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An efficient Rh(i)-catalyzed synthesis of 2-arylindole derivatives via intermolecular C—H annulation of

arylhydrazines with sulfoxonium ylides was accomplished. A variety of 2-acetyl-1-arylhydrazines with
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Introduction

Indoles represent one of the most abundant heterocycles in
natural products, biologically active molecules, pharmacolog-
ical compounds, and materials.' Particularly, 2-arylindole and
its derivatives are core structural frameworks in numerous drug
molecules (Scheme 1).> Traditional strategies to access 2-ary-
lindoles include Fisher,® Larock, Buchwald,” and Hegadus
indole synthesis.® However, the above methods usually suffer
from harsh reaction conditions, multistep synthesis, limited
substrate scope, and undesirable toxic waste was inevitable in
some transformations. Therefore, developing more convenient,
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Scheme 1 Important representative 2-arylindole derivatives.
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sulfoxonium ylides were converted into 2-arylindoles in satisfactory yields. Excellent selectivity and good
functional group tolerance of this transformation were also observed.

efficient and sustainable methods to access 2-arylindole deriv-
atives is highly desirable.

Over the past decades, transition-metal-catalyzed directed
C-H activation has been developed as a powerful and straight-
forward synthetic approach to heterocycles.” Moreover, efficient
synthesis of indole derivatives using this strategy has also been
greatly employed.® In recent years, sulfoxonium ylides, featuring
operational safety and synthetic convenience as popular car-
bene surrogates,” were used as important building blocks in
transition-metal-catalyzed C-H annulation reactions with
nucleophilic directing groups for synthesis of indole deriva-
tives. In 2019, Huang and co-workers realized efficient synthesis
of 2-arylindole via Ru(u)-catalyzed tandem annulation of N-aryl-
2-aminopyridines and sulfoxonium ylides (Scheme 2a).* In the
same year, Liu's group reported [Ru(p-cymene)Cl,], catalyzed
imidamides C-H activation and coupling with sulfoxonium
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Scheme 2 Ru/Rh-catalyzed C—H annulation of sulfur ylides to 2-
arylindole.
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ylides to give 2-arylindole (Scheme 2b).* In 2020, Wu's and Cui's
group developed a novel synthesis of 2-arylindole from N-
nitrosoanilines and sulfoxonium ylides via Rh(m)-catalyzed
acylmethylation (Scheme 2c)."*> Encouraged by these eminent
studies, herein a simple Rh(m)-catalyzed synthesis of 2-ary-
lindole was disclosed by easily available arylhydrazines with
sulfoxonium ylides as substrates (Scheme 2d).

Results and discussion

The C-H annulation reaction of 2-acetyl-1-phenylhydrazine (1a)
with a-benzoyl sulfoxonium ylide (2a) was used as a model to
optimize the reaction conditions (Table 1). Catalyst systems
were first screened in the presence of NaOAc, which was used as
the additive, in 1,2-dichloroethane (DCE) at 100 °C under
a nitrogen atmosphere. The desired product 3aa was obtained
with 35% yield by using [Cp*RhCl,],/AgSbF, as the catalyst
system (entry 1). The transformation does not occur in the
presence of other catalysts such as [Cp*Co(CO)L,], and [RuCl,(p-
cymene)], (entry 2 and 3). The effect of silver salts was investi-
gated (entry 1 vs. entry 4). AgNTf, gave the desired product 3aa
in 62% yield. The solvents were subsequently screened using
[Cp*RhCl,],/AgNTf, as the catalyst system. Among the solvents
examined [1,2-dichloroethane (DCE), 1,4-dioxane (dioxane),
toluene, and methanol (MeOH)], DCE was the best solvent
(entry 4 vs. entries 5-7). Among the various additives tested,
NaOAc/HOAc showed the highest efficiency for the reaction
(entries 8-11). Further enhancement of the yield (93%) of 3aa
was achieved by increasing the loading of HOAc (entry 12). No
reaction was observed when the model reaction was conducted

Table 1 Screening of the reaction conditions®
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Solvent, 100 °C, 12 h
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Scheme 3 Substrate scope of 2-acetyl-1-arylhydrazines. Reaction
conditions: arylhydrazines (la—1q, 0.2 mmol), a-benzoyl sulfoxonium
ylide (2a, 0.24 mmol, 47.1 mq), [Cp*RhCL,]; (2.5 mol%, 3.1 mg), AgNTf,
(10 mol%, 7.8 mg), NaOAc (50 mol%, 8.2 mg) and HOAc (1.0 equiv.,
12.0 mg) in DCE (1.0 mL) at 100 °C under a nitrogen atmosphere for
12 h. Isolated yield.

in the absence of AgNTf, (entry 13). Therefore, the optimal
reaction conditions were identified as follows: 2.5 mol% of
[Cp*RhCl,], with AgNTf, (10 mol%) as the catalyst system,
NaOAc (50 mol%) with HOAc (1.0 equiv.) as the additives in DCE
at 100 °C under a nitrogen atmosphere for 12 h.

With the optimized reaction conditions in hand, the scope
and limitation of various 2-acetyl-1-arylhydrazines 1a-1q with o-
benzoyl sulfoxonium ylide (2a) were further investigated, as

[CP*RNCly]; (2.5 mol%)
AgNTf, (10 mol%)

sas
N

SRS Y-
+ P S—
NHNHAc R \

NaOAc (50 mol%) \
1a 2a 3aa HOAc (1.0 equiv.) NHAc
DCE, 100°C, 12h
1a 2 3ba-3ga
Me, Me
Ent Catalyst system Additive  Solvent Yield? (% A m A A
v Caalyst sy % OO <O OOy <0-om
NHA NHA NHA NHA
1 [CP*RhCL,],/AgSbFe NaOAc DCE 35 3ab, 750/2 3ac, 85(‘:’/0 3ad, 900% 3ae,cs7%
2 [Cp*Co(CO)1,],/AgSbFe NaOAc DCE 0
3 [RuCl,(p-cymene)],/AgSbFs, NaOAc  DCE 0 Ph F CI cr=3
N N N N
4 [Cp*RhCl,],/AgNTf, NaOAc DCE 62 NHAC NHAC NHAC NHAC
5 [CP*RhCL,],/AgNTf, NaOAc Dioxane 0 3af, 85% 3ag, 64% 3ah, 66% 3ai, 54%
6 [Cp*RhCl,],/AgNTf, NaOAc Toluene 0 O
7 [Cp*RhCl,],/AgNTf, NaOAc MeOH 0 N N 0 s
N N\
8 [Cp*RhCl,],/AgNTE, NaOAc  DCE 43 °°°Me N W @E}‘@ @E}‘@
9 [Cp*RhCl,],/AgNTf, KOAc DCE 35 NHa NHAC NHAC NHAc
10 [Cp*RhCL,],/AgNTE, CsOAc DCE 0 3aj, 67% 3ak, 71% 3al, 95% 3am, 93%
11°¢ [Cp*RhCl,],/AgNTf, NaOAc DCE 79 mm wnBu mcy
124 [CP*RhCl,],/AgNTf, NaOAc  DCE 93 N N N N
134 [Cp*RhCL], NaOAc DCE 0 NHAc NHAC NHAc NHAC

“ Reaction conditions: 2-acetyl-1-phenylhydrazine (1a, 0.2 mmol, 30.0
mg), a-benzoyl sulfoxonium ylide (2a, 0.24 mmol, 47.1 mg), catalyst
(2.5 mol%), AgSbF, or AgNTf, (10 mol%), and additive (50 mol%) in
solvent (1.0 mL) at 100 °C under a nitrogen atmosphere for 12 h.
b Isolated yield. © 1.0 equiv. of PivOH was used. ¢ 1.0 equiv. of HOAc
was used.
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3an, 81% 3ao, 82% 3ap, 76% 3aq, 67%

Scheme 4 Substrate scope of (hetero)aroyl sulfoxonium ylides.
Reaction conditions: 2-acetyl-1-phenylhydrazine (1a, 0.2 mmol, 30.0
mag), (hetero)aroyl sulfoxonium ylides (2a—-2p, 0.24 mmol), [Cp*RhCl,]»
(2.5 mol%, 3.1 mg), AgNTf, (10 mol%, 7.8 mg), NaOAc (50 mol%, 8.2
mg) and HOAc (1.0 equiv., 12.0 mg) in DCE (1.0 mL) at 100 °C under
a nitrogen atmosphere for 12 h. Isolated yield.
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shown in Scheme 3. As expected, some functional groups, such
as methyl (3ba-3da, 79-89%), methoxy (3ea 87%), butyl (3fa,
81%; 3ga, 86%), and phenyl (3ha, 83%), were well compatible
under the reaction conditions with good yields. Remarkably,
halogen atoms (F, Cl, Br, and I) linked to the benzene rings of
substrates 1i-1n were maintained in the structures of products
3ia-3na (78-87%), suggesting that further manipulation may
produce additional useful compounds. Relatively low yields
were observed in the reactions of substrates 1o, 1p, and 1q
bearing the strong electron-withdrawing groups CF;, COOMe,
and CN on their benzene rings (30a-3qa, 60-76%).

Then, the scope of (hetero)aroyl sulfoxonium ylides were also
examined (Scheme 4). Benzoyl-substituted sulfoxonium ylides
bearing a variety of important functional groups, such as
electron-donating groups (Me, OMe, phenyl), the halogens (F,
Cl), and electron-withdrawing groups (CF;, COOMe) at the
ortho, meta, and para positions of the phenyl ring reacted
smoothly with 1a to afford the corresponding products (3ab-
3aj) in moderate to high yields (54%-90%). The reactants could
contain a naphthalene or furan/thiophene ring and the corre-
sponding products (3ak-3am) were obtained in 71%, 95%, and
93% yields, respectively. Moreover, the sulfoxonium ylides were
not limited to (hetero)aryl-substituted substrates, an alkenyl
(3an, 81%) and several alkyl substrates (3ao-3aq, 67-82%) were
also compatible.

To further explore the practicability of our methodology, the
Rh(m)-catalyzed annulation was scaled up to the gram scale
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Scheme 5 Gram-scale synthesis.
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(Scheme 5). The product 3aa was also isolated in excellent yield
(91%) even with a reduced catalyst loading.

For insight into the mechanism of this reaction, control
experiments were performed (Scheme 6). The deuterium kinetic
isotope effect was investigated by conducting an intermolecular
competition reaction between 1a and 1a-ds. The 3.3 : 1 ratio of
3aa to 3aa-d, demonstrated that the cleavage of the aromatic
C-H bond is probably involved in the turnover-limiting step
(eqn (1)). A 2.4:1 ratio of 3ca to 3pa was observed in the
intermolecular competition reaction between 1c and 1p (eqn
(2)), indicating that C-H activation probably occurs through an
electrophilic aromatic substitution (SgAr) process.

Based on previous reports’ ™ and our experimental
outcomes, a plausible mechanism is shown in Scheme 7. First,
the active cationic rhodium catalyst species [Cp*RhX,] is
formed through the reaction of the precatalyst [Cp*RhCl,], with
AgNTf, or NaOAc. The coordination of 1a to rhodium catalyst
species and subsequent ortho C-H bond activation generates
cationic five-membered rhodacyclic intermediate A with the
release of HX (X = NTf, or OAc). Next, sulfoxonium ylide 2a
reacts with intermediate A to form Rh(m) intermediate B, which
in turn gives the reactive carbene species C by a-elimination of
DMSO. Subsequently, a migratory insertion of carbene group
into the Rh-C bond to afford a six-membered rhodacycle
intermediate D. Then, protonolysis of the intermediate D
releases acylmethylated intermediate E with regenerating active
[Cp*RhX,]. Finally, the ketone carbonyl E could undergo keto-
enol tautomerism and cyclization in the presence of HOAc to
give the desired product 3aa.

Conclusions

In summary, we have developed a Rh(m)-catalyzed synthesis of
2-arylindoles from easily available arylhydrazines and sulfoxo-
nium ylides under mild conditions. The protocol is useful to
prepare various 2-arylindoles because of its high atom economy,
broad substrate scope, and simple procedure. The synthesis

This journal is © The Royal Society of Chemistry 2020
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could be easily scaled up to gram scale even with a reduced
catalyst loading.
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