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tion based on the kinetic
variations of AgNP spectrum†

Masoud Shariati-Rad *ab and Yalda Mozaffaria

The assessment of water quality and its classification have considerable importance on public health. This

requires monitoring of a wide range of physical, chemical and biological parameters. Here, an array of

sensors composed of absorbances in different wavelengths in a kinetic process was used for

classification. The data were obtained in the kinetic absorbance variations of silver nanoparticles (AgNPs)

in the presence of different mineral waters. Spectral variations with time for each water sample were

vectorized, and the matrix composed of these vectors was analyzed using principal component analysis

(PCA) and hierarchical cluster analysis (HCA) as unsupervised clustering methods. The distinct clusters of

nine different water samples were obtained using PCA and clustering by HCA resulted in an error rate of

only 14.8%, which corresponds to misclassification of 4 water samples out of 27. The ability of the

method for the discrimination of water samples using AgNP as the sole reagent can be attributed to the

high dimensionality of data and the influence of the chemical environment in each water sample on the

absorbance variations of AgNPs.
1. Introduction

In the water industry, the discrimination of a large number of
different mineral waters is necessary. Moreover, counterfeit
mineral waters should be distinguished because of the inu-
ence on human health. Marketing the mineral waters without
any license is one of the cases that may occur. Therefore, dis-
tinguishing between different waters and the elucidation of
adulteration is very important. Water from different areas has
different components because of different geochemical envi-
ronments. A mineral water obtained from a given spring has
unique properties, which can be used to differentiate between
different waters.

The differentiating of different water samples has been
performed using electrochemical methods.1–8 The basis for
these methods is the analysis of waters for different ion species.
For these cases, the strategy for differentiating relies on using
an array of sensors (electrodes) that are non-specic, which are
selective for chemical species but can differently respond to
a group of related chemical species.9 In electronic tongues or
noses, different electrodes of different types10–15 are employed.
The preparation of thick lm potentiometric electrodes has
been used in the discrimination of water types.16 Though elec-
tronic tongues using the potentiometric methods are based on
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simply measuring the potential between two electrodes, the
preparation of several electrodes is expensive.

In another approach, species in the water samples can be
determined by methods other than electrochemistry and used
to cluster water samples. These include ICP-MS, atomic
absorption spectrometry and spectrophotometry.17–23 Due to the
large number of determinations required, the expense of anal-
yses is extremely high and the time required for analyses
increases.

There are limited published studies that report on the use of
optical phenomenon such as spectrouorimetry24,25 in the
design of sensor arrays in water differentiation. As reported in
ref. 24 and 25, sensor arrays are composed of different chemical
reagents to differentiate waters. Therefore, the expense of the
analyses by these arrays increases. However, the literature
review shows that the use of spectrophotometric data in water
clustering is rare.

In the literature works, a large number of water properties
are measured and used to differentiate waters. Clearly, this
procedure requires a number of measurements and reagents. In
this work, nine different commercial mineral waters were
explained using the sensor array composed of absorbance
changes. Silver nanoparticles can be prepared by simple
procedures. Owing to unique optical sensing properties of
noble metal nanoparticles such as AgNPs, they have reported
widespread use in almost every eld of chemistry, particularly
in analytical chemistry. AgNPs have high extinction coefficients
and low cost and remain dispersed in the solution.

Silver nanoparticles (AgNPs) as the sole reagent were
employed to differentiate waters. AgNPs have been used to
RSC Adv., 2020, 10, 34459–34465 | 34459

http://crossmark.crossref.org/dialog/?doi=10.1039/d0ra06000c&domain=pdf&date_stamp=2020-09-16
http://orcid.org/0000-0002-6090-3821
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra06000c
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA010057


Fig. 1 Image of synthesized yellow AgNP.
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discriminate amino acids26 and detect biothiols.27 As per these
published works, AgNPs should be functionalized to enhance
their selectivity.

Usually, the experimental data of sensor arrays arranged in
vectors can be analyzed by chemometric methods such as
principal component analysis (PCA) and hierarchical cluster
analysis (HCA),28 which are unsupervised clustering methods.

2. Principal component analysis and
hierarchical cluster analysis

For unsupervised classication, PCA and HCA are usually used
to analyze data. Cluster analysis is a well-established approach
that was primarily developed by biologists to determine simi-
larities between organisms.

HCA is based on the grouping of sample vectors as per their
spatial distances in their full vector space. The rst step is to
determine similarity between objects, and the next step is to
link objects whereby single objects are gradually connected to
each other in groups. The primary purpose of HCA is to divide
analytes into discrete groups based on characteristics of their
respective responses.

PCA is one of the several multivariate methods that allow us
to explore patterns in data taken from sensor arrays. In PCA,
variables in the data matrix of the sensor array are mathemat-
ically transformed to extract new abstract variables called scores
with reduced redundancy in dimensionality. PCA makes it
possible to extract useful information from original data.

3. Experimental
3.1. Instrumentation and soware

All absorbances, including the kinetic spectra of AgNP in the
presence of different waters, were recorded using an Agilent
8453 UV-Vis spectrophotometer with a diode array detector
equipped with 1 cm path-length quartz cells.

A transmission electron micrograph (TEM) of the synthe-
sized AgNP was recorded using a Zeiss EM900 transmission
electron microscope.

The PCA toolbox for MATLAB was used for PCA and the
unsupervised exploration of kinetic spectrophotometric data.29

3.2. Chemicals

Ammonia (25% concentrated solution), ethanol (99.5%) and
silver nitrate (99.0%) were purchased from Merck (Darmstadt,
Germany).

3.3. Synthesis of AgNP

For the reduction of Ag+ to produce corresponding AgNP,
carbon dots (CDs) were used. Firstly, CDs were synthesized by
simply heating apple juice using the hydrothermal method.30–33

Briey, the apple was cut and crushed in 100 mL of water and
ltered. Then, aer adding 20 mL of ethanol to 20 mL of the
ltrate, the mixture was heated at a constant temperature of
150 �C for 4 h in an autoclave. Aer that, the dark brown
reaction mixture was cooled to room temperature. For
34460 | RSC Adv., 2020, 10, 34459–34465
obtaining the CD solution, the abovementioned mixture was
centrifuged for 2 min (3000 rpm), and the homogeneous
supernatant was used for synthesizing AgNPs. In the next step,
CD was used as the reductant of AgNO3 to produce AgNPs.31,32

Briey, 100 mL of the solution of the synthesized CD with
a concentration of 50 mg mL�1 was added to 100 mL of boiling
deionized water. Aer boiling the mixture for 15 min, 1 mL of
ammonia solution (10%, w/w) and fresh AgNO3 solution (5 mL,
20 mM) were sequentially added with stirring for 2 min. This
reaction was continued for 50 min at 90 �C. Finally, the yellow
solution of AgNPs was produced (Fig. 1).
3.4. TEM microscopy

Fig. S1† shows the transmission electron micrograph of the
synthesized AgNP. Estimation based on the micrograph showed
that the average size of the prepared AgNP is 7.8 � 2.4 nm. The
solution of the synthesized AgNP is yellow in color and stable.
3.5. Water samples

A series of nine natural bottled mineral waters were selected for
the examination of the method applied for their discrimination.
Table 1 lists the names of water samples.
3.6. Kinetic spectrophotometric measurements

In this study, strategy based on the kinetic changes of the
spectrum of AgNPs in the presence of different waters was used
to cluster waters. For this purpose, to 1.0 mL of synthesized
AgNP, 1.0 mL of water sample was added and the corresponding
kinetic spectra were recorded in the wavelength range of 320–
800 nm. The kinetic spectra were recorded for 0.0–7.0 min in
time intervals of 20 s in the rst 4 min; then, it was recorded in
time intervals of 30 s. It must be mentioned that, for each
sample, three replicate kinetic spectrophotometric measure-
ments were made.
4. Results and discussion
4.1. UV-vis spectrum of the synthesized AgNP

Fig. S2† shows the absorption spectrum of the synthesized
AgNP. The synthesized AgNP possess a single main absorbance
maximum located at 420 nm. In the presence of real water
samples, time-dependent absorbance changes were observed.
This journal is © The Royal Society of Chemistry 2020
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Table 1 Bottled mineral water used in the proposed clustering
method

Class Name

1 Azmar
2 Bisheh
3 Damavand
4 Dasany
5 Kimia
6 Pure life
7 Rijab
8 Souver
9 Vatta
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4.2. Statistical analysis

For each water sample, three replicate kinetic spectrophoto-
metric measurements were performed. However, for compar-
ison purposes, some of them have been shown in Fig. 2. For all
samples, a decrease in absorbance at the main peak (420 nm) is
observed; at the high wavelength region (�720 nm), an
increased absorption is observed with time. As a point for
seeking differences, differences in the location and the intensity
of the maxima of the absorption spectra can be mentioned.
Fig. 2 Absorbance changes of AgNPs in the presence of different water s
Souvere. Conditions: total volume¼ 2.0 mL, volume of AgNP¼ 1.0 mL an
direction of absorbance changes.

This journal is © The Royal Society of Chemistry 2020
However, based on the amount of absorbances, it is not possible
to elucidate the water samples. For water sample named Sou-
vere, class 8 (Fig. 2f), in contrast to the other water samples,
increased absorption is observed with time for wavelengths of
higher than 500 nm. It can be deduced by following the color of
the spectra with time. However, such differences cannot be
observed for all of the water samples that were examined.
Therefore, from the visual inspection of the kinetic spectra of
water samples, it is hard or impossible to differentiate water
samples.

Each kinetic data was recorded 19 times (0.0–7.0 min) in the
wavelength range of 320–800 nm. Therefore, a data matrix of
dimension 19 � 481 was obtained for each water sample.

In PCA,34,35 information of a large number of variables can be
abstracted into a small number of new orthogonal variables
called principal components (PCs) using linear combination.
Variance explained by calculated PCs decreases from PC1 to the
other ones. Using PCA, it is possible to examine the patterns of
samples with a large number of variables.

As an initial strategy for clustering, for accounting the
kinetic behavior of AgNP in the presence of different water
samples to differentiate water samples, kinetic changes in the
maximum absorption wavelength of AgNP at 420 nm for each
water sample was followed. Therefore, for each water sample,
amples: (a) Bisheh, (b) Damavand, (c) Kimia, (d) Pure life, (e) Rijab and (f)
d volume of real water¼ 1.0 mL, time¼ 0.0–7.0 min. Arrows show the

RSC Adv., 2020, 10, 34459–34465 | 34461
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Fig. 4 Score plot obtained by the application of PCA on the kinetic
spectrophotometric data in the range of 410–430 nm.
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a vector of absorbance with time was obtained. Eventually,
a matrix with dimension 27 � 19 was resulted. The processing
of kinetic data by PCA resulted in scores (shown in Fig. 3), of
which two rst PCs accounted for 99.91% of total variance.
Clearly, true clustering of samples was not observed. However,
in certain samples (classes 6, 8, 1 and 5), clustering to some
extent can be observed. For other water samples, clusters with
certain overlap are observed. Overlap between classes (4 and 9),
(2 and 3) and (3 and 7) can be clearly seen.

In Fig. S3,† a corresponding loading plot has been demon-
strated. From the loading plot, it can be possible to realize the
importance of variables used in PCA. This can be performed by
inspecting the magnitude of variables. As can be seen in
Fig. S3,† the magnitude of loading for variables (times) on the
rst PC reduces with time. On the second PC, it is reduced to
variable 8 (time 8) and then increased. However, based on
percent variation explained by two PCs, it can be reliable to
speak about the signicance of the variables using only PC1.
Therefore, it can be concluded that the initial and the terminal
variables (times) are the most important variables that differ-
entiate water samples.

In the next step, variation in the absorbance of water
samples in a broader range, including wavelengths of 410–
430 nm, was examined for clustering. Data matrix for each water
sample was vectorized and used for PCA. The result of PCA
applications on the obtained matrix has been shown in Fig. 4.
Improvement in the clustering relative to Fig. 3 is observed. It
can clearly be observed that a good improvement in the sepa-
ration of different water has occurred. In multiple cases,
distinct boundaries between different water samples can be
drawn. As can be seen, a more distinct differentiation of classes
2, 3 and 7 occurs compared to the previous clustering with only
information in 420 nm (Fig. 3).

However, to certain extent, overlapping of clusters of classes
3 and 7 and 9 and 4 can be seen. Though it can be possible to
distinguish different water samples, separation between them
Fig. 3 Score plot obtained by the application of PCA on the kinetic
spectrophotometric data at 420 nm.

34462 | RSC Adv., 2020, 10, 34459–34465
is low. Relative to the use of the single wavelength of 420 nm for
the analysis, improvements in the separation of all different
water samples is observed, especially for classes (4 and 9), (2
and 3) and (3 and 7).

To use PCA and eventually obtain scores for each sample, the
third strategy based on vectorizing the complete kinetic
matrices was selected. In these conditions, each water sample
can be characterized with a vector with dimension 1 � (19 �
481). Combining these vectors for water samples, a matrix of
dimension 27 � (15 � 380) is obtained.

In Fig. 5, a score plot based on the two rst PCs aer applying
PCA on the complete data has been shown. The two rst PCs
accounted for 84.85% and 13.55% of total variance, respectively,
i.e., 98.4% of total variation in data. Therefore, an examination
of these PCs can be sufficient to visualize data.

Fig. 5 shows that all of the analyzed water samples form
distinct and clear clusters. However, the area covered by each
water sample in Fig. 5 is different. For example, classes 1, 6, 8
and 9 extend to a broad space in the plot, whereas the replicates
related to classes 2, 5 and 7 are closer to each other. This
amount of the dispersion of replicates can be related to between
measurement errors, which are primarily randomized. There-
fore, the clustering pattern is systematic and the method for
clustering is reliable. This indicates that the complete kinetic
spectrophotometric data of AgNPs in the presence of different
water samples can be utilized for classication purposes. The
success in clustering in this strategy can be related to using
a higher number of variables, which provided us with higher
advantages because of multivariate data and using higher
spectral features and characteristics of the mixture of AgNP +
water sample, which may differ from one water sample to
another. Overall, the waters in Fig. 5 can be considered as two
main clusters: with positive (classes 4, 6, 8, and 9) or negative
(classes 1, 2, 3, 5, and 7) scores on PC2.
This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Score plot obtained by the application of PCA on the complete kinetic spectrophotometric data.
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The location of different water samples in the space of the
score plot reects the different responses of AgNPs to different
water samples. In the examined waters and pH of each water,
this different response originates from differences in the nature
and the concentration of various species. Nevertheless, the
relative locations of the water samples in the score plot roughly
reect the differences in their quality.

HCA, as another clustering method, which uses high
dimensional data, was employed for differentiating analyzed
water samples.36 In HCA, distances between the vectors of
Fig. 6 Dendrogram obtained by the application of HCA on the complet

This journal is © The Royal Society of Chemistry 2020
different waters in the complete space of the data is used to
classify samples.

There exist various related methods for dening clusters
from the set of analyte vectors. In this case, data were rst
mean-centered and HCA was performed using complete linkage
of samples and city block as distance measure. These clusters
were then grouped together to form new larger clusters. The
operation was repeatedly performed until only a single big
cluster remains. The analysis of the data by HCA results in
a dendrogram, which elucidates similarities between various
e kinetic spectrophotometric data of analyzed water samples.

RSC Adv., 2020, 10, 34459–34465 | 34463
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water samples. Quantitatively, the dendrogram shows the
amount of the similarity of the responses in the matrix was
analyzed. Moreover, it can be used to identify the closest group
that an unknown sample belongs to. In Fig. 6, a dendrogram
obtained by the application of HCA on the complete kinetic
spectrophotometric data has been demonstrated.

When examining Fig. 6, it can be seen that most water
samples have been grouped in true clusters; however, samples
9, 11, 23 and 25 have been incorrectly clustered. Therefore, error
rate in the classication by HCA as an unsupervised clustering
method is 14.8% (number of the incorrectly classied sample to
the all of the analyzed samples), which is acceptable. Further-
more, similarity between classes can be inferred from the
dendrogram. For example, samples 4, 5 and 6 (class 2) as well as
16, 17 and 18 (class 6) contribute to the construction of a larger
group. These two samples are close to each other in Fig. 5. For
classes 1 (samples 1, 2 and 3) and 5 (samples 13, 14 and 15), this
can be mentioned. Two main groups elucidated in the score
plot of PCA can be seen in the dendrogram.

Although it seems that a limited type of sensor (absorbance)
is used and the discrimination may not be possible, the results
showed that clustering is successful. This can be related to the
effect of the matrix of water samples on the absorbance data
and its changes. As is known, the matrix of a sample is
composed of all the species, including different cations, anions
and other molecular species present in the sample. In our
previous published work,37 a similar phenomenon was used to
discriminate natural water based on the color changes of
carbon dots in the presence of examined waters.
5. Conclusions

Amethod was introduced for water clustering without using any
parameter or characteristics of water samples. Kinetic absorp-
tion data in the reaction of different waters with AgNPs was
used as a straightforward method for the clustering of mineral
water samples. Water samples were then successfully clustered
using PCA and HCA. The method can be used for assessing the
water quality based on its comparison with a reference water
using the method introduced in this research. Rather than
using a large number of parameters or characteristics or even
multiple reagents conventionally employed in sensor arrays,
a single reagent (AgNP) is introduced.
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