 131.4 0.0
142.6 147.7 5.2 142.6 0.0
34.3 35.0 0.6 34.3 0.0
45.1 44.8 0.4 45.1 0.0
88.1 86.7 1.4 89.7 1.6
89.7 87.3 2.3 89.7 0.0
228.5 228.5 0.0 228.3 0.2
34.3 34.5 0.2 34.3 0.0
36.3 38.4 2.0 36.4 0.0
142.6 148.9 6.3 142.6 0.0
141.3 139.9 1.4 142.6 1.2
45.1 45.6 0.5 45.1 0.0

This journal is © The Royal Society of Chemistry 2020
mimics the human brain by learning the pattern of the datasets,
and it can generalize the nonlinear relationship between the
actual and the predicted results.
Reusability studies and re-characterisation

The prospects of the MOF for repeated removal of the pollutants
were studied in view of its regeneration possibility. The removal
efficiency of the material was �90% even aer the h cycle
(Fig. 6), which is better compared with the materials presented
in Table 4. A slight decrease in the percentage removal of the
herbicides aer the fourth cycle (�3%) and h cycle (�8%)
MCPA adsorption capacity (mg g�1)

Actual

RSM ANN

Predicted Error Predicted Error

92.4 89.1 3.3 90.7 1.8
40.7 40.8 0.1 40.8 0.1
93.2 86.0 7.2 92.1 1.1
93.2 85.9 7.3 93.0 0.1

193.8 190.4 3.5 193.8 0.0
45.2 45.4 0.2 46.5 1.2
93.2 89.9 3.3 92.0 1.2

131.5 136.8 5.3 133.0 1.5
132.9 132.4 0.5 132.8 0.1
132.1 131.4 0.7 134.5 2.4
40.7 41.3 0.6 41.4 0.7
45.2 46.0 0.8 45.0 0.2

143.6 150.3 6.7 144.1 0.4
143.6 152.4 8.7 142.1 1.6
40.7 40.6 0.1 41.1 0.4

132.9 140.0 7.1 132.9 0.0
94.9 89.8 5.1 95.8 0.9

132.4 139.0 6.6 132.4 0.0
132.9 134.4 1.5 132.3 0.6
45.2 46.0 0.8 46.9 1.6

143.6 151.5 7.9 143.8 0.2
93.2 88.9 4.2 93.1 0.1
45.2 46.6 1.4 46.2 1.0
45.0 46.4 1.4 45.9 0.8
94.9 90.4 4.4 94.7 0.2
94.9 92.3 2.6 94.8 0.0
40.7 41.1 0.4 41.1 0.4
40.7 41.3 0.6 41.7 1.0

143.6 145.7 2.1 144.0 0.3
132.9 131.7 1.2 133.5 0.6
143.6 151.0 7.3 144.6 0.9
40.7 40.2 0.5 40.8 0.1

132.9 135.6 2.7 134.0 1.1
143.6 148.7 5.1 144.0 0.4
40.7 41.7 1.0 41.1 0.4
45.2 45.6 0.4 45.3 0.1
92.6 89.6 3.0 91.9 0.7
93.2 92.7 0.5 92.4 0.7

231.1 232.0 0.8 231.9 0.8
40.7 40.7 0.0 40.8 0.1
43.6 43.1 0.5 42.1 1.6

143.6 149.3 5.7 144.2 0.6
142.0 145.4 3.4 142.7 0.7
45.2 45.8 0.6 46.9 1.7

RSC Adv., 2020, 10, 43213–43224 | 43221
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Fig. 6 Regeneration and reusability potential of MIL 53(Al).
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was found. The adsorbent was re-characterised by FTIR, FESEM
and EDX to determine the stability of the MOF (Fig. 7). The
result show the good similarity with the pristine MIL-53(Al) and
stabilility aer several uses.
Comparison with other adsorbent materials

The performance of different adsorbents that have been re-
ported for the removal of dicamba and MCPA in water is
Fig. 7 Re-characterisation of the adsorbent after use by (a) FTIR and (b)

Table 4 Adsorbents reported for the removal of dicamba and MCPA fro

Adsorbent
Surface area
(m2 g�1) Analytes

Concentrations
(mg L�1)

(
r

Activated carbon 592 MCPA 50 7
Bentonite 20 MCPA 1 8
Biochar 1.1 MCPA 100 9
Metal hydroxide NIL MCPA 50 8
MIL-53(Al) 1104 MCPA 50 9
Mesoporous carbon 876 Dicamba 250 N
Carbon nanotubes 600 Dicamba 50 8
MIL-53(Al) 1104 Dicamba 50 9

43222 | RSC Adv., 2020, 10, 43213–43224
summarised in Table 4. The superiority of the MIL-53(Al)
adsorbent is readily seen, especially in terms of high surface
area, adsorption capacity, %removal, fast equilibration time
and prospects for regeneration.

Conclusion

A detailed study outlining the adsorption and removal of the
herbicides dicamba and MCPA from aqueous medium was
carried out using MIL-53(Al). The hydrothermally synthesized
MOF was characterised by a high surface area (1104 m2 g�1) and
pore volume (0.63 cm3 g�1) as determined by the BET analysis.
XRD analysis reveals its high crystallinity and well-formed
hexagonal pyramid structure. The adsorption of dicamba and
MCPA reached equilibrium within �25 min using a small dose
of adsorbent (0.01 g L�1). Adsorption kinetics such as pseudo-
rst-order, pseudo-second-order and intraparticle diffusion
were studied, and the adsorption process best t the pseudo-
second-order model, with R2 > 0.99% and maximum qe values
of 227.2 and 232.5 mg g�1 for dicamba and MCPA, respectively.
Different isotherm models were also studied, and the results
were best tted by the Freundlich isotherm, with the highest
values of R2 ¼ 0.974 and 0.962 for dicamba and MCPA,
respectively. The thermodynamic studies suggest that the
adsorption is endothermic and spontaneous in nature, with
FESEM-EDX.

m water

%)
emoval

Adsorption capacity
(mg g�1)

Equilibrium
time (min) Reuse Ref.

0 417 210 — 53
0–95 1440 — 54
0 28.1 360 — 55
4 42 240 NIL 56
8 231.1 25 5 This work
IL 222.2 60 — 57
5.5 20.7 — — 58
9 228.4 25 5 This work

This journal is © The Royal Society of Chemistry 2020
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increased randomness at the liquid–solid interface. CCD-RSM
was used to design the data matrix and optimum conditions
for the adsorption process. The data matrix designed by CCD-
RSM were used for the ANN prediction. ANN gave better
prediction than the RSM model with minimal error. In short,
MIL-53(Al) shows superior characteristics as an adsorbent for
the removal of dicamba and MCPA compared to previously re-
ported adsorbents, especially in terms of rapid equilibration,
which was contributed by its large surface area and pore volume
and its prospects for regeneration.
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