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Sulfur-containing molecules are ubiquitous structural motifs
and widely exist in natural products,"* pharmaceuticals®* and
agrochemicals.>” Examples include the nonsteroidal anti-
inflammatory drug Sulindac,® the basal-cell carcinoma treat-
ment drug Vismodegib,” and drugs for the treatment of Par-
kinson's disease.’ Therefore, efficient introduction of sulfur
into organic molecules has drawn much attention."'** And
numerous approaches for the formation of C-S bonds have
been developed.***° The most used organosulfur sources for the
formation of C-S bonds are thiols and thiophenols, which have
an unpleasant smell. Recently, inorganic metal sulfides have
been extensively used to construct C-S bonds, such as sodium
metabisulfite,* K,S,?*> Na,S* and Na,S,0;.>* Compared to thiols
and thiophenols, inorganic metal sulfides are cheaper and
generally stable. Thus, introduction of sulfur-containing groups
into molecules by using inorganic metal sulfides is one of the
desired approaches. Among them, thiocyanates commonly
serve as important precursors for the preparation of thio-
ethers,” trifluoromethyl sulfides,® heteroaromatic
compounds.” In general, the sources of SCN used to introduce
a sulfur-containing group into molecules are thiocyanate
salts*®*** such as KSCN, NaSCN, AgSCN and NH,SCN. For
example, thiocyanate salts were employed in thiocyanation of
bromoalkenes via photocatalysis (Scheme 1a).*® Besides, the
vinyl thiocyanates could be also obtained by thiocyanation of
haloalkynes (Scheme 1b),*” iodothiocyanation of alkynes
(Scheme 1c).*® Obviously, difunctionalization of alkynes is the
most straightforward protocol to prepare vinyl thiocyanates.
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ammonium thiocyanate and N-thiosuccinimides. This metal-free system offers good chemical yields for
a wide range of alkyne and alkene substrates with good functional group tolerance.

Recently, our group has focused on hydrogen-bonding
network or cluster® assisted transformations such as hydro-
fluorination of ynamides® and alkenes,* the addition of
sulfonic acids to haloalkynes,** fluorothiolation of alkenes,*
dihalogenation of alkynes** and hydrochlorination of alkyne-
s,****halothiolation of alkynes.*” Along this line, herein, we are
glad to report a hydrogen bond network-enabled regio- and
stereoselective thiocyanatothiolation of alkynes using NH,SCN
and N-thiosuccinimides.

Initially, according to the previous report,* we started the
investigation of thiocyanatothiolation protocol using NH,SCN
and N-(phenylthio)succinimide as thiolation reagents in DCM
under air and carried out the reaction at 60 °C (Table 1). To our
delight, the desired product 3a was obtained in 42% yield
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Scheme 1 Methods for thiocyanatothiolation of alkynes and alkenes.
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Table 1 Optimization for the reaction conditions

o]

Et Et SCN
=z - solvent
©/ * [SCN] + QN SPh T2, air ©/S
Y SPh
1 2 3a

Entry” [SCN] Solvent Temp. (°C) Yield” (%)
1 NH,SCN DCM 60 42
2 NH,SCN DCE 60 47
3 NH,SCN THF 60 0
4 NH,SCN Acetone 60 0
5 NH,SCN DMF 60 0
6 NH,SCN iPrOH 60 0
7 NH,SCN AcOH 60 24
8 NH,SCN TFE 60 18
9 NH,SCN HFIP 60 87
10 LiSCN HFIP 60 36
11 NaSCN HFIP 60 42
12 KSCN HFIP 60 49
13 NH,SCN HFIP 25 63
14 NH,SCN HFIP 80 83

“ Reaction conditions: 1 (0.1 mmol) (0.12 mmol) NH,SCN (0.2
mmol), solvent (0.5 mL), under air for 12 h at 60 °C. ? Determined by GC.

without any isomers found in the reaction mixture detected by
GC-MS (Table 1, entry 1). Screening of solvents indicated that
this transformation could not proceed in the polar solvents,
such as acetone, THF, dioxane, i-PrOH, DMF (Table 1, entries 3-
6) probably due to the solvation of electrophiles while moderate
yield could be obtained in non-polar solvent (Table 1, entry 2).
Strong hydrogen-bond donor solvents such as hexafluoro-2-
propanol (HFIP), could form an H-bond network activating
the electrophiles through a strong hydrogen bonding interac-
tion.*® In order to enhance the H-bond interaction between the
hydroxyl and 2, so AcOH was chosen to compare with HFIP
(Table 1, entry 7). Along this line, hydrogen-bond donor solvents
were used and further optimization of hydrogen-bond donor
solvents indicated that HFIP was superior to AcOH and tri-
fluoroethanol (Table 1, entries 7-9). Moreover, a screening of
thiocyanate salts showed that NH,SCN was the best SCN source
for this transformation compared with lithium thiocyanate,
sodium thiocyanate and potassium thiocyanate (Table 1, entries
10-12). Additionally, decreasing the temperature from 60 °C to
room temperature resulted in a lower yield (Table 1, entry 13)
and the reaction yield was not improved significantly by raising
the temperature from 60 °C to 80 °C (Table 1, entry 14).

With the optimized conditions in hand, we next turned our
attention to explore the substrate scope (Table 2). Firstly, N-(p-
methoxyphenylthio)succinimide was used as electrophile to
explore the scope of alkynes. In general, the reaction proceeded
well to provide the desired products 3 in moderate to excellent
yields with satisfactory regio- and stereoselectivity. Diverse aryl
alkynes containing electron-donating groups such as isopropyl,
hydroxy, methoxy, hydroxyethyl, tert-butyl and trifluoromethoxy
groups (Table 2, 3e-3g and 3m-3p) at the ortho, meta, or para
positions of aryl rings all reacted with N-thiosuccinimides to
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Table 2 Scope for thiocyanatothiolation of alkynes and N-
arylsulfenylsuccinimides®?

scl
/ + N-SAr + NH,scN —HFIP___ J\(RZ
60 °C, air @
3 SAr N
i SCN OH
Y @ o
SPh SA
R n Br SAn
3a, 82% 3w, 72%
3k, R=F, 83%
: ' SCN
R ool 31, R=Cl, 85%°
X 3m R = Bu, 80% OO s
SAn 3n, R =Ph, 70% SAn
b R=Cl 73% 30, R = OCF3, 88% 3%, 61%
3¢, R=iPr, 7% 3p, Ri='OMe, '77% SCN
- 3q,R = Ac, 65%
3d, R = OMe, 69% q o N -
3e, R = CH,0H, 83% L
CN N n
§eN i R Ts 3y, 62%
R N X
SAn SAn . o
anR=Pr76%  pQ |
3, R = OMe,79% =R (00 0
3g.R = OH, 62% 3s, R = Ph, 64% O. ' AnS’
3n,R=CN, 51% 3t, R=Cl, 52% o
3i,R=COMe 60%°c U R=Br 60% >< 52, 55
3j,R=Cl, 71% 3v,R=1, 46%°
3aa, 74% 3ab, 60%
SCN SCN
S
Br S S R 3 ‘ \/R
|t OMe
i OMe =
3al, 71%
3ac, R=H, 81%
3ad, R - 2F, 88% 3ag, R = 3-Br, 68% SCN
3ae, R = 4-F, 90% 3ah, R =4-Cl, 70% N

3ai, R=4-I, 57%
3aj, R =4-Ac, 50%
3ak, R = 4-NOy, 42%
SCN SCN

3af, R =4-Me, 79% s

7
OMe 3am, 76%

SCN
SAn OH SPh

5 SPh
3an, 66%, (1:1)° 3a0, 60%, (1:1) 3ap, 71%

“ Reaction conditions: 1 (0.1 mmol), 2 (0.12 mmol), NH,SCN (0.2
mmol), HFIP (0.5 mL), under air for 12 h at 60 °C. * Isolated yield.
¢ Ar = Ph. ? Determined by NMR.

give the corresponding adducts in moderate to excellent yields.
Besides, halide substitutes (F, Cl, Br) (Table 2, 3b, 3j-31 and 3w)
and electron-withdrawing groups such as cyano and ester (Table
2, 3h and 3i) on phenyl ring were well tolerated. Furthermore,
asymmetric or symmetrical internal alkynes also could be
transformed into vinyl thiocyanates (Table 2, 3r, 3s and 3w)
without any isomers. Remarkably, vinyl thiocyanates containing
halogens could be obtained by using haloalkynes (Table 2, 3t-
3v). Additionally, slightly low yields were observed for fused
aromatic such as naphthalene and heterocyclic aromatic (Table
2, 3x and 3y). Due to good functional-group tolerance, deriva-
tives of diacetone-n-glucose (Table 2, 3z), natural products t-
menthol (Table 2, 3aa) and pharmaceuticals such as zaltoprofen
(Table 2, 3ab) also worked well.

Next, we started to explore the scope of N-arylsulfenylsucci-
nimides. Various N-arylsulfenylsuccinimides can be obtained
easily by the method in ESIL.{ To our delight, the introduction of
electron-donating groups or halide substitutes to the phenyl
ring of N-arylsulfenylsuccinimides had little influence on this

RSC Adv, 2020, 10, 33450-33454 | 33451
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Table 3 Scope for thiocyanatothiolation of alkenes®?

2 SCN
RW/\/R * N—SAr + NH,SCN _DCE . R2
60°C, air R
4 o 2 5 SAr

SCN Cl SCN SCN SCN
SPh SPh SPh Br SPh

5a, 61% 5b, 62% 5¢, 55% 5d, 60%

SCN SCN
SPh Ph O’ "'SPh
F Ph S ‘SPh

5e, 54% 5f, 51% 59, 47% 5h,53%

% Reaction conditions: 4 (0.1 mmol), 2 (0.12 mmol), NH,SCN (0.2
mmol), DCE (1.0 mL), under air for 12 h at 60 °C. ” Isolated yield.

reaction, providing the corresponding products in 57-90%
yields (Table 2, 3ac-3ak) while electron-withdrawing groups on
the phenyl ring such as acetyl or nitro resulted in lower yields
(Table 2, 3aj and 3ak) probably due to the decrease of electro-
philicity of N-arylsulfenylsuccinimides. Notably, the scope of N-
sulfenylsuccinimides could be extended to N-alkylsulfe-
nylsuccinimides (Table 2, 3al and 3am), affording the desired
products with good yields and high selectivity. Unfortunately,
the thiocyanatothiolated products (Table 2, 3an and 3ao) with
poor stereoselectivity (Z/E = 1:1) were obtained when the
unsymmetrically aliphatic alkynes were employed. We specu-
lated that the steric hindrance of the aliphatic side chain maybe
is small, resulting in a low Z/E ratios.

Encouraged by the success of thiocyanatothiolation of
alkynes, we next turned our focus to the thiocyanatothiolation
of alkenes. Under the optimized conditions, no product was
observed. And the HFIP as nucleophile replaced the NH,SCN,
giving hexafluoroisopropanol thiolated product. As result, non-
polar solvent DCE was used to avoid the hexafluoroisopropanol
thiolat of alkenes. To our delight, the thiocyanatothiolation of
alkenes could proceed smoothly though moderate or lower
chemical yields were obtained. Among them, aromatic alkenes

SCN

L,

3aq (1.57 g, 62 %)

HFIP, 60 °C,12 h

=z O
NH,SCN (12 mmol, 0.84 g) N
s )sr !
Ph ( Ph
o)

(6 mmol, 1.06 g) (7.2 mmol, 2.06 g)

Scheme 2 Gram-scale preparation of 3aq.

c40
c42
c c3s

zZ
41 c3g

Fig. 1 Single crystal structure of 3aq.
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Scheme 3 Plausible mechanism.

gave moderate yields without any isomers (Table 3, 5a-5¢) and
aliphatic alkenes gave lower yields (Table 3, 5f-5h).

To demonstrate the scalability of this protocol, a gram-scale
reaction of 1,1’-biphenyl-4-ethynyl (6 mmol) with N-(4-bromo
thio)succinimide was carried out, and the corresponding
product 3aq was obtained in 62% yield (Scheme 2).

To identify the configuration, the single crystal of product
3aq was cultivated by solvent evaporation. And the regio- and
stereoselectivity of products were further confirmed the X-ray
crystallographic analysis of the obtained product 3aq (Fig. 1).

Based on our previous work,*” a plausible reaction pathway
was proposed in Scheme 3. The interaction of HFIP hydrogen
bonding linear aggregates*® with sulfenylation reagent 2a may
strongly activate the sulfenylation reagent, which generates the
active intermediate B (Scheme 3). Sequentially, a sulfonium C is
produced from intermediate B with an alkyne, followed by
a nucleophilic attack of SCN anion to obtain the products 3.

Conclusions

In summary, we have developed a widely applicable regio- and
stereoselective thiocyanatothiolation of alkynes and alkenes
under simple and mild conditions. This metal-free system
offers good chemical yields and functional group tolerance. At
present, the fluorinated reagent HFIP, which is not a green
solvent, is indeed a limitation of this method, but as scientific
research continues, we believe that green fluorinated reagents
can be discovered. Other similar thiolation systems are
currently investigated in our laboratory.
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