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Over the last 30 years, the successful implementation of the anammox process has attracted research

interest from all over the world. Various reactor configurations were investigated for the anammox

process. However, the construction of the anammox process is a delicate topic in regards to the high

sensitivity of the biological reaction. To better understand the effects of configurations on the anammox

performance, process-kinetic models and activity kinetic models were critically overviewed, respectively.

A significant difference in the denitrification capabilities was observed even with similar dominated

functional species of anammox with different configurations. Although the kinetic analysis gained insight

into the feasibility of both batch and continuous processes, most models were often applied to match

the kinetic data in an unsuitable manner. The validity assessment illustrated that the Grau second-order

model and Stover–Kincannon model were the most appropriate and shareable reactor-kinetic models

for different anammox configurations. This review plays an important role in the anammox process

performance assessment and augmentation of the process control.
1. Introduction

With the development of the economy of the world, eutrophi-
cation has spread fast and led to serious aquatic environmental
pollution, especially in the developing countries. The exces-
sively discharged nitrogen can cause many negative impacts,
such as eutrophication. Therefore, nitrogen removal shall be
processed in a sustainable way, especially for wastewater treat-
ment with a low C/N ratio. With the lower capital investment,
less operational maintenance, no additional organic carbon
source, 90% reduction of sludge and the limited emission of
N2O, the anaerobic ammonia oxidation (anammox) process is
a new nitrogen removal technology that has gained widespread
attention.1,2 However, despite the increasing interest in the
anammox application, there were still many difficulties, such as
the low bacterial growth rate and the sensitivity to the envi-
ronmental factors.3
ering, Nanyang Institute of Technology,
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Anammox processes can be conducted in many different
congurations. Each process has its own optimized operations
and characteristics based on the design of the reactor. However,
it is generally known that common reactors have certain
shortcomings, and that appropriate operation conditions
should be fully investigated to prevent the process from failure
without optimized operation.4 Different reactors have different
capabilities of nitrogen removal. Among the applied reactors,
the Sequencing Batch Reactor (SBR), Up Flow Anaerobic Sludge
Blanket (UASB) and Membrane Bio-Reactor (MBR) were the
most popular congurations with different conguration
structures that benet the biomass enrichment in the form of
the biolm or for avoiding sludge wash out.5–7 The aim of
optimizing the operational conditions is to enhance the effi-
ciency of nitrogen removal.8 The effects of environmental
factors at various operational options on the anammox micro-
bial community were also reported.9 Moreover, the microbial
residence time plays a critical role in the taxonomic composi-
tion and functional description of the microbial communities.10

A large number of previous studies focused on experimental
and mathematical methods.11–13 The process-kinetic models are
powerful tools for investigating the performances of different
congurations during the anammox process. Appropriate
kinetic mathematical models are enabled to assess, control, and
mitigate the process inhibition and process optimization.
RSC Adv., 2020, 10, 39171–39186 | 39171
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These models can be employed to achieve many key objectives
involving the optimization of the chemical processes, assessment
of the reaction hazards, and the design of emergency relief
systems.14,15 Process-kinetic models enhance the comprehension
of the constructed system, and are conducive to the formulation
and validation of a hypothesis. The prediction of the system's
behaviour at a variety of conditions was developed to reduce the
operation risks. However, certain selection criteria and conditions
must be obeyed when the proper evaluation and application of the
process models were performed for understanding the process or
predicting the performance. In order to identify a suitable model,
a correct model type shall be selected, and the parameters of the
model shall be estimated with the available data. To a great extent,
the validity of the studies relies on the model, which is dened by
the proper preference of a mathematical model rst, and then the
validity of the kinetics evaluation. Generally, an evaluation on the
process performance is still characterized by the application of the
simple kineticsmodels andmethods for evaluating their reactions.

Kinetic models are proved to be a conventional way to estimate
and prospect the performances and operations of different
processes. It is very important to choose a suitable model relating
to the kinetics evaluation of the anammox process assessment.
Quantitative process-kinetics can gain insight into the underlying
operational strategy with feasibility investigations in both batch
and continuous processes. However, it is a pity that most
frequently used models cannot t the kinetic data well. It is
necessary for us to know which model is better, and which is
perfect in the simulated conditions. Moreover, the optimized
operation conditions of the anammox process are also important
for the lab scale and full-scale process design.

A majority of previous papers of different congurations
(EGSB, UASB, SBR, MBR, and CSTR) were related to discussions
of the treatment performance or engineering application.
However, only a limited number of articles are available for
solving the specic problems of the kinetics evaluation. So far,
studies in investigating the anammox process-kinetics with
different congurations are relatively limited, and the assess-
ment of anammox performance in different reactors is rare.
Thus, the performance of the anammox system in different
reactors is reviewed in this paper with regards to validation of
the commonly used process kinetic models.
2. Process-kinetics approaches

Different reactors used in the anammox process were summa-
rized, and the performance comparison and kinetic simulation
were also evaluated. Currently, we are mainly focusing on the
application of four kinds of substrate removal models,
including the rst-order substrate removal model, the Grau
second-order substrate removal model, the modied Stover–
Kincannon model and the Monod equation, to investigate the
anammox process kinetics.
2.1 First-order substrate removal model

With regard to the application of the rst-order substrate
removal model to the bioreactor, the change rate of the
39172 | RSC Adv., 2020, 10, 39171–39186
substrate concentration in the completely mixed system may be
expressed as follows:12

� dS

dt
¼ QSi

V
� QSe

V
� k1Se (1)

Because the change rate (�dS/dt) can be neglected under
a pseudo-steady-state situation, the equation is derived as:

Si � Se

HRT
¼ k1Se (2)

where Si and Se are the total nitrogen concentrations (g L�1) in
the inuent and effluent, HRT is the hydraulic retention time
(day), k1 is the constant of the rst-order substrate removal rate
constant (1/d), Q is the inow rate (L/d) and V is the volume of
the reactor (L).
2.2 Grau second-order substrate removal model

The general equation of a second-order model is described as
shown below.16 By integration and linearization, the above
equation can be expressed as eqn (3):

�dS

dt
¼ k2

�
Se

Si

�2

(3)

By integration and linearization, the above equation is
expressed as eqn (4):

SiHRT

Si � Se

¼ HRTþ Si

k2X
(4)

If Si/(k2X) is considered as a constant (a) and (Si � Se)/Si is
replaced by the substrate removal efficiency (E), b is a constant
for the Grau second-order model, the above equation can be
represented as a simple one:

HRT

E
¼ aþ bHRT:

2.3 Modied Stover–Kincannon model

As for the Stover–Kincannonmodel,16 initially, the equation was
applied to predict the development of the attached-growth
biomass in a rotating biological contactor. Later, the model
was further modied, and widely used to describe and predict
the performances of the bioreactor.17,18 The original model is
expressed, as shown below:

dS

dt
¼

Umax

�
QSi

A

�

KB þ
�
QSi

A

� (5)

where dS/dt is the substrate removal rate (kg m�3 d�1), Umax is
the constant of the maximum utilization rate (kg m�3 d�1), A is
the surface area of the disc (L), and KB is the constant of the
saturation value (kg m�3 d�1). If the volume of the reactor (V)
takes the place of the surface area (A), the Stover–Kincannon
model can be modied as below:18
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Published papers in each year: (a) kinetic models used in the
anammox process and (b) enrichment reactors. (Web of Scopus,
access data: 2020.04.06).

Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

0/
31

/2
02

5 
5:

55
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
dS

dt
¼

Umax

�
QSi

V

�

KB þ
�
QSi

V

� (6)

where the Stover–Kincannon model takes dS/dt as a function of
the loading rate of substrate at a steady state:
dS
dt

¼ Q
V
� ðSi � SeÞ, so it can be further expressed as shown

below in eqn (7):

V

QðSi � SeÞ ¼
KbV

Umax

QSi

þ 1

Umax

(7)

2.4 Monod model

The Monod model was extensively employed.19 The modied
versions of the Monod equation were developed concerning the
model anammox process in terms of the oxygen concentration,
ammonia concentration and missing alkalinity:20

ds

dt
¼ KSe

Ks þ Se

(8)

where K is the maximum substrate utilization rate (kg m�3 d�1),
and Ks is the half saturation concentration (g L�1).

2.5 Other models used for the anammox-based process

Generally, the anammox bacteria cooperated with other func-
tional bacteria to degrade the wastewater in the applied elds,
such as SHARON and anammox process based on the continuity
model.21 The ASM2, ASM2d and ASM3 models were also used to
simulate the anammox process, which is enriched from
municipal activated sludge.22 The more complex microbial
communities with AOB, NOB DHB and anammox were simu-
lated with complex models, as reported.23

3. Anammox processes conducted in
different reactors

In recent years, the interest in anammox has been increased
signicantly with more and more articles being published as
time has passed, as showed in Fig. 1a. Since 2005, an average of
78 more papers has been published every year. In 2014, 300
papers were published. Fig. 1b shows the number of anammox
processes conducted in different reactors, as previously re-
ported. The sequencing batch reactor (SBR) was recognized as
the most dominantly employed bioreactor, which was the topic
in one third of published papers, followed by the upow
anaerobic sludge blanket (UASB), membrane bio-reactor (MBR),
expanded granular sludge bed (EGSB), continuous stirred-tank
reactor (CSTR), sequencing biolm batch reactor (SBBR) and
upow anaerobic xed bed (UAFB), subsequently. While the
number of applied UASBs was two-thirds of that of applied
SBRs, both SBRs and UASBs were the most popular reactors
conducted for the anammox process. Many advantages of the
reactor are summarized in Table 1. The high NLR (nitrogen
This journal is © The Royal Society of Chemistry 2020
loading rate) and NRR (nitrogen removal ratio), enrichment
granular sludge, fast start up and high settleability can be ob-
tained when the UASB or EGSB is applied. However, the MBR
(with a long sludge retention time (SRT)) brought a fast startup
of the process and a high accumulation rate for anammox
enrichment, which was commonly evaluated with special
purposes (Table 1). The general comparison of the anammox
process conducted in different processes is shown in Table 2.
The contents regarding the general process descriptions,
applications, advantages and disadvantages, and design criteria
are given for each technology based on previous research
studies as the referenced applications. The advantages and
disadvantages of each reactor constructed for anammox are
listed in Table 2. Biolm, granule and occulent were the three
main kinds of anammox conducted in different reactors, among
which the biolm and granule were the most popular ones. A
previous investigation showed that UASB and SBR were the
most popular bioreactors that can make granules or keep high
anammox biomass. The long retention time of the active sludge
is the key factor to inuence the successful development of
a high-rate anaerobic wastewater treatment. The long retention
time of sludge can be realized due to the specic reactor
conguration design and xed biomass in the form of static
biolms, particle-supported biolms or granule sludge. It was
observed that the UASB with upow can easily change the
sludge into granules. The high loading rate of UASB with high
removal efficiency was oen reported.7 In contrast, the engi-
neering applications of anammox included more than 100 full-
scale partial nitridation/anammox installations worldwide by
RSC Adv., 2020, 10, 39171–39186 | 39173
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2014. Most of them were conducted in the one-stage congu-
ration, and the most commonly applied reactors were SBRs,
followed by granular systems and MBBRs.24
4. Characteristic and stability analysis
of the anammox process in different
reactor setups

Different reactors used for the anammox process are summa-
rized in Table 2. The performance such as the startup time,
nitrogen-loading rate, removal efficiency, substrate concentra-
tion, and the purication of sludge is described and compared
in detail. Themost commonly used SBR reactor has an NLR that
varied from 0.3 kg m�3 d�1 to 1.6 kg m�3 d�1 with the highest
removal efficiency over 99%.6 The comparison of the most
commonly used UASB and SBR processes with the maximum
NRR and startup time is shown in Fig. 2. Generally, the UASB
process can obtain a high NRR over 2 kg m�3 d�1. However, that
of the SBR reactor was lower than 2 kg m�3 d�1 with a shorter
time for startup. By comparing the anammox sludge with an
organic C content lower than 35%25 and a content higher than
99%,6 it was found that the anammox sludge with higher purity
can obtain a higher nitrogen removal efficiency. Similarly, the
UASB reactors with different purities and operation conditions
had relatively large differences in the NRRs, which might vary
from 0.5 kg m�3 d�1 (ref. 26) to 76 kg m�3 d�1. To data, the
highest NRR obtained was 76 kg m�3 d�1 when the UASB
reactor was fed with substrate of low concentration under short
HRT.7 Other reactors for the anammox process were reported to
have different NRRs varying from 0.3 kg m�3 d�1 to 1.62 kg m�3

d�1 (Table 2).
Fig. 2 The start up time and maximum NRR comparison of the
anammox process of the most used reactors (a) UASB and (b) SBR.

This journal is © The Royal Society of Chemistry 2020
Over the past twenty years, many studies carried out have
focused on the optimization of the anammox process parame-
ters. The relative issues involving the substrate inhibition,
temperature effect, organic matter and salinity have been
extensively investigated.27 The drawback of the anammox
process with quite low bacteria growth rate can be overcome by
MBR, which is more effective than most other reactors for
enrichment.5 A reactor conguration with a high capacity of
biomass retention is essential for the anammox process.
Recently, a novel process conducted in an MBR with pure free-
cell suspension of highly active anammox was successful, with
a higher growth rate than the specic maximum growth rate
ever reported for the biomass, 0.21–0.23 d�1.5 This strategy has
a number of potential capacities in the cultivation of seeding
anammox in terms of practical engineering projects.2 MBR or
MBBR and Nov-BFR with carriers can accumulate a certain
amount of anammox to keep the process stable. Additionally,
inherent with each technology are the advantages and disad-
vantages of the process, and/or operation and maintenance.
Discharging standards are oen the primary consideration in
selecting a treatment technology.

Anammox processes conducted in different reactors can
accumulate different kinds of anammox bacteria following the
substrata and operation conditions. Because of its potentials in
nitrogen removal during the biological process, the high treat-
ment performance and stability of the anammox process have
been constantly studied for engineering application. Most of the
lab-scale enrichment anammox bacteria were ‘Ca. Brocadia’ and
‘Ca. Kuenenia’, which are almost mono-species in the anammox
process, illustrating a competition relationship of the anammox
species owing to their different substrate affinities. It should be
worth noting that under specic physiological conditions, Ca.
Kuenenia outgrows ‘Ca Brocadia’, resulting in overgrowth when
the substrate concentration is low.28,29 Meanwhile, the ecological
roles of the functional microbe and their potentials should be
extensively explored in order to attain new perspectives for further
design, operation, and maintenance of the process.

Generally, a large number of gas bubbles will be generated in
gas tunnels and gas pockets in some high-loading bioreactors
inoculated with anammox bacteria of high activity. It is specu-
lated that the gas bubbles entrapped in the gas pockets might
be a pivotal factor to cause sludge oatation, especially in the
upow reactor, such as a UASB or an EGSB. Aer the hollows are
lled with gas bubbles, the anammox granules will unavoidably
oat and be washed out of the reactor, leading to a failure of the
anammox process. The granule oatation can be undoubtedly
responsible for instability, or even failure of the anammox
reactor.30,31 The existence of this washout obstacle compels the
implementation of a large number of studies in pursuit of
a feasible way to overcome this obstacle.
5. Process-kinetic analysis of
different anammox processes

Bibliometric analysis showed that the investigation on the
reactor-kinetic models in the published paper was only one-
RSC Adv., 2020, 10, 39171–39186 | 39177
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tenth of the total. Meanwhile, the Stover–Kincannon model was
the most commonly used one, which was followed by the
Monod model and the Grau-second model (Fig. 1b). It was
conrmed by many studies that the anammox bacteria were
very sensitive to operational conditions, such as dissolved
oxygen, temperature, pH and composition of organic matters.
Unfavorable conditions will largely reduce the activity of the
anammox bacteria, and eventually cause a failure in bioreactor
performance. Therefore, it is of practical signicance to effec-
tively augment the activity of the anammox bacteria in order to
achieve a high-rate process under the mainstream conditions,
which might cause a large decrease in the specic activity of
anammox. Most of the literature reached a consensus in that
the process control for anammox is a prerequisite to practically
ensure the successful performance under unstable inuent
conditions.32

The common bioreactors have certain shortcomings since
different reactors have different optimal operating conditions.
For instance, the UASB reactor oen encounters unsatisfactory
substrate removal efficiency, severe sludge washout, and large
dead zone areas. An EGSB is costly in term of the huge
consumption of energy and operation cost. In addition, a bio-
lm reactor has a long sludge age and sporadic sludge otation.
The main objectives of process modeling are to control and
evaluate the performance of the process, as well as to optimize
the system design and scale up the pilot plant investigations.33

For example, the concentrations and activities of anammox
measured in different reactors could be used in conjunction
with models to control the process parameters, involving the
inuent loading rate and hydraulic residence time in order to
Fig. 3 Reactor-kinetic validation assessment. (a), N2 gas production (b),

39180 | RSC Adv., 2020, 10, 39171–39186
maximize nitrogen removal. To date, process control is widely
considered in the literature as an essential factor to guarantee
good performance in various bioreactors.

Modeling and parameter identication are subjects with
wide ranges, offering a realm of approaches and methods. In
many practical industrial projects, most knowledge is available
in the form of heuristic rules achieved from rich experience in
a variety of processes. Until now, the successful application of
anammox in practical projects is still facing huge challenges.
The kinetics involves operational and environmental factors,
affecting the utilization rates of the substrates. By means of the
kinetics evaluation, the optimization on the plant design and
prediction of the performance of treatment plants can be con-
ducted,14,33 and the process models relating to the anammox
process can be further discussed (Table 3).11,14,34–38 Furthermore,
the anammox enrichment culture can be signicantly promoted
because the kinetics can provide a convincing basic recipe for
dealing with the operational and environmental factors
affecting the performance of substrate removal.11 It is well
known that many mathematical models, such as rst-order
substrate removal models, Grau second-order substrate
removal models, Stovere–Kincannon models, and Monod
models are widely adopted in the eld of wastewater treatment
(Table 3). For example, the rst-order and second-order
substrate removal models are effective for estimating the
kinetic constants in anammox processes.14,39,40 In addition, the
Monod model was initially applied to represent the growth of
microorganisms, and widely employed to express the degrada-
tion kinetics. Moreover, the Stovere–Kincannon model is one of
the most expensively developed mathematical models for
13 substrate consumption (c),45 and the model comparison (d).15,45

This journal is © The Royal Society of Chemistry 2020
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Table 5 Most popular kinetic models used for the activity simulationa

Simulation equations Reference

q ¼ Sqmax

Ks þ S þ S2

KI

76

q ¼ qmax

�
exp

�
� S

KI

�
� exp

�
� S

KS

��
77

q ¼ qmax

�
1� exp

�
� S

KS

��
78

r ¼ Srmax

Ks þ S þ S2

KIH

79

r ¼ Srmaxð1� S=SmÞn
Ks þ S

80

r ¼ Srmaxð1� S=SmÞn
S þ KsðS=SmÞm

81

r ¼ Srmax

Ks þ S
exp

�
� S

kip

�
82

a Where q is the specic substrate conversion rate constant (d�1); qmax is
the maximum specic substrate conversion rate constant (d�1); KS is the
half saturation constant (mg N L�1); KI is the inhibition constant (mg N
per L); KIH is the inhibition constant of Haldane (mg N per L); kip is the
inhibition constant of Aiba; rmax is the maximum specic activity (mg
L�1); Sm is the maximum removal efficiency (mg L�1 d�1).

Fig. 4 SAA kinetic simulation of the EGSB-anammox biomass (a–f)13 and
(h), and NF-nitrifying system (i).43

39182 | RSC Adv., 2020, 10, 39171–39186
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determining the kinetic constants in immobilized bioreactors.
Also, it was reported that the Stovere–Kincannon model has
been investigated in continuously operated mesophilic and
thermophilic upow anaerobic lters for the treatment of
soybean wastewater, paper pulp liquors, and simulated starch
wastewater, and the determination of kinetic constants in
a packed bed reactor for decolonization.11

A detailed comparison of different substrate removal kinetic
models for anammox reactors is listed in Table 4. Compared
with the various processes conducted in the UASB, MAR, ANMR
and up-lters, the result of the rst-order simulation showed
that the UASB had the highest K1 of 11.64 (d�1) with R2 being
0.80, and the up-lter had the lowest K1 of 0.43 (d�1) with R2

being 0.439.12,15 All of the rst-order simulations proved that R2

was low, indicating the poor tting of the data. While these data
simulated by second-order simulation proved a higher R2,
which was 0.99 or 0.98, respectively. Meanwhile, the modied
Stover–Kincannon also gave a high R2 of 0.98 in a UAF system.12

In the UASB system, among the most commonly used modied
Stover–Kincannon model, Rmax varied from 15 to 476, as re-
ported due to the different operational conditions.41,42 The
difference in the Umax values was probably due to the different
adopted reactor congurations, different treated wastewater
characteristics and developed microorganisms in various
studies. The Stover–Kincannon model was suitable for the
kinetic analysis of a complicated anaerobic process. This is
partially due to the simplication of this model without diffu-
sion of the modeling substrate, hydraulic dynamics and other
the different systems of anammox (g), DMX-deammonification system

This journal is © The Royal Society of Chemistry 2020
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parameters, which might be key factors for the reactor perfor-
mance, but were difficult to measure. The methods of validity
assessment between the experiment and prospect can be con-
ducted by the linear regression equation, y ¼ x (Fig. 3). The
modied Stover–Kincannon model and the Grau second-order
model are both practical because in the case that Umax is
equal to kB, the Grau second-order model can be transformed to
the modied Stover–Kincannon model. Thus, the total nitrogen
concentration in the effluent predicted by the Grau second-
order and modied Stover–Kincannon models may display
high correlation with actual measured data. Conversely, the
Monod model and the rst-order model were proven to be not
feasible in many cases. The Grau second-order model and the
modied Stover–Kincannon model were both acceptable to
predict the total nitrogen concentration in the effluent since
their plot lines nearly coincided with the actual line (Fig. 3). The
process kinetic models also illustrated that the substrate
concentration and granule size should be carefully controlled as
the main process parameters. Different types of kinetic models
should be used to obtain the appropriate model. For the activity
test simulations, most popular kinetic models used for the
activity simulation are shown in Table 5. The specic anammox
activity (SAA) kinetic simulation of the EGSB-anammox biomass
(a–f)13 and the differences between the anammox (g), DMX-
deammonication system (h), and the NF-nitrifying system
(i)43 were compared and veried (Fig. 4). Other simple kinetic
ASM1 models for granular biomass oatation were also inves-
tigated.44 Among the kinetic models, the basic Monod equation
for the DMX process, the extended Edwards and Luong equa-
tion for the AMX process, and the Andrews equation for the NF
process were used and validated to be the most appropriate
equations for the process.

A simplied kinetic model lacks the capacity of expressing
the detailed mechanism, but it can be used to properly describe
the main characteristics of a reaction. A good model not only
provides a better understanding of the complex biological and
chemical fundamentals, but is also fundamental for the process
design, start-up, dynamics predictions, and process control and
optimization. Obviously, the simplied models with limited
variables, which are conrmed suitable for practical engi-
neering applications, were proved to be powerful tools for
anammox at low growth rates. Although different kinetic
models were investigated to describe the anammox process
carried out in different reactors, the modied Stover–Kincan-
non and Grau second-order models seemed to be the most
suitable for describing nitrogen removal.4,12,37 However, these
models still had problems since the limitations of these kinetic
models cannot describe cellular metabolism and regulation.
Moreover, these models did not give any insight to the variables
that could inuence cell growth. In addition, these models shall
be further modied when the special phase of the process was
simulated to get the actual kinetics. More analysis methods and
technologies for a more in-depth study shall be extensively
carried out with the purpose of improving the understanding of
the reaction mechanisms and microbial community dynamics.
This journal is © The Royal Society of Chemistry 2020
6. Conclusions

In the review, the process-kinetics of different anammox
congurations with process performance was investigated.
Among the congurations, SBR, UASB and MBR were the most
commonly used and favored for bacterial accumulation. The
simulation models of the kinetics were proved as valuable
information for process construction and rector operation. The
kinetic model validation proved that the modied Stover–Kin-
cannon model and Graus second-order model could be appro-
priate for different reactor anammox processes. Rather than the
correlation coefficient, the validation revealed that the modied
Stover–Kincannon model was more appropriate for nitrogen
removal kinetics in most congurations. Based on the simula-
tion of correlated indexes, the activity kinetic models illustrated
that the modied Han–levenspiel, Luong and Andrews models
were the most appropriate kinetic models for the activity
simulation in the anammox process. The appreciate congu-
rations could improve the denitrication efficiency, and
contribute to the biomass enrichment in the projects of engi-
neering application.
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