Open Access Article. Published on 19 October 2020. Downloaded on 1/18/2026 3:35:52 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

#® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: RSC Adv., 2020, 10, 38468

Received 9th September 2020
Accepted 10th October 2020

DOI: 10.1039/d0ra07739a

rsc.li/rsc-advances

Introduction

Stereoselective synthesis and application of
isopulegol-based bi- and trifunctional chiral
compoundst

Tam Minh Le, ©2° Thu Huynh, €< Gabor Endre,® Andras Szekeres, (9¢
Ferenc Fulop 220 and Zsolt Szakonyi (& *ad

A new family of isopulegol-based bi- and trifunctional chiral ligands was developed from commercially
(=)-isopulegol. (+)-a-methylene-vy-
butyrolactone was accomplished, followed by reduction of the obtained B-aminolactones to provide

available Nucleophilic addition of primary amines towards
aminodiols in highly stereoselective reactions. Epoxidation of (—)-isopulegol and subsequent oxirane ring
opening with primary amines resulted in N-substituted aminodiols. The regioselective ring closure of
these aminodiols with formaldehyde was also investigated. Benzylation of isopulegol furnished O-
benzyl-protected isopulegol, which was transformed into aminoalcohols via epoxidation and ring
First benzyl-protected isopulegol was subjected to
hydroxylation and epoxidation, then aminolysis of the served oxiranes delivered aminodiols. On the other
hand, (—)-isopulegol was oxidised to diol, which was again converted into both dibenzyl- and
monobenzyl-protected diol derivatives. The products were transformed into aminoalcohols and

opening of the corresponding epoxides.

aminodiols, respectively, by aminolysis of their epoxides. The ring opening of epoxides, derived from
diols with primary amines was also performed producing aminotriols. Dihydroxylation of (—)-isopulegol
or derivatives with OsO4/NMO gave isopulegol-based di-, tri- and tetraols. The antimicrobial activity and
antioxidant property, measuring DPPH" free radical scavenging activity of aminodiol and aminotriol
derivatives as well as di-, tri- and tetraols were also explored. In addition, structure—activity relationships
were examined from the aspects of substituent effects and stereochemistry on the aminodiol and
aminotriol systems.

anticholinesterase effects.”® In addition, some of these
compounds, such as 1,8-cineole, geraniol, linalool,” thymol®*

Monoterpenes constitute an interesting group of plant
secondary metabolites."” They are readily available, relatively
nontoxic and inexpensive constituents. Moreover, mono-
terpenes possess many important pharmacological activities.?
For example, limonene and perillyl alcohol have chemo-
preventive activity against cancer,*® whereas linalool and

eucalyptol exert synergistic antiproliferative and
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along with limonene, a-pinene, B-pinene, y-terpinene and
linalyl acetate,® as well as santolina alcohol, borneol, sabinol,
trans-sabinyl acetate and o-thujone,' have been found to be
relatively potent DPPH" radical scavengers. This property is
directly related to their structures.™ It is worth pointing out that
essential oils also display excellent antimicrobial activity.'>™**
For instance, linalool and a-terpineol exhibited strong activity
against periodontopathic and cariogenic bacteria, while citral,
linalool and B-pinene had an effect on Saccharomyces cer-
evisiae.'® Furthermore, linalyl acetate, (+)-menthol and thymol
were found to be efficient against Staphylococcus aureus and
Escherichia coli,"” while thymol, carvacrol, p-cymene and vy-ter-
pinene showed inhibitory activity towards S. aureus and E. coli.*®
Apart from proven properties, many monoterpenes exert anti-
biotic,"”** nematicidal,* anti-inflammatory*»** and analgesic**
influences. Some monoterpenes are used as important flavour
agents in foods, drinks, perfumes, cosmetics and tobacco,*
while others such as 1,8-cineole** and pinene* have been
considered as important biopesticides. Monoterpenes, there-
fore, are widely used in medicine, industry and agriculture.?®>°

This journal is © The Royal Society of Chemistry 2020
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We have planned to combine aminodiol moieties of cardio-
vascular, cytostatic and antiviral effectiveness with mono-
terpenic skeletons.*** Aristeromycin analogues, for example,
are widely used as effective agents against a range of viruses,
including the human immunodeficiency, hepatitis B, herpes
simplex, varicella-zoster, influenza and hepatitis C viruses.**¢
The Abbott aminodiol, found to be a useful building block for
the preparation of potent renin inhibitors Zankiren® and
Enalkiren®, was introduced into the therapy of hyperten-
sion.’”*® Aminodiols can also exert antidepressive activity. For
instance, (S,S)-reboxetine is a selective norepinephrine reuptake
inhibitor for the treatment of unipolar depression,* while
others such as (2R,3R,7Z)-2-aminotetradec-7-ene-1,3-diol are
potent antimicrobial metabolites.*® Besides their varied, well-
known influences, aminodiols may serve as starting materials
for the synthesis of biologically active natural compounds, e.g.
cytoxazone, a selective modulator of the secretion of Ty2 cyto-
kine.*** Apart from their biological interest, monoterpene-
based aminodiols have been demonstrated to be excellent
chiral auxiliaries in a wide range of stereoselective trans-
formations including intramolecular radical cyclisation,*
intramolecular [2 + 2] photocycloaddition** and Grignard
addition.*>*®

In order to combine the properties of monoterpenes and
aminodiols as well as to develop new, efficient and commer-
cially available chiral ligands, naturally occurring chiral
monoterpenes such as (+)- and (—)-a-pinene,*”* (+)-carene,****
(+)-camphor,*** (—)-fenchone,” (—)-menthone,”® (—)-myrte-
nol,>**” (+)-neoisopulegol,®** (S)-perillyl alcohol,® (—)-pule-
gone,” or (+)-sabinol® have been widely used as key
intermediates for the synthesis of aminodiols.

Monoterpene-based diols also possess marked biological
properties, e.g. antiparkinsonian activity®® and skin microcir-
culatory improvement,*** whereas monoterpene-based triols
have been utilised as cytotoxic®*®” and anti-inflammatory
agents.®®

Therefore, our primary objective of the present research was
to prepare a new library of isopulegol-based bi-, tri- or even
tetrafunctionalised chiral synthons, such as aminodiols and
aminotriols as well as di-, tri- and tetraols, starting from
commercially available natural (—)-isopulegol and to evaluate
the influence of these new isopulegol derivatives on antimi-
crobial attributes on multiple bacterial and yeast strains and
their DPPH" free-radical scavenging activity.

Results and discussion

The key intermediate (+)-o-methylene-y-butyrolactone 4 was
prepared from commercially available (—)-isopulegol 1. Acety-
lation of alcohol 1 to its acetate 2, followed by regioselective
oxidation of 2 gave diol 3, which was transformed to lactone 4 by
two-step oxidation and ring closure of obtained vy-hydroxy-
substituted a,B-unsaturated carboxylic acid applying literature
methods (Fig. 1).%7*

Nucleophilic addition of primary amines to a-methylene-vy-
butyrolactone 4 has proved to be an efficient method for the
preparation of a highly diversified library of f-aminolactones 5-

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Synthesis of
butyrolactone.

(—)-isopulegol-based  (+)-a-methylene-vy-

8.°%75 Treatment of B-aminolactones with LiAlH, resulted in
secondary aminodiols 9-12. Debenzylation via hydrogenolysis
of aminodiols 9-11 over Pd/C in MeOH gave primary aminodiol
13 in moderate yields. In order to study the regioselectivity of
ring closure of the aminodiol function, we attempted to incor-
porate one of the hydroxy groups of aminodiols into 1,3-oxazi-
nane or 1,3-oxazepinane ring.***’®¢ When aminodiols 9-12 were
reacted with HCHO under mild conditions, 1,3-oxazinane were
obtained in highly regioselective ring closure. Since either the
hydrogenolysis of N-benzyl analogues 9-11 or the formation of
the oxazine ring system (14-17) had no effect on the absolute
configuration, the relative configuration of the chiral centres of
13-17 is known to be the same as that of 9-12 (Scheme 1).>"7¢

Dihydroxylation of 4 with the OsO,/NMO system furnished
18 in low yield.*>** The ring opening of a,B-dihydroxylactone 18
was performed by using 4 equivalents of primary amines under
reflux conditions in anhydrous THF to form a,B-dihydrox-
yamides 19-21. It is important to mention that the ring opening
of lactones with (R)- and (S)-a-methylbenzylamine required
longer reactions than utilizing benzylamine. This is probably
due to steric hindrance exerted by the a-methyl group (Scheme
1). Note that the acylation of diols bearing an adjacent amide
function forms an important structural moiety with potential
biological applications.”” For example, asterobactin and vio-
prolide A have been identified as a new antibiotic and a new
antifungal peptolide, respectively.”®”®

The relative configuration of compound 18 was determined
by means of NOESY experiments: clear NOE signals were

4 W % ;‘\: ||| %
NHR NHz
9-12 (|v

(vi)

R,N\/O

14-17

5,9,14,19: R = CH,Ph; 6, 10, 15, 20: R = CH(Me)Ph (R);
7,11, 16, 21: R = CH(Me)Ph (S); 8, 12, 17: R = CH(Me),

Scheme 1 Synthesis of (—)-isopulegol-based aminodiols. Reaction
conditions: (i) RNH> (1 equiv.), dry EtOH, 25 °C, 20 h, 65-75%; (ii) LiAlH4
(2 equiv.), dry Et,0, 25°C, 4 h, 50-70%; (iii) 5% Pd/C, H, (1 atm), MeOH,
25°C, 24 h, 50-67%; (iv) 35% HCHO, Et,0, 25 °C, 1 h, 64-74%; (v) 2%
Os04/t-BuOH, 50% NMO/H,0, acetone, 25 °C, 24 h, 28%; (vi) RNH, (4
equiv.), dry THF, 60 °C, 24-72 h, 35-56%.
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observed between the OH-8 and H-3 as well as OH-9 and H-4
protons (Fig. 2).

Homoallylic epoxidation of (—)-isopulegol 1 with m-CPBA
provided a 1 : 1 mixture of epoxides 23a and 23b in good yield.*
The two epoxides were separated by column chromatography to
give more polar isomer 23a and less polar isomer 23b. The ring
opening of epoxide 23a with different primary amines in the
presence of LiClO, as catalyst delivered aminodiols 24a-27a.*"%
Debenzylation of 24a-26a by hydrogenolysis over Pd/C in MeOH
resulted in aminodiol 28a in excellent yields. When aminodiols
24a-27a were treated with HCHO at room temperature, oxazo-
lidines 29a-32a were obtained via highly regioselective ring
closures, similar to the regioisomeric 1,3-oxazinane analogues.
The other epoxide 23b underwent similar reactions to afford
24b-32b in excellent yields. Dihydroxylation of (—)-isopulegol 1
was performed with OsO, in the presence of a stoichiometric
amount of co-oxidant NMO to afford a diastereoisomeric
mixture of 22a and 22b in a ratio of 1 : 1.** The epimeric mixture
was purified by column chromatography followed by recrystal-
lisation to provide 22b in crystalline form and 22a as a colour-
less oil (Scheme 2).

Gram-scale separation of 23a and 23b turned out to be
difficult. In order to enhance the resolution by column chro-
matography, benzyl-protected isopulegol 33 was prepared.®***
Epoxidation of 33 with mCPBA furnished a 1:1 mixture of
epoxides 34a and 34b. After separation by column chromatog-
raphy, they were subjected to aminolysis with primary amines.
Interestingly, epoxide 34b upon aminolysis was transformed
preferentially, while 34a did not react. This is probably due to
steric hindrance exerted by either the benzyl or the methyl
group at the o position in epoxide 34a. Consequently, the
mixture of 34a and 34b was used for the ring-opening reaction.
The resulting aminoalcohols (35b-38b) could be easily sepa-
rated from 34a on a gram scale by simple column chromatog-
raphy with good yields. The synthesis of primary aminodiol 28b
was accomplished by hydrogenolysis of 35b-37b over Pd/C in
high yields, while debenzylation of 34a provided 23a in
a moderate yield of 53% (Scheme 3).

syn-Selective dihydroxylation of compound 33 with OsO, in
the presence of a stoichiometric amount of co-oxidant NMO
produced a 1:1.7 epimeric mixture of 39a and 39b in
a favourable yield. Our effort to separate the mixture failed.
Fortunately, their carbonates, obtained from the diols with tri-
phosgene, could be easily isolated. It is well known that this
carbonation reaction maintains the stereochemical

Fig. 2 Determination of the structure of diol 18 by NOESY.

38470 | RSC Adv, 2020, 10, 38468-38477

View Article Online

Paper

" OH " OH
: ® ©
N 1@ _oH OH
OH OH
1 22a 22b
22a/22b =1:1"

(iv)

(iii) )
—_— —
OH OH OH OH
H
ren e H G HN L@
OH NJ OH
]

24b-27b

(i)

28b
29b-32b
(v)

(ii) K_\
—_— .
OH OH OH OH
H H H
® RHN R B HoN R
OH OH
28a

o
23a

24a-27a R

23a/23b=1:1 29a-32a

24, 29: R = CH,Ph; 25, 30: R = CH(Me)Ph (R); 26, 31: R = CH(Me)Ph (S); 27, 32: CH(Me),

* Determined on the crude product by 'H-NMR (Bruker Avance DRX 500 MHz)

Scheme 2 Synthesis of (—)-isopulegol-based aminodiols. Reaction
conditions: (i) 2% OsO4/t-BuOH, 50% NMO/H,0, acetone, 25°C, 24 h,
33% (22a), 33% (22b); (ii) mCPBA (2 equiv.), Na;HPO4-12H,0 (3 equiv.),
CH,Cl,, 25°C, 2 h, 29% (23a), 43% (23b); (i) RNH, (2 equiv.), LiClO4 (1
equiv.), MeCN, 70-80 °C, 8 h, 75-95% (23a), 50-90% (23b); (iv) 5% Pd/
C. Hz (1 atm), MeOH, 25°C, 24 h, 87-95% (28a), 85-90% (28b); (v) 35%
HCHO, Et,0O, 25 °C, 1 h, 89-97% (29a-32a), 85-90% (29b-32b).

configuration of the original diol.***” Accordingly, the reactions
of 39a and 39b with triphosgene successfully afforded 40a and
40b, respectively. After purification, carbonates 40a and 40b
were reduced by LiAlH, (LAH). The reaction proceeded
smoothly giving the corresponding diols 39a and 39b in good
yields. It has been reported that reduction with LAH gives the
corresponding diol with the same stereochemical configuration
of the carbon atoms as of the original moiety.***® Debenzylation

L O,
— — +
Y~ “OH v~ ~OBn OBn
H H H (R H™| s
P2 P2 1Q
O
34a

o]
1 33

OBn

34b
34a/34b=1:1"

. (iv)
35b-38b
B OH
W OBn H s OBn HT s
RHN 4 HaN_ =
o]

OH OH
23a 34a 35b-38b 28b

35b: R = CH,Ph; 36b: R = CH(Me)Ph (R); 37b: R = CH(Me)Ph (S); 38b: CH(Me),
* Determined on the crude product by 'H-NMR (Bruker Avance DRX 500 MHz)

Scheme 3 Synthesis of (—)-isopulegol-based aminodiol derivatives.
Reaction conditions: (i) NaH (1.5 equiv.), BnBr (1.5 equiv.), KI (1.5 equiv.),
dry THF, 60 °C, 12 h, 70%; (ii) mCPBA (2 equiv.), Na;HPO4-12H,0 (3
equiv.), CH,Clp, 25 °C, 2 h, 43% (34a), 25% (34b); (iii) RNH, (2 equiv.),
LiClO4 (1 equiv.), MeCN, 70-80 °C, 20 h, 31-45%; (iv) 5% Pd/C, H, (1
atm), MeOH, 25 °C, 24 h, 65-70%; (v) 5% Pd/C, H, (1 atm), n-hex-
ane : EtOAc =9:1, 25°C, 24 h, 53%.

This journal is © The Royal Society of Chemistry 2020
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of 39a and 39b by hydrogenolysis over Pd/C resulted in triols 22a
and 22b, respectively, with excellent yields (Scheme 4).

To extend the investigation of the substituent effects in the
ring opening of epoxide, 33 was oxidised to 41. The epoxidation
of 41 with mCPBA delivered a 4 : 1 mixture of epoxides 42a and
42b. The separation of 42a and 42b was not satisfactory on
a gram scale; therefore, the mixture was treated with different
primary amines in the presence of LiClO, resulting in a library
of aminodiols. In our delight, aminodiols were well-separated
when chiral amines (R)- and (S)-methylbenzylamines were
applied, while in the case of benzylamine and isopropylamine,
only the major products were isolated. The debenzylation of
43a-45a by hydrogenolysis over Pd/C gave aminodiol 47a with
satisfactory yields. Tetraol 49 was prepared by dihydroxylation
of 41 with the OsO,/NMO system, followed by hydrogenolysis of
48 over Pd/C (Scheme 5).

During our attempt to improve the resolution of aminodiols
43b-46b, we realised that O-benzylation of 41 could serve this
purpose; however, the synthesis of 50b starting from 41 failed.
Fortunately, it was achieved by reacting 3 with benzyl bromide
under reflux condition in dry THF. Besides expected product
50b, 50a also formed as a side product. Epoxidation of 50b with
mCPBA produced a 1 : 1 mixture of epoxides 51a and 51b. The
ring opening of the oxirane mixture was accomplished with
different primary amines resulting in a library of aminoalcohols
52a-55a and 52b-55b, respectively. The debenzylation of 52a-
54a and 52b-54b by hydrogenolysis over Pd/C gave, respectively,
aminotriols 47a and 47b with exceptional yields. Compound
50b was treated with the OsO,/NMO system providing a 3:1
mixture of diols 56a and 56b. Removal of the protecting group
of 56a gave tetraol 49 with good yield (Scheme 6).

The epoxidation of 50a with mCPBA gave a 2 : 1 mixture of
epoxides 57a and 57b. The ring opening of this epoxide mixture
was carried out with different primary amines to form a library
of aminodiols 58a-61a and 58b-61b, respectively. Primary
aminotriols 47a and 47b were prepared via the usual way by
hydrogenolysis of aminodiols 58a-60a and 58b-60b over Pd/C.
Dihydroxylation of 50b with the OsO,/NMO system provided
triols 62a and 62b in a 2 : 1 ratio with an excellent yield of 90%.

(iv)
'OBn 'OH
1® on H l® on
OH
22a

395

_Giy
H

* Determined on the crude product by "H-NMR (Bruker Avance DRX 500 MHz)

Scheme 4 Synthesis of (—)-isopulegol-based diols. Reaction condi-
tions: (i) 2% OsO4/t-BuOH, 50% NMO/H,0, acetone, 25 °C, 24 h, 88%;
(i) triphosgene (0.5 equiv.), pyridine (4 equiv.), dry CH,Cl,, 25 °C, 2 h,
36% (40a), 36% (40b); (iii) LiAlH4 (2 equiv.), dry Et,O, 0 °C, 4 h, 95%
(39a), 56% (39b); (iv) 5% Pd/C, H, (1 atm), MeOH, 25°C, 24 h, 95% (39a),
91% (39b).

This journal is © The Royal Society of Chemistry 2020

View Article Online

RSC Advances

. Hl
0Bn 0Bn
'OBn
Mo on © OH R o

[0]
42b

AGaJGa
(iv) 42a/42b = 4:1
V)

; iOH
HoN H 1® _oH

OH OH OH
48 49 47a

44b-45b

43a; R = CH,Ph; 44a, 44b; R = CH(Me)Ph (R); 45a, 45b: R = CH(Me)Ph (S); 46a: CH(Me),

* Determined on the crude product by "H-NMR (Bruker Avance DRX 500 MHz)

Scheme 5 Synthesis of (—)-isopulegol-based aminotriol derivatives.
Reaction conditions: (i) SeO, (0.24 equiv.), 70% t-BuOOH (4 equiv.),
CHCls, 60 °C, 20 h, then LiAlH4 (3 equiv.), dry Et,O, 0 °C, 6 h, 60%; (ii)
mCPBA (2 equiv.), NaHPO4-12H,0 (3 equiv.), CHxClp, 25°C, 2 h, 64%
(42a), 15% (42b); (iii) RNH, (2 equiv.), LiClO4 (1 equiv.), MeCN, 70—
80°C, 6 h, 46-58% (42a), 14% (42b); (iv) NMO/H,0, 2% OsO,4/t-BuOH,
acetone, 25 °C, 24 h, 60%; (v) 5% Pd/C, H, (1 atm), MeOH, 25 °C, 24 h,
87-95% (47a), 86% (48).

Debenzylation of 62a-b by hydrogenolysis over Pd/C resulted in
tetraol 49 with excellent yields (Scheme 7).

On the other hand, epoxidation of allylic diol 3 with mCPBA
was successfully applied to form the mixture of epoxy diols 63a
and 63b in a 3.5 : 1 ratio. After separation by chromatography,
the oxirane ring of 63a was opened with primary amines and
LiClO, as catalyst to deliver aminotriol library 64a-67a. Primary
aminotriol 47a was obtained by debenzylation of the corre-
sponding aminotriols 64a-66a under standard conditions by
hydrogenation in the presence of a Pd/C catalyst. Diastereo-
isomeric aminotriols 65b-66b were prepared by ring opening of
63b with chiral amines (R)- and (S)-methylbenzylamine. The
synthesis of tetraol 49 was effectively performed by selective
dihydroxylation of 3 with the OsO,/NMO system (Scheme 8).

The relative configuration of primary aminotriol 47a was
determined through epoxide 63a. To this aim, epoxide 63a was
reduced with LiAlH, (LAH) to the corresponding triol 22a (see

@) (m)
0Bn OBn 0Bn
(R) OBn
OBn OBn 1&_osn OB“ RNTLO 0B ren H® opn
OH OH

O,

Ao
: 52a-55a 52b-55b
51a/51b = 1:1"
(W)
(IV)
oM ® OBn no e OBn N le OH e OH
47b
56a/56b = 3:1*
52a, 52b: R = CH,Ph; 53a, 53b: R = CH(Me)Ph (R); 54, 54b: R = CH(Me)Ph (S); 55a, 55b: CH(Me),
* Determined on the crude product by 'H-NMR (Bruker Avance DRX 500 MHz)
Scheme 6 Synthesis of (—)-isopulegol-based aminotriol derivatives.

Reaction conditions: (i) NaH (1.5 equiv.), BnBr (3.0 equiv.), Kl (1.5
equiv.), dry THF, 60 °C, 12 h, 40% (50b), 19% (50a); (i) mCPBA (2 equiv.),
NasHPO4-12H,0 (3 equiv.), CH,Cly, 25 °C, 2 h, 38% (51a), 28% (51b);
(iii) RNH, (2 equiv.), LiClO4 (1 equiv.), MeCN, 70-80 °C, 6 h, 25-40%
(51a), 29-42% (51b); (iv) NMO/H,0, 2% OsO4/t-BuOH, acetone, 25 °C,
24 h, 50% (56a), 15% (56b); (v) 5% Pd/C, H, (1 atm), MeOH, 25°C, 24 h,
95-98% (47a-b), 83% (56a).
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Scheme 7 Synthesis of (—)-isopulegol-based aminotriol derivatives.
Reaction conditions: (i) mCPBA (2 equiv.), Na,HPO4-12H,0 (3 equiv.),
CHCly, 25 °C, 2 h, 38% (57a), 15% (57b); (ii) RNH, (2 equiv.), LiClO4 (1
equiv.), MeCN, 70-80 °C, 6 h, 39-50% (57a), 16—21% (57b); (iii) 5% Pd/
C, Hy (1 atm), MeOH, 25 °C, 24 h, 90-93% (47a-b), 97% (62a), 95%
(62b); (iv) NMO/H,0, 2% OsO4/t-BuOH, acetone, 25 °C, 24 h, 59%
(62a), 29% (62b).

configurations in Scheme 9). It has been reported that reduction
with LAH gives the corresponding triol with the same stereo-
chemical configuration at the carbon atoms as of the original
moiety.**** The stereochemical structures of triol 22a is well-
known in the literature;* therefore, the absolute configuration
of epoxide 63a could also be determined.

The absolute configuration of 42a, 51a and 57a was
confirmed by debenzylation via hydrogenolysis over Pd/C to
provide triol 22a with stereochemical retention. To prove that
the stereochemical configuration of the epoxide was main-
tained during reaction, 57a was reduced with LiAlH, then
debenzylated applying the 5% Pd/C/H, system to give 22a in
good yield. The stereostructure of 56b and 62b were assigned by
treatment of 51a and 57a with NaOH taking place with retention
of stereochemistry (Scheme 9).*°

(vi) d (i)
OH " NOH OH OH
H H
no M OH _~_OH ;(R) on "I on

OH 0 o]
49 3 63a 63b

63a/63b = 3.5:1*

J«o

(iii)
-
H OH " OH H OH
HN S _oH RHN_ XS oy RHN._4® OH

65b-66b

47a 64a-67a
64a: R = CH,Ph; 65a, 65b: R = CH(Me)Ph (R); 66a, 66b: R = CH(Me)Ph (S); 67a: CH(Me),

* Determined on the crude product by 'H-NMR (Bruker Avance DRX 500 MHz)

Scheme 8 Synthesis of (—)-isopulegol-based aminotriols. Reaction
conditions: (i) mMCPBA (2 equiv.), NaHPO,4-12H,0 (3 equiv.), CH,Cl,,
25 °C, 2 h, 33% (63a), 7% (63b); (ii) RNH, (2 equiv.), LiClO4 (1 equiv.),
MeCN, 70-80 °C, 6 h, 62-77% (63a), 87-93% (63b); (iii) 5% Pd/C, H, (1
atm), MeOH, 25 °C, 24 h, 67-75%; (iv) NMO/H,0, 2% OsO./t-BuCH,
acetone, 25 °C, 24 h, 53%.
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(i)
(i) (if) (i) H 'OBn
= oH Ho _A® oBn
H OH
o(: OH 56b
63a 22a

(ii) or (iv)

OH
Ho A8 _oBn
OH

57a 62b

Scheme 9 Determination of the structure of (—)-isopulegol-based
aminotriol as well as triol derivatives. Reaction conditions: LiAlH4 (2
equiv.), dry THF, 25 °C, 6 h, 70%; (ii) 5% Pd/C, H, (1 atm), n-hex-
ane : EtOAc =9 : 1, 25 °C, 24 h, 90% (42a), 78% (51a), 90% (57a); (iii)
3 M NaOH, DMSQ, 25 °C, 2-24 h, 33% (56b), 57% (62b); (iv) LiAlH4 (2
equiv.), dry THF, 25°C, 6 h then 5% Pd/C, H; (1 atm), n-hexane : EtOAc
=9:125°C, 24 h, 87%.

Since several aminodiols as well as aminotriols exerted
antimicrobial activities on various microorganisms,” antimi-
crobial activities of the prepared aminodiol and aminotriol
analogues were also explored against two yeasts as well as two
Gram-positive and two Gram-negative bacteria (Table 1, only the
best results are shown).

Our tests revealed that di-O-benzyl aminotriol derivatives
(52a-b) possess potential antimicrobial properties over 80%
against both the two Gram-positive and the yeast species. In the
case of B. subtilis, these compounds proved to be the most
effective agents even at a low concentration of 10 ug mL ™", while
other derivatives (45a-b and 58a-b) showed lower activities.
Removal of one of the two benzyl protecting groups in aminotriol
derivatives (45a-b and 58a-b) led to improved selective inhibition
on B. subtilis. The almost complete loss of antibacterial activity
resulting from the replacement of all O-benzyloxy groups with
hydroxyl group as demonstrated with aminotriol derivatives 66a—
b suggests that the benzyl moiety is a key element to have satis-
factory antimicrobial activity in the case of aminotriols.

Among aminodiol derivatives, only O-benzyl aminodiol 35b
presented activity against B. subtilis, whereas debenzylated
derivative 9 had no effect. This result indicates that the O-ben-
zyloxy group attached to the cyclohexyl ring is responsible for
activity of the studied antibacterial agents.

The available data demonstrated that the O-benzyloxy group on
the cyclohexyl ring (41 and 50b) is much more effective to induce
antimicrobial activity than the 1-BnO-propen-2-yl group (50a).

In comparison, a-methylene-y-butyrolactone 4, the most
effective compound against C. albicans and C. krusei, was found
to possess highly selective effectiveness on the yeast species.

The synthetic aminodiol and aminotriol derivatives were
also evaluated for their antioxidant activity using DPPH assays
(Table 2, only the detected activities are shown).

In the DPPH study, aminodiol 9 displayed a potential anti-
oxidant effect, while the aminotriol derivatives (58a-b) had
only moderate effects. The results of this survey, namely
improvement of antioxidant activity alongside with the

This journal is © The Royal Society of Chemistry 2020
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Table 1 Antimicrobial activity of derivatives expressed in /% values
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Inhibitory effect” (%) £ RSD (%)

Gram positive Gram negative Yeast
Anal Cone. (ug mL™) B. subtilis S. aureus E. coli P. aeruginosa C. albicans C. krusei
4 100 31.51 £ 4.58 — — — 94.30 £ 5.46 88.22 £ 5.36
10 — — — — — —
30a 100 46.53 & 2.55 — — — — —
10 34.92 £+ 6.84 — — — — —
30b 100 52.97 £ 8.35 — — 23.00 £ 9.26 — —
10 41.69 £+ 10.35 — — — — —
35b 100 92.04 £+ 1.18 — — — 25.86 = 1.43 —
10 57.37 £ 6.13 — — — — —
41 100 76.58 = 11.68 — — — 23.49 + 7.28 —
10 25.17 £ 6.00 — — — — —
43a 100 91.72 £ 3.98 — — 30.58 £ 1.51 22.64 £ 6.99 —
10 — — — — — —
45a 100 91.29 £ 1.86 — — 23.37 £ 2.81 — —
10 — — — — — —
45b 100 77.98 £ 6.27 — — — — —
10 1.53 £2.93 — — — — —
50b 100 76.30 = 16.90 — — — — —
10 45.25 + 11.25 — — — — —
52a 100 77.67 £ 3.81 73.44 £ 1.78 — — 86.64 £ 2.54 84.92 £ 4.20
10 93.88 £ 1.77 — — — — —
52b 100 87.23 £ 4.17 68.03 = 4.74 — — 81.47 £ 5.04 81.00 £ 4.03
10 94.63 £ 1.01 — — — 41.25 £ 9.35 —
56a 100 78.20 £ 7.98 — — — — —
10 — — — — — —
58a 100 60.52 £ 2.49 — — 26.09 £ 4.61 — —
10 — — — — — —
58b 100 68.93 £ 6.85 — — — — —
10 34.63 £ 7.99 — — — — —
66a 100 31.48 £ 11.69 — — — — 39.76 £ 3.24
10 — — — — — —

¢ Inhibitory effect values less than 20% are considered negligible and not presented numerically. Compounds 1, 3, 9, 13, 14, 18, 19, 22a-b, 24a-b,
28a-b, 30a, 33, 39a-b, 47a-b, 48, 49, 50a, 56b, 62a-b, 64a and 66b were also examined but did not elicit 20% inhibitory effect even at 100 ug mL .

replacement of the O-benzyloxy moiety with a hydroxyl group,
show that efficiency depends on the hydroxyl function of
the cyclohexyl ring more significantly than on the 1-
hydroxypropen-2-yl group.

The hydroxyl group of molecules play remarkable role in
their antioxidant property.”> Recently, there are two proposed
mechanisms by which antioxidants containing hydroxyl group

Table2 Antioxidant effects of active synthetic derivatives expressed in
ICs0 values

DPPH antioxidant activity

Compound (umol mL™") & SD
9 8.47 + 0.56

24b 75.63 £ 0.01

28a 204.77 £ 9.1

30a 72.76 £ 0.03

45a 87.61 £ 0.14

58a 33.74 £ 3.74

58b 56.63 £ 0.01
Gallic acid 0.16 & 0.01

This journal is © The Royal Society of Chemistry 2020

can act protectively. In the first mechanism, the free radical (e.g.
DPPH) removes a hydrogen atom from the hydroxyl group that
itself becomes a radical, in this way the functional group
donates a proton to the free radicals and neutralise it (e.g
DPPH-H). In the second mechanism, called as one-electron
transfer, the hydroxyl group can give an electron to the free
radical becoming itself a radical cation.”

Although aminotriol 58a was less active than aminodiols, its
antioxidant property is still considered to be notable compared
with aminotriol 45a. This result again demonstrates that the
hydroxyl group on the cyclohexyl ring is necessary for antioxi-
dant property.

Conclusion

A new library of isopulegol-based chiral aminodiols and ami-
notriols was developed from commercially available (—)-iso-
pulegol. The isopulegol-based chiral di-, tri- and tetraols are
promising substrates for the preparation of chiral crown ethers.
a,B-Dihydroxyamides, accessed through the ring opening of a,f-

RSC Adv, 2020, 10, 38468-38477 | 38473
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dihydroxylactones, are widely applicable in the synthesis of
natural products and in saccharide chemistry.

Our result proved again that steric hindrance exerted by both
benzyl and methyl groups at the o position in epoxide 34a
makes its conformationally constrained structure to restrict the
approach of nucleophiles in aminolysis.

O-Benzyl aminotriol and aminodiol derivatives exert mark-
edly selective antibacterial action on B. subtilis, while di-O-
benzyl aminotriols have also shown significant effectiveness not
only against Gram-positive bacteria strains but also against
yeast species. Moreover, our result also indicated the potential
antifungal activity of a-methylene-y-butyrolactones.

In addition, aminodiol and aminotriol derivatives were
applied as antioxidant agents in DPPH assay. N-Benzyl amino-
diols are still considered to exert notable antioxidant property.

Finally, in vitro studies have clearly shown that the O-benzyl
substituent on the cyclohexyl ring in aminodiol and aminotriol
derivatives is essential to have antimicrobial effect, whereas the
hydroxyl group on this ring is crucial on the antioxidant prop-
erty. The stereochemistry of the aminotriol and aminotriol
derivatives has no influence on either effect.
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