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Organoselenium compounds have been broadly studied owing
to their well-regarded biological activities." Among the
multiple and complex health benefits ascribed to organo-
selenium compounds, their role as chemotherapy agents is
greatly-recognized.®* However, their activity is highly dependent
on multiple factors, among which metabolic routes stand out.
In this context, methylselenol is one of the main metabolites,
and has received great attention as a key executor of organo-
selenium compounds’ anticancer activity.®

A vast number of molecules containing heterocyclic rings
possess a great variety of biological applications, including
antitumor activity. Accordingly, indole derivatives show potent
antitumoral activity against several cancers, such as lung,
pancreatic and breast, in preclinical models.*® Thus, indole can
be considered as a privileged scaffold for designing novel
anticancer agents. We hypothesized that the functionalization
of indole with a methylseleno group would yield a promising
antitumor agent. Therefore, the objective of this work was the
synthesis and cytotoxicity evaluation of 1-(2,6-dichlorophenyl)-
2-(methylselanyl)-1H-indole (compound 4 in Scheme 1). The
synthetic procedure designed to obtain the desired derivative is
illustrated in Scheme 1.

The designed synthesis was originally planned in three steps.
Firstly, the chlorination of diclofenac (1) to achieve the acid
chloride 2 (Scheme 1, step 1). Secondly, the intramolecular
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by using hydrides is also ascertained. Compound 5 exhibited impressive growth inhibition in most of the
cell lines in an NCI-60 panel, particularly towards resistant breast cancer cells.

cyclization of the acid chloride 2 through the nucleophilic
attack of the nitrogen over the acyl chloride (Scheme 1, step 2).
Finally, a two-steps reaction to yield the desired compound 4 via
formation of the selenoamide and the subsequent methylation
of the Se atom (Scheme 1, step 3). Different conditions and
reagents have been reported for each of these steps, all of them
being optimized. Next, we will discuss some previously reported
methods along with our conditions and results for each step.

The chlorination of diclofenac (1) (Scheme 1, step 1) was
attempted under three conditions, as previously reported in the
literature:'*** (i) reflux conditions with an excess of thionyl
chloride (SOCl,) for 2 h," resulting in the degradation of
diclofenac (1), observed by "H-NMR spectra; (ii) reaction with
oxalyl chloride [Cl(CO),Cl] in methylene chloride (DCM) at
room temperature,™ that did not yield the acid chloride 2 even
at long periods of time (up to 72 h); and (iii) the use of few drops
of N,N-dimethylformamide (DMF) as catalyst for the reaction for
oxalyl chloride, which turned out to be the optimal conditions
with quantitative yields (99%)."

Regarding to molecular cyclization to render the lactam 1-
(2,6-dichlorophenyl)indolin-2-one (3) (Scheme 1, step 2), several
procedures have been published on the literature: radical
photoredox cyclization,'*** acid catalyzed cyclization'>'® and
Mn(m)-based oxidative cyclization methods,'” as well as 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide (EDC)-based carboxyl
activation cyclization,"” among others. Nevertheless, these
methods present limitations, including multiple steps, complex

catalysis and wuse of expensive reagents. Thus, the
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Scheme 1 Synthetic route designed for 1-(2,6-dichlorophenyl)-2-
(methylselanyl)-1H-indole (4).
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Table 1 The hydride used for cyclization reaction to obtain lactam 3¢
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al Cl hydride (1.0 equiv). C'QCI
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cl 25°C; 2h
2 3

Entry Hydride ield? (%)
1 AILiH, 46

2 LiEt,BH 53

3 LiAIH(OtBu), 82

4 NaBH;CN 80

5 NaBH, 78

“ All reactions were carried out with compound 2 (6.4 mmol) and the
corresponding hydride (6.4 mmol) in a mixture of water (18 mL) and
THF (2 mL) as solvent at RT for 2 h. ” Estimated yields of 3
determined by "H-NMR.
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Scheme 2 One-pot synthesis of unexpected derivative 5.
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Fig. 1 ORTEP diagram of compound 5 with displacement ellipsoids
drawn at 50% probability level. Crystal Data for C16H1CILbNOSe (M =
383.12 g mol™Y): monoclinic, space group P2;/c (no. 14), a = 8.3923(9)
A, b =127253(14) A, c = 14.6560(15) A, 8 = 90.072(2)°, V = 1565.2(3)
A3 Z =4, T =298 K, u(MoKa) = 2.737 mm ™%, Deaie = 1.626 g cm ™,
13 375 reflections measured (4.24° = 20 = 56.66°), 3859 unique (Rint
= 0.0227, Rsigma = 0.0301) which were used in all calculations. The
final Ry was 0.0365 (>2sigmal(/)) and wR, was 0.1049 (all data).

intramolecular reductive cyclization based on hydrides (e.g.
lithium aluminum hydride (LiAlH,); lithium  tri-t-butoxy
aluminum hydride (LiAlH(OtBu););** sodium cyanoborohydride
(NaBH3CN)*® and sodium borohydride (NaBH,)*') caught our
attention because of their straightforward and low cost
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procedure. Hence, we developed novel and efficient method of
intramolecular cyclization with hydrides to obtain lactam 3.
This method was achieved by reaction of acid chloride 2 with
one equivalent of hydride in water and tetrahydrofuran (THF) at
room temperature for 2 h. Besides, we optimized the method
using five different hydrides, such as LiAlH,, lithium trie-
thylborohydride (LiEt;BH), LiAIH(OtBu);, NaBH;CN and NaBH,
(Table 1). Luckily, we obtained excellent yields with all hydrides,
but the better yield was with LiAIH(OtBu); (Table 1, entry 3).

Finally, we focused on formation of the selenoamide and the
subsequent methylation of the Se atom to yield the desired
compound, 1-(2,6-dichlorophenyl)-2-(methylselanyl)-1H-indole
(4) (Scheme 1, step 3). Concerning the selenoamide formation,
we considered several reported methods gathered in the liter-
ature about the use of hydrogen selenide (H,Se) and hydrogen
sulfide (H,S) in the conversion of amides in thioamides;*
thioureas in selenoureas® and imines in selenones,* among
others. Thus, amide with H,Se should form the selenoamide.
However, the toxicity of H,Se prompted us to find safe and
effective alternative in alkali metal salt of hydroselenide
(MHSe), which may be readily prepared in situ by the reaction of
Se and hydride."**?* Another advantage is that hydride was
already used in the intramolecular cyclization (Table 1). Hence,
the reaction conditions to form the lactam 3 (Scheme 1, step 2)
are similar to last step (Scheme 1, step 3), prompting us to
perform step 2 and step 3 in one-pot synthesis.

Thus, the formation of desired compound 4 from acid
chloride 2 was attempted with oxalyl chloride (0.5 equivalent)
and N,N-dimethylformamide (0.5 equivalent), Se (1.0 equiva-
lent), LiAlH(OtBu); (2 equivalent to form lactam 3 and subse-
quently selenamide) and iodomethane (Mel) (3 equivalent) in
water and tetrahydrofuran, under two conditions: (i) room
temperature, up to 8 days; (ii) reflux, up to 2 days. Unfortu-
nately, these conditions did not yield desired compound 4. In
fact, this step did not evolve toward any selenocompound and
most of the material recovered was the starting material. This
result can be attributed to the lack of formation of lithium
hydroselenide (Table S4 and Fig. S12, ESIT) necessary to form
selenoamide and subsequently desired compound. Therefore,
we studied the formation of MHSe with the rest of hydrides
used previously (Table S4 and Fig. S10-S14, ESIt). Remarkably,
NaBH, was the only one that formed MHSe (Table S4 and
Fig. S14, ESTY).

We decided to repeat the previous methods with NaBH,
instead of LiAlH(OtBu); (Scheme 2). Surprisingly, desired
compound 4 was not detected at all, unlike lactam 3 with 49% of
yield. Remarkably, we have discovered that the reaction gives
rise to an unexpected 3-alkylidene-2-oxindole with Se ((E)-1-(2,6-
dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one, 5)
with 10% of yield (Scheme 2). This unexpected derivative was
purified by column chromatography, characterized by NMR and
its structure (Fig. 1) unambiguously determined by X-ray
diffraction (CCDC 1983076, Tables S8-S15, ESI{).

Since isolated diclofenac lactam 3 did not yield selenated
product 5 under these conditions, the proposed mechanism
(Scheme 3) would need to start from diclofenac carbonyl chlo-
ride 2, and involve the formation of selenocarboxylate A by the

RSC Adv, 2020, 10, 38404-38408 | 38405
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Scheme 3 Proposed reaction mechanism one-pot synthesis of
unexpected derivative 5.

attack of in situ generated hydroselenide (HSe™), and posterior
esterification with Mel to form B. Vilsmeier reagent generated
by DMF and oxalyl chloride present in the reaction mixture is
attacked by selenomethyl ester enolate, probably mediated by
the presence of NaBH,, generating after hydrolysis the for-
mylated intermediate C. Examples of related formylation of
esters with alkyl formats in presence of base (hydrides* and
alkoxides*”) have been previously reported. The next step would
involve the intramolecular amide formation by the attack of
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secondary amine to the activated selenomethyl ester, generating
intermediate D. Leaving methyl selenide can attack nucleo-
philically at aldehyde carbon, generating E, which could easily
undergo water elimination, taking into account the additional
stabilization gained by conjugation with aromatic system and
the lactam in the final product 5. Low yields of product 5 are
justified as lactamization is a favored process, even more with
activated species, like acid chlorides and selenoesters, which
have been known for acyl activation in peptide synthesis®® and
protein chemical ligation.*

Once that Vilsmeier reagent is suggested to be a key part of
product 5 generation, we attempted to optimize the method
using more equivalents of DMF than in previously used method
(Table 2). Nevertheless, the yield of unexpected derivative 5 and
lactam 3 decreased probably due to the increased solubility of
the organic compounds in the reaction medium and the
subsequent additional issues to isolate the desired compounds.

Finally, this unexpected new organoselenium derivative 5
with the code NSC: 811012 was submitted to the National
Cancer Institute's (NCI) Developmental Therapeutics Program
(DTP), to be tested at a single dose of 10 uM in a panel of NCI-60
human tumor cell lines. These cell lines include nine cancer
types (leukemia, melanoma, non-small cell lung, colon, CNS,
ovarian, renal, prostate and breast cancers).’® The results
(Fig. S1, ESIT) were expressed in growth percent (GP), that is the
growth of treated cells compared to the growth of an untreated
cells. GP (%) values between 0 and 50 means antiproliferative
properties and between —100 and 0 stand for cytotoxic prop-
erties. Compound 5 demonstrated antitumor activity in most
NCI-60 cell lines, with a GP mean value towards all cell lines of
17.48% (Fig. S1, ESIt). In addition, compound 5 showed potent
cytotoxic activity with GP lower than —30.80% in 6 out of the 60
tumor cell lines tested, including renal (UO-31 and SN12C),
breast (BT-549), CNS (SNB-75), melanoma (MDA-MB-435) and
leukemia (HL-60 (TB)) cancers (Fig. 2). In this context,
compound 5 exhibited the most cytotoxic activity (GP equal to
—96.55%) towards UO-31, a renal cancer cell line. Additionally,
this new derivative showed great cytotoxic activity (GP equal to

Table 2 Optimization of reaction conditions of unexpected derivative 5¢

1) CI(CO,C! (0.5 equiv), DMF (0.5 equiv),
elemental Se (1 equiv), hydride (2 equiv);
H,O:THF (9:1), 25°C, 30 min

o
a a
i
cl
2

2) Mel (3 equiv); 25°C, 24h

Cl(Co),Cl
Entry DMF (equiv.) (equiv.) Yield (%) comp. 3” Yield (%) comp. 5”
1 0 0 78 NR¢
2 0.5 0.5 58 14
3 1 0.5 49 2
4 1.5 0.5 47 1<

¢ All reactions were carried out with compound 2 (6.4 mmol), oxalyl chloride (3.2 mmol) and DMF (0, 3.2, 6.4 or 9.6 mmol), elemental selenium (6.4
mmol) and NaBH, (12.8 mmol) in a mixture of water and THF (9 : 1) at RT. After 30 min, MeI (19.2 mmol) was added to the reaction and stirred at RT
for 24 h. ? Estimated yields of 3 and 5 determined by "H-NMR. ¢ No reaction.
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Fig. 2 Growth percent values towards several breast, renal, ovarian,
melanoma, CNS and leukaemia cancer cell lines.

—35.63%) in the most resistant breast cancer cell of NCI panel
towards more than 20 000 compounds tested (BT-549).>°

In conclusion, we developed a novel and efficient method of
intramolecular cyclization with hydrides to obtain lactam 3.
Besides, we report an unexpected and unprecedented Vilsmeier
reagent application to afford a selenated lactam 5 with potent
cytotoxic activity in resistant breast cancer cells. Hence, this
new synthesis may be an attractive approach for the discovery of
new potent antitumoral agents, particularly for therapy of
resistant breast cancers.
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