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Chemical grafting of cholesterol on monomer and
PDMMLA polymers, a step towards the
development of new polymers for biomedical
applications

Elnaz Gholizadeh,t? Rima Belibel,® Thomas Bachelart,® Chérifa Bounadji®
and Christel Barbaud  *2

Racemic a,a,B-trisubstituted B-lactones are the monomer units of poly((R,S)-3,3-dimethylmalic acid)
(PDMMLA) derivatives, new biopolyesters showing great potential for biomedical applications. Using
different groups during the synthesis of these B-lactones allows a tailored synthesis of PDMMLA
copolymers with adjustable hydrophilic/phobic ratio. The degradation kinetics of the employed material
is one of the most important criteria in the development of bioresorbable implants. The degradation time
of PDMMLA derivatives can be controlled using different B-lactones of different hydrophilicity levels
during the polymerization stage. Furthermore, PDMMLA has chemically available groups on its side chain
allowing to graft functional groups on the polymer via covalent bonds. In this work, following a Steglich
esterification protocol, the chemical grafting of cholesterol was carried out on a PDMMLA monomer
derived B-lactone as well as on homopolymer PDMMLA-H, and copolymer PDMMLAH40-co-Hexgo
(PDMMLA 40/60). Nuclear magnetic resonance (NMR) analyses of the products confirm and quantify the
grafting ratio. 100% of cholesterol grafting has been realized on the homopolymer PDMMLA-H giving
PDMMLA-Chol, and 10% on the copolymer PDMMLA 40/60, giving PDMMLAHzq-ter-Cholyg-ter-Hexgo
(PDMMLA-Chol 30/10/60) as wished. Fourier-transform infrared (FT-IR) spectra, elemental analysis on
the B-lactones and thermogravimetric analyses on the polymers also confirm the chemical modification

rsc.li/rsc-advances of the products.

Introduction

Racemic a,a,B-trisubstituted B-lactones are synthetic molecules
(Scheme 1), serving as monomers in the synthesis of biode-
gradable  polyesters:  poly((R,S)-3,3-dimethylmalic  acid)
PDMMLA derivatives. These are new statistical biopolyesters,
studied for their interesting properties to serve in medical
treatments. The main aim in studying PDMMLA derivatives is to
develop a polymer for cardiovascular metallic stent coating.
Previous works proved the great potential of these polymers for
this application in terms of mechanical properties,”* degrada-
tion kinetics,® and cell response.*

PDMMLA derivatives are synthesized through an anionic
ring opening polymerization (ROP) of the B-lactones® (Scheme
2). The use of different groups in the synthesis of the mono-
mers, gives different hydrophilicity levels to the synthesized
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polymers. The increase in benzylic B-lactone [1] (the benzylic
group is hydrolyzed into a carboxylic acid later) increases the
hydrophilicity of the final polymer, which changes its degra-
dation kinetics. The ability to control the degradation time of
this biopolymer is an advantage compared to currently used
biopolymers.®

Previous work has shown that the degradation products of
PDMMLA are non-toxic and bio-assimilable.? In addition, the
presence of available carboxylic acid groups on the side chain of
PDMMLA makes the covalent grafting of active drugs possible,
which is promising regarding the controlled release of the drug
in order to limit an intra-stent restenosis after implantation.

In order to prove the possibility and efficacy of the chemical
grafting, we first started with the grafting of cholesterol (Chol)
on 4-carboxyl-3,3-dimethyl-2-oxetanone (acidic B-lactone) [3],
synthesized here for the first time with the catalytic hydro-
genolysis of the benzylic B-lactone [1]. We realized the grafting
reaction following the Steglich esterification protocol. Choles-
terol is not an active drug, but a model molecule used in this
work, only to prove the feasibility of the grafting. Its simple
structure compared to that of real drugs allows easier analysis of
the obtained data. Furthermore, cholesterol possesses only one

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Synthetic pathway of the a,0,B-lactones: 4-benzyloxycarbonyl-3,3-dimethyl-2-oxetanone (benzylic B-lactone) [1] 4-hexylox-

ycarbonyl-3,3-dimethyl-2-oxetanone (hexylic B-lactone) [2].

hydroxyl group, which makes evident that the reaction will take
place involving this very group”™ to give 4-
cholesteryloxycarbonyl-3,3-dimethyl-2-oxetanone (cholesterolic
B-lactone) [4] (Scheme 3).

Steglich esterification is used to form an ester bond between
a carboxylic acid and a hydroxyl (alcohol) group. N,N'-dicyclo-
hexylcarbodiimide (DCC) activates the carboxyl group, forming
an O-acylisourea intermediate.” The esterification of the
carboxylic acid is improved by addition of a catalytic amount of
4-dimethylaminopyridine (DMAP), which leads to a more
effective reaction.'®"" In our case, the esterification takes place
involving the carboxylic acid group of the monomer and/or the
polymer and the available hydroxyl group of cholesterol.

Following the same protocol, we realized the grafting on
PDMMLA polymers. In order to determine the maximal grafting
percentage, the reaction has been carried out on the 100%
hydrophilic homopolyester, PDMMLA-H (PDMMLA 100/0);
then, on the 40% hydrophilic copolymer, PDMMLAH 4o-co-
Hexgo (PDMMLA 40/60) in order to obtain the theoretical
terpolymer PDMMLAH ;y-ter-Cholo-ter-Hexso (PDMMLA 10/30/
60).

A study on the degradation kinetics of a series of PDMMLA
derivatives showed that the copolymer with 30% of hydrophilic
groups (PDMMLA 30/70) has the fastest degradation kinetics in
a 6 months’ time interval.® In order to accelerate this process,

1) PhCO, NEt,
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\®,

2)H,, PdIC
(o]

we synthesized a more hydrophilic copolymer, PDMMLA 40/60,
which degrades even faster in order to prevent the post-
implantation complications due to the presence of the poly-
mer. On the other hand, our team has proved a good cell
behavior on the PDMMLA 30/70.* By grafting 10% of an active
agent, we aim to conserve 30% of hydrophilicity as in the case of
PDMMLA 30/70, and accelerate the degradation of the
remaining polymer after the complete release of the active
agent.

'H NMR technique was used to confirm the reaction and the
grafting ratio. FT-IR spectra, elemental analysis on the pB-
lactones and thermogravimetric analyses on the polymers also
confirm the chemical modification of the products.

Results and discussion

Chemical grafting of cholesterol on the p-lactone and
PDMMLASs was carried out via Steglich esterification. "H anal-
ysis of the products confirms the reaction via the modification
of chemical shifts of the significant groups. Fig. 1 shows the 'H
NMR spectra of cholesterol, acidic B-lactone [3], and choles-
terolic B-lactone [4].

Signals at 3.55 ppm (Fig. 1a) and 4.67 ppm (Fig. 1b) corre-
spond to indicated protons on cholesterol and the fB-lactone [3].
Changes in chemical shifts of these groups integrating for 1H

COOH o COOHex O

Scheme 2 Synthesis of PDMMLA polymers through a ROP of the B-lactones. The final copolymer contains carboxylic acid groups (~COOH) and

hexylic ester groups (-COOHex).
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Scheme 3 Synthesis of acidic B-lactone [3], and cholesterolic B-lactone [4].

each show that a chemical modification has taken place
between these molecules with 100% conversion efficiency
(Fig. 1c).

Regarding the polymers, chemical shift changes are different
from the monomer despite similar electronic effects. This can be
explained by the difference in mobility of the molecules. Indeed,
the polymer chain is more flexible and mobile than the planar and
rigid structure of the B-lactone. In the case of polymers, integral
values of the peaks allow to calculate the grafting percentage.

For PDMMLA-Chol, one can observe 100% of cholesterol
grafting since the integral values for the peaks at 3.40 ppm (H;
on cholesterol) and 5.23 ppm (Hy, on the polymer) are 1.04 and
1.05 respectively. Regarding the terpolymer, calculations using
the integral values of the peaks at 3.45 ppm (H; integrating for
0.09H) and 5.28 ppm (H, and H, integrating for 1.11H), give
10% of grafted cholesterol as wanted.

FT-IR analysis of the products before and after cholesterol
grafting confirm also the esterification. With the B-lactone for
example, the -OH stretching band of cholesterol at 3450 cm™*
disappears completely when grafted, indicating that the hydroxyl
group was transformed to an ester. Furthermore, the absorption
occurring at 1222 em™* corresponds to the C-O stretching of the
new ester bond (Fig. 2). Similar results were observed with the
polymers, confirming the esterification in all cases.

Elemental analysis of a molecule gives information about its
chemical composition. Calculating the molar percentage of
each present element in the molecule allows to confirm the

expected composition of the sample. Indeed, experimental
values obtained in the case of new cholesterolic B-lactone give
coherent results with calculated theoretical values (Cy, =
76.90%, Cexp = 76/32% and Hy, = 10.21%, Hey = 10.43%),
showing that the expected composition is obtained and the
esterification has taken place successfully.

TGA measurements of a polymer give information about the
thermal stability of the polymer and its degradation tempera-
ture Ty4."> From the determined values of Ty, we can thus define
the maximum temperature lower than the T4 to carry out the
DSC analysis of the copolymers without degrading them. DSC
technique provides information about the thermal properties of
a polymer, mainly the glass transition temperature T, which
shows structural changes in the backbone and melting
temperature Tp,,."*** Fig. 3 and 4 show the TGA and DSC ther-
mograms of the grafted polymers respectively. Table 1 gathers
the values obtained by TGA and DSC measurements.

Grafting cholesterol on the acidic B-lactone has increased its
T, from 48 to 160 °C. Regarding the polymers, they all show a Ty
above 150 °C. High T4 value facilitates manipulation under
heating conditions if necessary, without thermal degradation of
the polymer. The increase of T, in all cases indicates an addition
of rigidity to the structure of the polymers. A significant increase
is observed for the homopolymer (from 69.9 to 106.6 °C) since
there is 100% of grafting. As for the terpolymer, the T, increase
is slight and less important (from 23.7 °C to 25.7 °C) since there
is only 10% of grafted cholesterol.
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Fig. 1 'H NMR spectra of: (a) cholesterol, (b) acidic B-lactone [3], (c) cholesterolic B-lactone [4] in CDCls, 400 MHz.
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Experimental
Materials and methods

Cholesterol was purchased from Sigma Aldrich Chemical Co. All
other chemicals were purchased from Alfa Aesar chemical Co
and employed as received.

Anhydrous tetrahydrofuran (THF) was distilled on sodium-
benzophenone. In all other cases, the commercially available
reagent-grade solvents were employed without purification. All
reactions with anhydrous organic solvents were performed
under nitrogen atmosphere. All glass apparatuses were kept one
night in a drying-oven at 100 °C.

Thin Layer Chromatography (TLC) was performed using plates
coated with Merck silica gel 60 Fi,s, of 0.25 mm thickness. The
TLC plates were first revealed under UV light (254 nm wavelength)
then with p-anisaldehyde stain containing absolute ethanol (93
mL), p-anisaldehyde (2.5 mL), concentrated sulfuric acid (3.5 mL)
and concentrated acetic acid (1 mL). Flash chromatography (FC)
was carried out using silica gel (C-C 35-70 um, 60 A).

Nuclear magnetic resonance: 'H and "*C NMR spectra were
recorded by a BRUKER AM-400 MHz spectrometer, using CDCl;
as solvent. Chemical shifts (6) are given in ppm.

Infrared: FT-IR spectra were recorded on AVATAR 370 FT-IR
Thermo Nicolet OMNI-sampler ATR Smart Accessory (Ge,
DTGS). Absorption bands are given in cm™".

Melting point of the solid compound was determined using
a Stuart SMP11 melting point apparatus.

Thermogravimetric analysis (TGA) measurements of the
polymers were registered using a TGA Q50 analyzer. Samples
were heated from 10 °C to 500 °C with a heating rate of
10°C min~" under N, atmosphere.

Glass transition temperature (7y) of the samples was measures
using differential scanning calorimetry (DSC) technique on a DSC
Q2000 analyzer. Polymers were put in the furnace and heated from
—25 °C to 160 °C (the maximal temperature was adjusted for each
sample according to the T, value obtained from the TGA experi-
ment in the aim to avoid degrading the copolymer during the first
run), cooled down to —25 °C, and reheated in order to realize the
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Fig.2 FT-IR spectra of: (a) cholesterol, (b) cholesterolic B-lactone [4],
(c) acidic B-lactone [3].
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second heating cycle. The heating rate was set to 10°C min~* and
the T, value was collected from the inclination point on the second
heating curve.

Size exclusion chromatography (SEC) was realized at room
temperature for the determination of absolute molecular
weights of the polymers. A high performance size exclusion
chromatography (HPSEC) was coupled to a multi-angle laser
light scattering detector (MALLS), a viscosimeter and a differ-
ential refractive index (dRI) detector. THF was used as the
carrier phase and was filtered through a 0.1 pm filter unit
(Millipore, Billerica, USA), It was degassed (DGU-20 A3R Shi-
madzu, Kyoto Japan) and eluted at a 0.5 mL min ' flow rate
(LC10Ai Shimadzu, Kyoto Japan). 100 pL of a 0.2 pm-filtered
sample solution (C = 10 mg mL™') were injected with an
automatic injector (SIL-20A HT Shimadzu, Kyoto Japan). The
column packing was a divinylbenzene gel. The MALLS
photometer, a miniDawn TREOS from Wyatt Technology Inc.
(Sanata Barbara, CA, USA) was provided with a fused silica cell
and a Ga-As laser (A = 665.8 nm). The whole collected data:
light scattering (LS), dRI were analyzed using the Astra v6.0.6
software package. Molar masses were obtained with a Zimm
order 1 method. The concentration of each eluted fraction was
determined with dRI (RID10A Shimadzu, Kyoto Japan) accord-
ing to the measured values of dn/dc (0.05 mL g~ ').*®

B-lactone synthesis

As shown in the Scheme 1, a,a,B-trisubstituted B-lactones with
benzylic ester and hexylic ester groups were prepared in five
steps from the precursor diethyl oxalpropionate, following the
protocols described in the literature.****
4-carboxyl-3,3-dimethyl-2-oxetanone [3] (Fig. 5a). This
product is obtained by the catalytic hydrogenolysis of the
benzylic B-lactone [1]. Benzylic B-lactone [1] (500 mg, 2.13
mmol) was dissolved in 20 mL of acetone. Pd/charcoal (50 mg,
10% of total mass) was then added. The air in the flask was
vacuumed and replaced with H, gas. The reaction mixture was
stirred for 24 h at room temperature and filtered through a 0.2
um PTFE membrane. After evaporating the solvent, the final
product (acidic B-lactone) [3] was obtained as a white powder,
with a yield of 94%. Rf = 0.60. T,,, = 48 °C. *H NMR, 400 MHz,

A
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Fig. 3 TGA curves of PDMMLA-Chol, and PDMMLA-Chol 30/10/60.
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Table1l Melting point of the B-lactones and thermal analysis results of
the polymers before and after cholesterol grafting

Ty (C) TO(C) T (C)
Acidic B-lactone — — 48
Cholesterolic B-lactone — — 160
PDMMLA-H Undetermined 69.9 —
PDMMLA-Chol 163.2 106.6 —
PDMMLA 40/60 198.1 23.7 —
PDMMLA-Chol 30/10/ 178.1 25.7 —

60

% Determined by DSC at second heating.

(CDCl;) 6y (ppm): 1.30 (s, 3H, H.), 1.51 (s, 3H, Hy), 4.67 (s, 1H,
Hg). "*C NMR, 100 MHz, (CDCl;) ¢ (ppm): 17.52, 21.90 (C, Cy),
58.50 (C,), 78.10 (Cq), 168.35, 17.97 (Cy, C,). Elemental analysis
for C¢HgO, calculated theoretically: C: 50.00, H: 5.62; obtained
experimentally, C: 49.86, H: 6.41.

Cholesterolic B-lactone [4] (Fig. 5b). Acidic B-lactone [3]
(100 mg, 0.69 mmol, 1 eq.), cholesterol (267 mg, 0.69 mmol, 1
eq.), and DMAP (48 mg, 0.39 mmol 10% of the total mass) were
placed in a round-bottom flask under nitrogen atmosphere and
dissolved in 70 mL of freshly distilled THF at 0 °C. DCC (150 mg,
0.69 mmol, 1 eq.), was separately dissolved in anhydrous THF
and added to the previous mixture. After 15 minutes, the reac-
tion medium was brought to room temperature and stirred for
48 h. The final product was purified by flash chromatography
using the eluent cyclohexane/ethyl-acetate (8/2). A white solid
was obtained with a yield of 49%. Ry = 0.85. T, = 160 °C. 'H
NMR, 400 MHz, (CDCly) 6y (ppm): 0.63 (s, 1H, H;g), 0.88 (dd,
6H, H,, H,;), 0.93 (d, 3H, H,;), 0.98 (m, 1H, H,), 1-1.62
(aliphatics Hy, H,, Hg, Hy1—H15, Hyg, Hpp—Hys), 1.03 (s, 3H, Hyg),
1.24 (s, 1H, H,), 1.51 (s, 1H, Hy), 1.85 (m, 2H, H>), 2.01 (m, 2H,
Hi,), 2.28 (m, 2H, H,), 4.52 (s, 1H, Hy), 4.74 (m, 1H, H,), 5.37 (d,
1H, Hg). >C NMR, 100 MHz, (CDCl;): dc (ppm): 11.81 (Cyg),
17.54 (Ce), 18.45 (Cs1), 19.42 (C1g), 21.09 (C41), 22.07 (Cy), 22.58
(Cay), 22.84 (Cyg), 23.84 (Cy5), 24.31 (Cy3), 28.03 (Cy), 28.25 (Cys),
31.66 (C-), 31.90 (Cg), 35.80 (C1), 36.20 (Cyy), 36.51 (C,y), 37.26
(C4), 39.53 (C12), 39.78 (Caa), 42.30 (Cy3), 42.32 (Cy), 50.13 (Cy),
56.11 (Cy4), 57.72 (C,), 56.65 (C;7), 71.81 (C;), 76.06 (Cq), 121.74
(Cs), 140.76 (Cs), 166.74, 172.96 (Cp, Cg). Elemental analysis for
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C33H;5,0, calculated theoretically: C: 76.90, H, 10.20; obtained
experimentally: C: 76.32, H: 10.43.

Polymer synthesis

The synthesis of the homopolymer™ and the copolymer® was
realized as described in the literature, using the p-lactones [1]
and [2] as monomers, and tetraethyl-ammonium benzoate
(Et,N" PhCOO™) as initiator. A monomer/initiator ratio (M/I) of
5 x 10% was applied for all polymers.

Copolymer PDMMLA 40/60 (Fig. 5c). Copolymer PDMMLA
40/60 (Fig. 5¢) was prepared for the first time. Benzylic -lactone
[1] (1.1 g, 4.67 mmol, 0.4 eq.) and (hexylic B-lactone) [2] (1.6 g,
7.01 mmol, 0.6 eq.) were dissolved in 100 mL of freshly distilled
THEF. The lactone solution was then added to a round bottom
flask containing the initiator Et;N" PhCOO~ (14.64 mg,
0.058 mmol, 5 x 10~* eq.) under nitrogen atmosphere. After
confirmation of the polymerization by FT-IR, 2 to 4 drops of
acetic acid were added. The formed polymer was isolated by
precipitation in ethanol. A catalytic hydrogenolysis using Pd/C
(1.1 g) and H, gas was then carried out on the copolymer in
order to remove the benzylic groups. PDMMLA 40/60 was thus
obtained. Yield: 96%; M, = 29.630 ¢ mol '; M,, = 29.640 g
mol '; P = 1.000. "H NMR, 400 MHz, (CDCl;) é (ppm): 0.81 (s,
3H, Hy), 1.22 (s, 12H, Hg, He, Hy, Hj, Hj), 1.54 (s, 2H, Hy), 4.06 (s,
2H, Hy), 5.26 (s, 1H, Hy). '>C NMR, 100 MHz, (CDCL;) ¢ (ppm):
13.99 (Cy), 22.49 (Cy, Ce), 26.31 (Cy), 32.22 (C;, G, Ck), 45.98 (C.),
66.28 (Cy), 77.14 (Cy), 168.26 (C,), 173.76 (Cq).

Cholesterolic homopolymer [PDMMLA-Chol] (Fig. 5d).
Cholesterol was grafted to the homopolymer following the same
protocol as for the product [4], using the following quantities of
reactants: PDMMLA-H (40 mg, 0.27 mmol, 1 eq.), cholesterol
(104 mg, 0.27 mmol, 1 eq.), DMAP (20 mg, 0.16 mmol, 10% of
the total mass) and DCC (56 mg, 0.27 mmol, 1 eq.) in 70 mL of
anhydrous THF. The mixture was stirred under nitrogen
atmosphere for 48 h at room temperature. After the reaction,
THF was eliminated. The product was then dissolved in a little
amount of chloroform and purified by precipitation in cyclo-
hexane. PDMMLA-Chol is obtained as a white powder with
ayield of 46%. "H NMR, 400 MHz, (CDCl;) 6y (ppm): 0.68 (s, 3H,
Hys), 0,85 (d, 3H, Hy), 0.97 (d, 3.05H, H,,), 0.93 (d, 3.02H, H,,),
0.98 (m, 3H, Hy,), 1-2.28 (35H, aliphatic H;-H,, H,~Ho, Hy;-
Hy, Hao, Hyp—H,s, H, He), 3.40 (m, 1.04H, H;), 5.23 (s, 1.05H,
Hy), 5.37 (d, 1.04H, Hg). *C NMR, 100 MHz, (CDCL,): é¢ (ppm):

-0.151 b)
g 5
g -0:207 25.7°C
2
k)
[
% -0.251
[}
T

0.30 :

50 25 0 25 50 75 100 125 150

Temperature (°C)

Fig. 4 DSC curves of (a) PDMMLA-Chol, (b) PDMMLA-Chol 30/10/60, zoomed in on the inclination point of the second heating curve.
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Fig. 5 Chemical structures of the synthesized molecules; (a) acidic B-lactone [3], (b) cholesterolic B-lactone [4], (c) PDMMLA 40/60, (d)

PDMMLA-Chol, (e) PDMMLA-Chol 30/10/60.

11.94 (Cyg), 18.86 (Cy1), 19.47 (Cyg), 18.90 (C.), 21.11 (Cy4), 22.53
(Cr), 22.61 (Cy7), 22.90 (Cyg), 23.86 (Cy5), 24.32 (C,3), 28.07 (Cy6),
28.30 (C,s5), 31.57(C5), 31.86 (Cg), 35.84 (Cyo), 36.17 (Cyp), 36.48
(Ca2), 37.28 (Cy), 39.55 (C1z), Oc 39.81 (Cay), 42.28 (Cy3), 42.40
(C4), 45.16 (C.), 50.17 (Cs), 56.90 (C14), 58.32 (C15), 72.14 (Cj),
76.12 (Cp), 121.85 (Cq), 140.76 (Cs), 167.98 (C,), 173.20 (Cq).

Cholesterolic terpolymer [PDMMLA-Chol 10/30/60] (Fig. 5e).
Same protocol was employed using the following quantities of
reactants: PDMMLA 40/60 (100 mg, 0.43 mmol, 1 eq.), cholesterol
(16.69 mg, 0.043 mmol, 0.1 eq.), DMAP (12.61 mg, 0.10 mmol, 10%
of the total mass), and DCC (8.90 mg, 0.043 mmol, 0.1 eq.). After
precipitation in cyclohexane, PDMMLA 10/30/60 was obtained as
a white powder with a yield of 38%. "H NMR, 400 MHz, (CDCl;) 0y
(ppm): 0.66 (s, 0.27H, Hyg), 0.83 (m, 6.19H, Hye, H,,, Hy), 0.94 (d,
0.26H, Hy,), 1.05 (m, 0.25H, Hy), 1.1-1.50 (30.09H, aliphatic Hy, H,,
HS, H,,-H,7, Hag, Hyo—Hs, He, Hy, Hy, H;, Hy), 1.54 (s, 2.56H, Hy),
1.88 (m, 0.15H, H), 1.92 (m, 0.10H, Hy,), 2.20 (m, 0.19H, H,), 3.45
(m, 0.09H, Hy), 4.05 (m, 2.03H, Hy), 5.28 (d, 1.11H, He, Hy). °C
NMR, 100 MHz, (CDCly): 6¢ (ppm): 11.87 (Cy), 13.98 (C)), 18.72 (Cy),
19.40 (Cx1), 19.45 (C19), 21.11 (Cyy), 22.9 (Ce), 22.56 (Cy7), 22.88 (Cse),
23.81 (Cy5), 24.36 (Cp3), 25.40 (C;), 28.10 (Cy6), 28.24 (C,5), 28.39 (Cy),
29.72 (G, 30.32 (Cy), 31.31 (C5), 31.93 (Cg), 35.78 (C10), 36.19 (Cao),
36.53 (Czz), 37.23 (C1), 39.52 (Cy2), 39.80 (Cy4), 42.19 (Cy3), 42.37 (Ca),
45.20 (C,), 50.09 (Co), 56.14 (C14), 59.76 (C15), 65.91 (Cy), 72.06 (C3),
76.06 (Cp), 121.76 (Cg), 140.71 (Cs), 167.73 (Cy), 173.12 (Cy).

Conclusion

The purpose of this work was to study the possibility and efficiency
of grafting functional groups on the chemically modifiable side
chain of PDMMLA polymers. This grafting can be carried out on

This journal is © The Royal Society of Chemistry 2020

PDMMLAs with different functional groups and drugs having
a hydroxyl, amine or sulfur function for various biomedical
applications. For this reason, chemical grafting study on
PDMMLAs was carried out with cholesterol having a simple
chemical structure and only one functional group (-OH). A B-
lactone derived from the monomer units of PDMMLA and poly-
mers having 100% and 40% —-COOH groups on their respective
side chains (PDMMLA-H and PDMMLA 40/60, respectively) were
used in this work. An ester bond was formed between the
carboxylic acid group of the monomer/polymer and the hydroxyl
group of the cholesterol following a Steglich esterification. NMR
analysis allowed to confirm and quantify the grafting percentage,
which prove the efficiency of the practiced grafting procedure
(100% concordance with theoretical grafting percentage). "H NMR
and FT-IR spectra show evident results confirming the grafting.
TGA and DSC measurements show also the modification brought
to the polymers due to the addition of the cholesterol to the basic
structure of each polymer. Increases in glass transition tempera-
ture are a good indication to the addition of rigidity to the poly-
mers' structure.

PDMMILA is a biocompatible and biodegradable polymer,
developed in our team for biomedical applications. These
experiments allowed to confirm the possibility of covalent
grafting on PDMMLA derivatives (homopolymer or copolymer).
Future works will be oriented to grafting a veritable active drugs
on these polymers in order to improve healing conditions in
medical intervention cases.
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