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based approaches in the rational
repurposing technique for FDA approved drugs
targeting SARS-CoV-2 Mpro†

Vishal M. Balaramnavar, *a Khurshid Ahmad,b Mohd Saeed,c Irfan Ahmad,de

Mehnaz Kamalf and Talaha Jawedg

Novel coronavirus (CoV) is the primary etiological virus responsible for the pandemic that started in Wuhan

in 2019–2020. This viral disease is extremely prevalent and has spread around the world. Preventive steps

are restricted social contact and isolation of the sick individual to avoid person-to-person transmission.

There is currently no cure available for the disease and the search for novel medications or successful

therapeutics is intensive, time-consuming, and laborious. An effective approach in managing this

pandemic is to develop therapeutically active drugs by repurposing or repositioning existing drugs or

active molecules. In this work, we developed a feature-based pharmacophore model using reported

compounds that inhibit SARS-CoV-2. This model was validated and used to screen the library of 565

FDA-approved drugs against the viral main protease (Mpro), resulting in 66 drugs interacting with Mpro

with higher binding scores in docking experiments than drugs previously reported for the target diseases.

The study identified drugs from many important classes, viz. D2 receptor antagonist, HMG-CoA

inhibitors, HIV reverse transcriptase and protease inhibitors, anticancer agents and folate inhibitors,

which can potentially interact with and inhibit the SARS-CoV-2 Mpro. This validated approach may help in

finding the urgently needed drugs for the SARS-CoV-2 pandemic with infinitesimal chances of failure.
1. Introduction

Coronaviruses (CoVs) are enveloped viruses belonging to the
Coronaviridae family and have single-stranded RNA.1 The CoVs
reported in literature are known to infect humans as well as
other mammals, but the severe acute respiratory syndrome CoV
(SARS-CoV) and Middle East respiratory syndrome (MERS-CoV)
from 2012 and 2020, respectively, are from zoonotic sources and
were reported to have high infection and mortality rates.2 These
belong to the beta CoV genus, which broadly includes both the
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–40275
SARS and MERS CoVs. The pandemic known as COVID-19 has
caused almost 33 million infections and more than one million
deaths as of 27 September 2020.3 The disease is now in a very
deadly and infectious situation which has caused 7 139 553;
5 730 184; 4 627 780; 1 122 241; 784 268; 782 695; 710 049;
693 556; 665 188; 664 799 and 481 141 cases in the countries
like the USA, India, Brazil, Russia, Columbia, Peru, Mexico,
Spain, South Africa, Argentina, and France, respectively.4 The
daily toll for infections is also high and is at peak till 20th May
2020 in these countries.

In these deadly conditions, the disease lacks approved
effective drugs, which has made this condition more serious
and critical when even an asymptomatic carrier of the virus
can infect >2 healthy individuals. The well-documented
approach of our group to rationally redene the usage of
existing drugs for an alternative use rather than the reported
repurposing of drugs is a reasonable way to resolve the time
constraints and clinical trial process of drug development for
this pandemic. The use of antiviral drugs like oseltamivir,
favinapir, ganciclovir–ritonavir, remdesivir, and lopinavir has
been clinically tested against COVID-19 disease. Chloroquine,
an antimalarial drug, has been recognized to be effective for
COVID-19 treatment.5–7 These are examples of the strategy on
a hit and trial basis. Based on these studies, several researches
have taken drug discovery to a new level using computational
methods to identify drug candidates for this lethal
This journal is © The Royal Society of Chemistry 2020
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Table 1 Results of pharmacophore runa

Hypo Features Rank Direct hit Partial hit Max t

01 ZZHH 75.397 1111111111 0000000000 4
02 ZZHH 72.787 1111111111 0000000000 4
03 ZZHH 72.473 1111111111 0000000000 4
04 ZZHH 71.472 1111111111 0000000000 4
05 ZZHH 70.998 1111111111 0000000000 4
06 ZZHH 69.619 1111111111 0000000000 4
07 ZZHH 69.251 1111111111 0000000000 4
08 ZZHH 67.687 1111111111 0000000000 4
09 ZZHH 64.695 1111111111 0000000000 4
10 ZZHH 64.693 1111111111 0000000000 4

a H, hydrogen bond acceptor; Z, hydrophobic group. Direct hit; all the
features of the hypothesis are mapped. Direct hit ¼ 1 means yes and
direct hit ¼ 0 is no. Partial hit; partial mapping of the hypothesis.
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pathogen.8–13 These targets include angiotensin-converting
enzyme 2 (ACE2), RNA-dependent RNA polymerase (RdRp),
spike proteins, and the main protease (Mpro) of the deadly
virus. These targets can be efficiently used for the identica-
tion of existing drugs or rational design of new chemical
entities.10,12,13 In our works since 2010, we have reported a well-
dened protocol based on computational repurposing for
different diseases like osteoporosis, diabetes, laria, malaria,
Alzheimer's disease, obesity, and many others through direct
and indirect drug design approaches.14–22

The main objective of our research in this manuscript is to
use a well-validated protocol to repurpose drugs through state-
of-the-art computational chemistry techniques using a phar-
macophore model based on common features of reported SARS-
CoV-2 inhibitors. This model has been validated and used in
virtual screening experiments to identify the top hits or drugs
that may inhibit SARS-CoV-2 main protease. These identied
drugs were further validated for selectivity of the target proteins
by molecular docking to nd a probable mechanistic pathway
for inhibition of the virus. These FDA-approved drugs may be
emergent drugs for the pandemic as the safety index and all
toxicity data are available, so this work fullls the urgent need
for leads for this deadly virus.
Fig. 1 Structures of training set compounds.

This journal is © The Royal Society of Chemistry 2020
2. Materials and methods
2.1 Common feature pharmacophore model

Based on our previous studies in the repositioning of drugs
through pharmacophore modeling, a well-dened protocol was
implemented as reported in the literature by our group.14–22
Partial hit ¼ 1 means yes and partial hit ¼ 0 means no.

RSC Adv., 2020, 10, 40264–40275 | 40265
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Here, medications used in the treatment of COVID-19 have been
compiled from literature studies. As quantitative data of the 3
log unit variation for the target is unavailable, we selected
HipHop, or common feature pharmacophore model or quali-
tative modeling, for the identication of compounds, as re-
ported by us in many previous reports. We built a common
feature pharmacophore HipHop model using ten structurally
diverse compounds with clinical activity in the disease (training
set, Fig. 1).
Fig. 2 (A) The representative pharmacophore model Hypo-1. (B) Mapp
Mapping of doxazosin on Hypo-1. (E) Mapping of cetylpyridinium on Hy

40266 | RSC Adv., 2020, 10, 40264–40275
2.2 Common feature pharmacophore generation

The pharmacophore generation protocol was performed using
the HipHop algorithm of Catalyst as employed in Discovery
Studio 2020 (DS 2020).23,24 All training set compounds were
drawn/built using ISIS Draw 2.5 and imported into DS 2020
Windows. The CHARMm force eld was applied to optimize the
training set compounds.25 The conformations of these
compounds were generated using the ‘diverse conformation
generation’ protocol of DS 2020 with default parameters (prin-
cipal value ¼ 2, maximum omit feature ¼ 0, interfeature
ing of lycorene on Hypo-1. (C) Mapping of trilorene on Hypo-1. (D)
po-1.

This journal is © The Royal Society of Chemistry 2020
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distance 2 �A). The most active compound was assigned a score
of 1 and moderately and less active compounds were assigned
a score of 0. The ‘feature mapping’ protocol was run to detect
common features in the training set. In this case, all the
compounds were considered highly active.
2.3 Pharmacophore-based virtual screening (PBVS)

The PBVS approach was used to identify potential hits for
COVID-19. The validated model of the pharmacophore (Hypo-1)
was used as a query to search for compounds in the Zinc, Asi-
nex, Drug Bank, Maybridge,26,27 and in-house virtual databases
using the ‘best exible search’ option in DS 2020. The resulting
hits were screened based on t values <2.5, followed by addi-
tional screening using physiochemical properties. In addition,
these hits (565) were subjected to visual inspection for proper
alignments with Hypo-1 and nally subjected to molecular
docking. Aer completing the virtual screening process, the 66
most potent hits were retrieved from these databases. Ten of
these top hits were selected based on their MolDock and rerank
scores for further study.
2.4 Molecular docking studies

Molecular docking was performed using the MolDock module
in Molegro Virtual Docker (MVD) soware.28 The scoring func-
tion of molecular docking in MolDock is based on piecewise
linear potentials (PLPs).29 PDB IDs 4YOI and 6LU7 (ref. 30 and
Table 2 The fit values of the test set of compounds. The reported compo
30 mM), moderately active ++ (30.1–50 mM), and least active + (50.1–15

Sr. no. Compound name Fit value

1 Mycophenoic acid 3.94703
2 Antimycin 3.83514
3 Mycophenolate 3.82501
4 Dihydroxy acetyl 3.7138
5 Salinomycin sod 3.63292
6 Monensin 3.48821
7 Doxazosin 2.99589
8 Chloropyramine 2.99589
9 Vanilomycin 2.98885
10 Berbamine 2.98486
11 Diperidon 2.98257
12 Pristimerin 2.97336
13 Desipramine 2.96494
14 Loperamide 2.9592
15 Oligomycin 2.95825
16 Papaverine 2.94479
17 Alprenolol 2.92827
18 Ticlopidine 2.89131
19 Harmine 2.88484
20 Terandine 2.81998
21 Conessine 2.64779
22 4-Hydroxy chalcone 2.27288
23 Phenazopyridine 2.25038
24 Phenyl mercuric acetate 1.99957
25 Pyrvinium pamoate 1.81371
26 Cetylpyridinium 1.68394

This journal is © The Royal Society of Chemistry 2020
31) have been reported as co-crystal structures of the Mpro; we
selected 6LU7 for this study. A re-ranking method was applied
to the highest-ranked poses to increase the accuracy of docking.
The search algorithm ‘MolDock SE’ was applied for this anal-
ysis, with a population size of 50 and a maximum number of
iterations of 1500 as parameters. Other parameters were kept as
defaults with the number of runs at 10. Since MVD relies on an
evolutionary algorithm, repeated docking runs do not result in
precisely the same poses and interactions. To address this
intrinsic arbitrariness, ten successive runs were performed and
the three best poses were used to visualize further interactions
as previously reported by us.19–22
3. Results and discussion
3.1 Pharmacophore modeling

Ten pharmacophore models (hypotheses) were generated from
the training set of compounds presented in Fig. 1 (ref. 32) with
rank scores ranging from 75.397 to 64.693 (Table 1). The
resulting ten hypotheses contained two common features, viz.
a two hydrogen bond acceptor-lipid (2H) and two hydrophobic
(Z) features. Hypo-1 (Fig. 2A) was chosen from these ten
hypotheses as it mapped all the features of the most active
molecule in the ten-compound training set, lycorene, which was
mapped with one hydrogen bond acceptor lipid (HABL) at the
1,3-dioxolane of the benzo[d][1,3]dioxole ring with one of the
oxygens. The other HABL function was mapped on the cyclohex-
unds were classified based on their EC50 values as most active +++ (0–
0 mM)

Predicted
scale Reported scale

Reported
EC50

+++ +++ 1.95
+++ +++ 1.65
+++ +++ 1.58
+++ +++ 1.71
+++ +++ 0.29
+++ +++ 3.81
+++ +++ 4.97
+++ +++ 1.79
+++ +++ 4.43
+++ +++ 1.48
+++ +++ 1.71
+++ +++ 1.99
+++ +++ 1.67
+++ +++ 1.86
+++ +++ 0.19
+++ +++ 1.61
+++ +++ 1.95
+++ +++ 1.41
+++ +++ 1.9
+++ +++ 0.29
+++ +++ 2.34
+++ +++ 1.52
+++ +++ 1.92
+++ +++ 2.17
+++ +++ 3.21
+++ +++ 4.31

RSC Adv., 2020, 10, 40264–40275 | 40267
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3-ene-1,2-diol one –OH. The aromatic ring of the benzo[d][1,3]
dioxole part served one hydrophobic function while the fused
pyrrolidine ring was mapped for the other hydrophobic func-
tions. The common feature pharmacophore model was used
because it is an important tool for extracting the important
features of training set compounds. The other parameter which
may be required for the quantitative hypotheses is the one log
unit difference in the most active and least active compounds.
In this dataset, with the HipHop module, a resulting pharma-
cophore has a good chance to map with all-inclusive features
Fig. 3 Mapping of test set compounds on Hypo-1: (A) vanilomycin, (B)

40268 | RSC Adv., 2020, 10, 40264–40275
and has further validity with test set compounds that are
excluded from the training set. All the features of the pharma-
cophore generation protocol of the module were kept at
defaults. The scores support the selection of Hypo-1 as the best
hypothesis represented in Table 1. The mapping of training set
compounds on the developed model is presented in Fig. 2B–E.

3.2 Pharmacophore validation

To avoid error in pharmacophore generation, as well as for
further application in the screening of libraries, we validated
carmafour, (C) cinanserin, (D) hydroxychloroquine and (E) shikonin.

This journal is © The Royal Society of Chemistry 2020
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Table 3 The predicted fit values and activity scales of the external test
set compounds. The reported compounds were classified based on
their EC50 as most active +++ (0–30 mM), moderately active ++ (30.1–
50 mM), and least active + (50.1–150 mM)

Compound name Fit value
Predicted
scale Reported scale EC50

Carmofur 3.07649 +++ +++ 1.82
Cinanserin 3.41556 +++ + 124.9
Disulram 2.76355 +++ +++ 9.35
Ebselen 1.85441 ++ +++ 0.67
HCQ 3.69414 +++ NA NA
PX12 2.36422 +++ +++ 21.32
Shikonin 3.73749 +++ +++ 15.75
TDZD 2.29467 +++ +++ 2.15
Tideglusib 2.30247 +++ +++ 1.5
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our model using the mapping of molecules which were not
included in the test set. The results from the test set prediction
are included as Table 2. Furthermore, we studied the mapping
in a recently published study for selective Mpro inhibitors along
with the compounds used in clinical settings for the treatment
of SARS-CoV-2. The results of this study conrmed the appli-
cability of this model to predict and differentiate active from
less active compounds. A total of 18 compounds was used in the
external dataset and the ligand pharmacophore mapping was
used to map these compounds. The mapping showed that
Hypo-1 predicted these compounds in accordance with their
reported activity as highly active, moderately active, and least
active (Table 2) and Hypo-1 also validated the external set of
compounds with good predictive values. The ligand pharma-
cophore mapping of the test set representative compounds is
presented in Fig. 3A–E. The molecules were predicted correctly
as highly active andmoderately active as per their reported EC50

values. The large macromolecular structure of vanilomycin
showed lower t values due to lesser mapping compared to the
structure of the molecule in Fig. 3A. The mappings of the
external test set of compounds, viz. carmafour, cinanserin,
hydroxychloroquine, and shikonin, are represented in Fig. 3B–
E, respectively. This study conrmed the applicability of the
model for pharmacophore-based virtual screening experiments
(PBVS) (Table 3).

3.3 Pharmacophore based virtual screening

Aer the triple validation, the pharmacophore model was
implemented as a query for PBVS experiments using the Skel-
lochem, FDA-approved Drug and Drugs from Natural Resources
databases. Additionally, the Across database was used to further
design the library for targeted synthesis as will be reported in
the synthesis part of our other manuscript. Our group has
documented the virtual screening protocol well in the past for
multiple targets essential to different diseases. The ligand
pharmacophore mapping protocol was used to screen these
databases with lters for the most active compounds, with a t
value range between 2.5–4. A total number of 100 known drug
molecules were prioritized from this screening and the top 66
based on their mapping were further studied in molecular
docking experiments. The preparations of the database were
carried out using the ‘prepare ligands’ protocol of DS 2020.

3.4 Molecular docking

3.4.1 Molecular docking of training set compounds. The
structure-based studies were carried out using Molegro Virtual
Docker 4.0, well-reported soware, and results from our group
have been published in our previous studies of various
targets.14–22 The docking protocol from our previous studies was
again validated using co-crystal ligand docking in the binding
site of the protein. The scores for standard co-crystal ligands for
the training set of compounds are included in Table 4 for
further comparison and prioritize the scores of drugs from the
virtual screening. The binding interactions of the training and
test sets, along with virtually identied compounds, were
studied to extensively validate our protocol. The template
This journal is © The Royal Society of Chemistry 2020
docking, or a structure-based pharmacophore, was also devel-
oped and used to study and screen the features of the co-crystal
ligand with targeted proteins, along with its binding scores, as
the internal standard for prioritization of leads and prediction
of binding affinities as compared to standard co-crystal ligands
for training set compounds (Table 4), test set compounds (Table
5) and external test set compounds (ESI Table 1†). The two
crystal structures of the important COVID-19 enzymes, viz. the
crystal structure of COVID-19 main protease (Mpro) in complex
with an inhibitor N3 (PDB ID 6LU7) and 3CLpro bound to non-
covalent inhibitor 1A (PDB ID 4YOI), were identied from the
literature and the recently reported 6LU7 was used for docking
purposes. The binding of these molecules was analyzed for the
binding site conserved residues of these proteins as reported
with co-crystal ligands in literature. Although we started our
work in December 2019 with PDB ID 4YOI, we selected 6LU7 for
this manuscript aer an internal comparison of the results from
4YOI which are not reported in this manuscript. The double
validation was desired for the targeted proteins to minimize the
error in the results. The binding site was assigned according to
the active site residues, viz. Phe140, Asn142, Gly143, Cys145,
His163, His164, Met165, Glu166, Gln189, and Thr190 for PDB
ID 6LU7.

The standard molecules used for development of the phar-
macophore model as well as in clinical practices were also
docked along with the internal co-crystal ligands to analyze the
binding affinity and probable effect on theMpro or 3CLpro using
6LU7. The binding interactions of these ligands may inuence
the future for these drugs as probable targets for protein crys-
tallographers. Our study explained very well the binding of
these drugs (MolDock scores), comparative binding to a stan-
dard ligand (similarity score), binding respective to a co-
complexed ligand (docking score), and veried scores through
this data (rerank score), along with the binding affinity
in kJ mol�1.

The docking run was carried out for all reported compounds
used for the development of the pharmacophore model. The
MolDock, rerank, docking, and similarity scores are presented
in Tables 5 and 6 for the compounds used in the
RSC Adv., 2020, 10, 40264–40275 | 40269
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Table 4 The docking scores of the training set compounds under study

Ligand MolDock score Rerank score Docking score Similarity score

Chloroquine �114.978 �92.5441 �261.472 �147.734
Cycloheximide �111.981 �95.7982 �245.775 �129.837
Emetine �122.442 �97.7131 �339.048 �217.275
Exalamide �101.31 �86.0816 �227.935 �127.459
Hycanthone �109.707 �95.6088 �290.382 �177.462
Lycorine �107.671 �75.0677 �266.956 �149.724
Promazin �97.0912 �81.0416 �245.361 �149.471
Propranalol �95.2749 �79.7205 �243.4 �148.829
Trilorene �129.096 �95.8643 �317.374 �188.474
Zoxazolamine �68.8333 �55.9818 �179.447 �111.572
6LU7 ligand �159.941 �114.863 �8.98507 �486.921

Table 5 Molecular docking scores of all test set compounds using template docking protocol based on similarity with reference ligand

Ligand MolDock score Rerank score Docking score Similarity score

4-Hydroxy chalcone �77.8585 �70.1986 �265.67 �188.48
Alprenolol �94.2214 �79.7208 �238.851 �143.365
Antimycin �117.878 �104.221 �337.716 �220.788
Berbamine �120.311 �98.79347 �345.907 �227.734
Phenyl mercuric acetate �68.8508 �58.4608 �184.388 �115.875
Cetylpyridinium �81.407 �63.7001 �252.532 �172.229
Chloropyramine �92.5222 �80.7619 �254.611 �163.322
Conessine �98.7959 �58.5235 �288.742 �192.76
Desipramine �86.5117 �72.4371 �238.397 �153.176
Dihydroxy acetyl �114.699 �43.4549 �342.943 �229.103
Diperidon �139.883 �116.888 �413.704 �275.333
Doxazosin �89.4616 �72.7456 �268.799 �180.266
Harmine �81.5181 �66.3686 �213.9 �131.439
Loperamide �87.8964 �53.1829 �353.971 �267.323
Monensin �137.415 �98.1262 �407.187 �270.843
Mycophenoic acid �111.679 �93.0382 �274.334 �164.1
Mycophenolate �134.681 �111.598 �397.7 �263.794
Oligomycin �74.3467 �25.4185 �324.684 �248.783
Papaverine �109.986 �86.4359 �283.187 �173.788
Phenazopyridine �77.551 �69.6718 �216.598 �139.639
Pristimerin �96.9969 �75.2007 �316.129 �217.741
Pyrvinium pamoate �151.909 �127.372 �346.018 �193.82
Salinomycin sod �153.401 �123.915 �494.644 �337.353
Terandine �104.198 �55.1371 �325.496 �222.293
Ticlopidine �89.0208 �75.621 �232.645 �144.404
Vanilomycin �38.4419 �11.707 �82.0148 �43.8819
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pharmacophore experiments and the virtual screening-
identied compounds. The most active compounds from the
dataset used in the pharmacophore modeling experiments,
lycorene (Fig. 4A) and hycanthon (Fig. 4B), showed hydrogen
bond interactions with conserved residues at the binding site of
Mpro with HBI with the amino acids Ser143, Gly144, Leu141,
His164, His165, and Cys145. The hycanthon showed additional
binding interactions with His164. Both of these compounds
showed hydrophobic interactions with the amino acids His163,
His164, Met165, Glu166, Gln189, and Thr190. The higher
binding scores of these molecules are due to their interactions
with important amino acids and their hydrophobic interactions
with amino acids. The observed lower activities of vanilomycin
40270 | RSC Adv., 2020, 10, 40264–40275
(Fig. 4C) compared to the other molecules may be due to the
large ring structure of the molecule and lower hydrogen bond
interactions of the drug with important amino acids. This
drug's activity may improve if the ring is broken due to
biotransformation, but that is not a matter of study in this
manuscript. The top 66 of the top 100 compounds from the
FDA-approved drug database were prioritized for docking
experiments using the t value lter (3–4) and were mapped on
the pharmacophore model. The top drugs from these 66 docked
poses are discussed in the following section.

3.4.2 Molecular docking of prioritized drugs. The top pre-
dicted compounds from the PBVS were docked in the protein
Mpro using the default parameters; the binding site dened in
This journal is © The Royal Society of Chemistry 2020
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Table 6 The molecular docking results of the virtual screening-based FDA-approved drugs prioritized molecules identified during the study

Sr no. Ligand MolDock score Rerank score Docking score Similarity score

1 Aspartame �129.954 �106.59 �274.806 �144.96
2 Fluvoxamine �135.771 �96.6365 �278.138 �139.263
3 Pantoprazole �133.092 �102.277 �331.781 �192.732
4 Torasemide �138.501 �111.807 �299.368 �151.745
5 Pipobroman �86.7665 �71.4506 �188.056 �101.898
6 Ranolazine �126.937 �103.559 �359.856 �233.799
7 Cabergoline �168.008 �123.317 �358.298 �188.338
8 Carmustine �86.0684 �67.0939 �163.787 �78.156
9 Ethambutol �95.7324 �74.5407 �171.837 �71.1444
10 Clobazam �92.2753 �64.4408 �253.209 �161.716
11 Meprobamate �89.8846 �70.1335 �183.89 �88.0827
12 Thiethylperazine �129.145 �105.519 �320.837 �193.746
13 Carisoprodol �116.049 �92.1891 �219.45 �97.3266
14 Sorafenib �142.531 �113.778 �380.394 �233.509
15 Darifenacin �54.5361 48.8406 �318.882 �262.529
16 Cinalukast �116.891 �62.911 �332.984 �204.711
17 Cisapride �141.037 �116.779 �383.177 �242.699
18 Imatinib �151.955 �126.045 �438.477 �286.422
19 Stavudine �96.4495 �82.0152 �219.296 �116.038
20 Pirenzepine �105.275 �75.9533 �302.71 �193.117
21 Loperamide �113.212 �48.633 �380.345 �268.168
22 Donepezil �119.174 �87.2512 �336.186 �219.146
23 Primaquine �103.71 �85.7877 �251.63 �146.001
24 Rabeprazole �116.278 �95.9976 �348.436 �232.992
25 Pioglitazone �122.649 �99.5867 �334.632 �207.822
26 Nefazodone �143.332 �112.682 �448.559 �305.528
27 Propafenone �127.166 �100.896 �325.772 �199.7
28 Domperidone �145.189 �98.4695 �369.321 �216.364
29 Acebutolol �129.353 �105.281 �261.847 �131.645
30 Levomethadyl acetate �127.156 �116.3751 �231.818 �175.635
31 Gembrozil �102.262 �84.5029 �234.93 �129.442
32 Oxybenzone �93.1873 �81.9793 �239.662 �143.627
33 Bupranolol �104.384 �84.311 �241.542 �138.347
34 Tosopam �120.390 �116.166 �288.161 �161.36
35 Oseltamivir �116.888 �90.6791 �269.786 �145.391
36 Niclosamide �106.634 �86.2728 �285.866 �180.079
37 Valsartan �146.678 �91.319 �343.665 �196.903
38 Bortezomib �120.396 �95.0133 �379.268 �258.813
39 Isoetharine �101.959 �79.664 �233.287 �126.583
40 Lovastatin �150.987 �119.2 �338.447 �185.958
41 Getinib �132.461 �109.42 �384.446 �253.236
42 Indomethacin �138.481 �106.98 �318.151 �179.726
43 Lansoprazole �116.967 �92.7688 �346.258 �230.186
44 Dipivefrin �145.967 �114.056 �287.587 �138.183
45 Droperidol �142.567 �114.334 �371.802 �225.464
46 Tolmetin �108.906 �86.7135 �257.899 �145.77
47 Bentiromide �138.671 �120.759 �403.212 �265.418
48 Labetalol �121.342 �98.8951 �322.866 �203.348
49 Amodiaquine �140.028 �112.717 �289.1 �150.6
50 Nicardipine �144.13 �105.635 �415.538 �267.425
51 Simvastatin �135.57 �98.3448 �326.099 �191.316
52 Trimethobenzamide �122.876 �101.48 �308.771 �187.42
53 Fluvastatin �151.559 �116.4 �349.643 �190.249
54 Capecitabine �127.478 �99.999 �302.545 �175.768
55 Cilostazol �111.214 �81.0146 �358.573 �243.96
56 Flecainide �148.612 �116.236 �346.253 �199.106
57 Metoclopramide �121.99 �95.5672 �255.64 �133.377
58 Ergonovine �129.265 �104.514 �282.181 �151.342
59 Bambuterol �153.331 �123.629 �290.998 �136.86
60 Alfuzosin �139.782 �115.967 �373.886 �235.767
61 Cinitapride �130.586 �111.053 �352.432 �222.269
62 Ibutilide �140.641 �97.0092 �279.257 �128.063
63 Acetophenazine �131.713 �106.403 �342.675 �206.539

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 40264–40275 | 40271
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Table 6 (Contd. )

Sr no. Ligand MolDock score Rerank score Docking score Similarity score

64 Olsalazine �144.487 �121.151 �294.586 �147.22
65 Nebivolol �101.377 �85.8583 �345.029 �239.789
66 Lucanthone �111.759 �91.616 �284.419 �169.83
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the docking of all compounds was used in the development of
the pharmacophore model. The scores from the docking
experiments of the FDA-approved drug list are presented in
Table 6. The top-scoring drug from this screening was caber-
goline, which showed a MolDock score of �168.008 and
a rerank score of �123.317. The cabergoline (Fig. 5A) showed
hydrogen bond interactions with amino acids at the binding
site, viz. Ser144, His163, Glu166, and Cys145. It also showed
hydrophobic interactions with His163, His164, Met165, Glu166,
Gln189, Thr190, and Glu192. The N-(ethylcarbamoyl)acetamide
and N,N-dimethylpropan-1-amine side chains showed hydro-
phobic interactions with these amino acids while the parent
ergoline nucleus with –NH functionality showed hydrogen bond
interactions and additional hydrophobic interactions with
amino acids like Phe140. The higher binding scores of this drug
are due to its higher hydrogen bond interactions and
Fig. 4 The molecular docking interactions of (A) lycorene, (B) hycantho

40272 | RSC Adv., 2020, 10, 40264–40275
hydrophobic interactions at the binding site of the target
proteins. Literature also conrms our ndings, as the caber-
goline molecule is comprised of a fused indoloquinoline
nucleus which has been previously identied as a possible
antiviral agent, such as the natural product ‘mapicine ketone’,
which may play an important role in inhibiting anti-SARS-CoV-
2.33–35

The next identied FDA approved drug from the database is
imatinib (Fig. 5B), which binds with the target protein with
a MolDock score of �151.955 and a rerank score of �126.045.
The drug showed a cascade of hydrogen bond interactions with
Leu141, Ser144, Cys145, His163, and Glu166. It forms good
hydrophobic contacts with amino acids Thr26, Phe140, Pro168,
Met165, Thr190, Gln189, and Asn142. The aromatic rings of the
imatinib form a buttery-like structure in the binding site for
hydrophobic interactions with amino acids. The
ne, (C) and (D) vanilomycin with target protein 6Lf.

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Molecular docking interactions of (A) cabergoline, (B) imatinib, (C) domperidone, (D) bambuterol and (E) fluvastatin.
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methylpiperazine ring also showed additional hydrophobic
interactions. This nding from our study is well supported from
the literature, as imatinib (4-[(4-methylpiperazin-1-yl)methyl]-N-
[4-methyl-3-[(4-pyridin-3-ylpyrimidin-2-yl)amino]phenyl]
benzamide) is very well reported for SARS-CoV inhibition with
an EC50 of 9.823 mM, which ultimately conrms the authenticity
of our research and the application of our discovered
compounds for SARS-CoV-2 inhibition.36

The next drug identied from screening was domperidone
(Fig. 5C) with a MolDock score of �145.189 and a rerank score
of�98.4695. The drug showed HBI with Leu141, Gly143, Ser144,
Cys145 and His163 and hydrophobic interactions with Thr26,
Thr24, Thr25, Met165, and Phe140. The higher scores are
representative of the good binding affinity of this drug for Mpro.
The benzimidazole nucleus has been documented in literature
for antiviral activity against hepatitis C and non-nucleoside
reverse transcriptase inhibitors. The chemical structure and
our results well support the ndings that the drug could be
effective in the inhibition of SARS-CoV-2.37–42
This journal is © The Royal Society of Chemistry 2020
Fluvastatin, an HMG-CoA inhibitor, was the next molecule to
show higher binding scores (Fig. 5E), with MolDock and rerank
scores of �151.559 and �116.4, respectively. The drug also
showed similar binding interactions with the amino acids
present at the active site along with hydrophobic and pi–pi
stacking interactions. The statin class of drugs has also been
documented by randomized routes in patients with hepatitis-3;
this supports our analysis and raises the probability of an anti-
SARS-CoV-2 receptor as per our predictions.43,44

The last drug from our top identied drugs is bambuterol
(Fig. 5D) from the PBVS, which also showed higher MolDock
and rerank scores of �153.331 and �123.629, respectively. The
drug showed HBI with amino acids Leu141, Gly143, Ser144,
Cys145, Glu166, and His164. It also showed pi–pi stacking and
hydrophobic interactions with Leu27, Phe140, His164, Met165,
and Gln189. Although the bambuterol nucleus has not yet been
reported for antiviral functions, with regard to our observations
and literature, we hope that the drug might have a strong
inhibitory effect on SARS-CoV-2.
RSC Adv., 2020, 10, 40264–40275 | 40273
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4. Conclusion

In the current situation of SARS-CoV-2 infection, multiple trials
are ongoing on different available drugs, such as antivirals (HIV
protease inhibitors). The selection of these drugs is based on
a hit and trial basis and no justication is used for the repur-
posing of these drugs. This approach may be effective initially,
but may trigger problems later in relapse or the resistance of
viruses to concurrent infections. The validated in silico protocol
was therefore established in this study on the basis of a dataset
of drugs with known inhibitory potentials for the target path-
ogen in the micromolar region. The extracted features were
used to identify the novel use of existing drugs from the FDA-
approved drug database. The study resulted in 66 drugs which
were used for various targets with strong binding affinity and
interactions at the binding site of the target protein. The top ve
identied drugs with higher docking scores and t values, viz.
a MolDock score of �168.008 and rerank scores of �123.317 to
145.189 to�98.46, may be promising compounds. The top leads
from this data, D2 receptor agonist cabergoline (fused indolo-
quinoline nucleus), tyrosine kinase inhibitor imatinib (4-[(4-
methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-pyridin-3-
ylpyrimidin-2-yl)amino]phenyl]benzamide), D2 receptor antag-
onist domperidone (benzimidazole nucleus), HMG-CoA inhib-
itor uvastatin (E,3R,5S)-7-[3-(4-uorophenyl)-1-propan-2-
ylindol-2-yl]-3,5-dihydroxyhept-6-enoic acid), and beta 2 ade-
noreceptor agonist bambuterol ([3-[2-(tert-butylamino)-1-
hydroxyethyl]-5-(dimethylcarbamoyloxy)phenyl]N,N-dime-
thylcarbamate), showed the highest potential to inhibit the
virus through Mpro. Such top-scoring compounds have a high
probability of inhibitingMpro. Top identied drugs in our study,
such as imatinib, have already been documented for SARS-CoV
inhibition at 9.823 mM, which further validates our analysis and
results and improves the probability of drug repurposing, vali-
dating our procedure.
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