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-based prediction of toxicity of
organic compounds towards fathead minnow†

Xingmei Chen, Limin Dang, * Hai Yang, Xianwei Huang * and Xinliang Yu ‡*

Predicting the acute toxicity of a large dataset of diverse chemicals against fathead minnows (Pimephales

promelas) is challenging. In this paper, 963 organic compounds with acute toxicity towards fathead

minnows were split into a training set (482 compounds) and a test set (481 compounds) with an

approximate ratio of 1 : 1. Only six molecular descriptors were used to establish the quantitative

structure–activity/toxicity relationship (QSAR/QSTR) model for 96 hour pLC50 through a support vector

machine (SVM) along with genetic algorithm. The optimal SVM model (R2 ¼ 0.756) was verified using

both internal (leave-one-out cross-validation) and external validations. The validation results (qint
2 ¼

0.699 and qext
2 ¼ 0.744) were satisfactory in predicting acute toxicity in fathead minnows compared

with other models reported in the literature, although our SVM model has only six molecular descriptors

and a large data set for the test set consisting of 481 compounds.
1. Introduction

With the development of science and technology, more and
more chemicals are used in the world, which has caused great
concern for their possible toxicity to aquatic organisms.1

Toxicity assessment of chemicals is necessary for all chemical
industries, before releasing them into the market.2 Tradition-
ally, the toxicities of chemicals are obtained from animal tests.
However, these toxicological experiments are not only ethically
problematic, but also expensive, labor-intensive and time-
consuming.3,4 Fathead minnows (Pimephales promelas) are one
of the most common sh in aquatic toxicity studies and 96 h
LC50 denoting 96 hour 50% lethal concentration is used as
a quantitative toxicity endpoint.

Quantitative structure–activity/toxicity relationship (QSAR/
QSTR) models are an important method to analysis toxic
mechanisms and to predict the toxicity for organic chemicals,5–8

even for those that have not been synthesized. Many researchers
have carried out QSAR studies for acute toxicity (LC50, log LC50

or �log LC50 (pLC50)) in fathead minnows.
Lozano et al. introduced 10 consensus linear models for the

toxicity of 557 chemicals to fathead minnows using 4–17
descriptors.9 The coefficients of determination R2 are in the
range of 0.62–0.73. Wang et al. developed a nonlinear model for
the toxicity of 571 compounds to fathead minnows.10 Eight
mental Catalysis & Waste Regeneration,

eering, Hunan Institute of Engineering,

l3055155812@163.com; hxw1o3o@126.

125; Tel: +86 731 58680049

tion (ESI) available. See DOI:

ngtan, Hunan 411104, China.

6180
descriptors were used to develop the model that has coefficients
of determination R2 of 0.826 for the training set and 0.802 for
the test set. In et al. built linear and nonlinear QSAR models for
the toxicity of 555 compounds to fathead minnows.11 Four
QSARs models have coefficients of determination R2 as 0.553,
0.618, 0.632, and 0.605 on the test set, respectively. The
consensus model consisting of three QSAR models shows good
predictive capacity (R2 ¼ 0.663) on the test set. Toropova et al.
introduced MLR analysis of 568 acute toxicities in fathead
minnows.12 The average correlation coefficients (R2) are 0.675,
0.824, and 0.787 for subtraining (n ¼ 246–271, n: the number of
compounds), calibration (n ¼ 144–164), and test set (n ¼ 148–
158), respectively, which are acceptable.

Lyakurwa et al. established theoretical linear solvation
energy relationship models for acute toxicity in fathead
minnows with 3–5 quantum chemical descriptors.13 The four
QSAR models based on 79–311 compounds have adjusted
determination coefficient Radj

2 ranging from 0.707 to 0.903.
Cassotti et al. successfully constructed six-descriptor QSAR
models for acute toxicity of 908 chemicals to fathead minnow
with k nearest neighbor method.14 Correlation coefficients (R2)
of the training set (726 molecules) and the test set (182 mole-
cules) range from 0.62 to 0.73 and 0.61 to 0.77, respectively.

Drgan et al. built robust models for 566 toxicities to fathead
minnows with a new in silico method, counter-propagation
articial neural network (ANN).4 Correlation coefficients (R) of
the training set (340 compounds) and the test set (99–226
molecules) were in range of 0.93 and of 0.71–0.74, respectively.
Wu et al. successfully developed a linear QSAR for a large
dataset consisting of 963 organic compounds with acute toxicity
towards fathead minnows.15 Eight molecular descriptors were
This journal is © The Royal Society of Chemistry 2020
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used for the model that had good predictive capacity (R2 ¼ 0.64)
on the test set (192 compounds).

All these QSARs stated above were validated with small
datasets (less than 250 organic compounds). Generally, the
ratios of samples in training sets and test sets are 4:1–3:1, and
the difficulty in developing successful QSAR models increases
when more samples are included in the test set, especially for
nonlinear QSARs. The aim of this paper is to develop
a nonlinear QSAR model for acute toxicity of 482 chemicals to
fathead minnows, which is to be validated with a large data set
consisting of 481 organic chemicals, by applying support vector
machine (SVM) together with genetic algorithm (GA).
2. Materials and methods
2.1 Datasets

Acute toxicity data of organic chemicals to fathead minnows
were provided by the US Environmental Protection Agency,
which later became important biochemical indicators and
informative ecological parameters for regulatory ecotoxicol-
ogy.12 The experiment pLC50 values were subjected to rigorous
screening and comparison. These experiment values were
removed when they were different by a factor of over 30 from the
closest one in a set of at least three references. Aer that,
arithmetic mean values were used for compounds with multiple
experiment values. In addition, these compounds that lack well-
dened structure or possess metallic elements were removed.15

In the end, 963 experimental toxicants tested against fathead
minnow were obtained by Wu et al.,15 which are listed in Table
S1 in ESI.† Experimental acute toxicities of chemicals were
estimated with lethal concentration (mol L�1) causing death in
50% of test fathead minnows over a test duration of 96 hours
(96 h LC50) and were converted into negative logarithmic scale,
�log LC50 or pLC50. A compound with a larger pLC50 value has
higher toxicity for fathead minnow. These toxicity data have
been studied by Wu et al.15
2.2 Molecular descriptors

The molecular structures of 963 compounds in Table S1 in ESI†
were generated with ChemDraw Ultra 8.0 in ChemOffice 2004,
and optimized with semi-empirical AM1 method in MOPAC in
Chem3D Ultra 8.0. 4885 molecular descriptors were calculated
for each molecule with Dragon 6.0.16 Aer deleting those
descriptors that equal a constant (or approximately constant) or
whose pair-wise correlation coefficients are above 0.90, 1317
molecular descriptors were derived from Dragon so. In addi-
tion, the octanol–water partition coefficient (CLOGP) was
calculated with the CLogP Driver in Chem3D Ultra 8.0. Totally,
1318 descriptors were obtained for descriptor selection.
2.3 Support vector machine

SVM algorithm is based on structural risk minimization prin-
ciple and exhibits good prediction ability in classication and
regression. The algorithm maps input data into a high-
dimensional feature space, from which linear regression
This journal is © The Royal Society of Chemistry 2020
analysis is carried out.17,18 Support Vector Regression (SVR)
algorithm approximates following regression model:

f ðxÞ ¼
Xn

i

4ðxiÞwþ b (1)

where n is the number of training samples, 4(x) a nonlinear
function mapping the original input space into a high dimen-
sional space, x is the input variables, f(x) is the prediction
output, b represents the bias term and w denotes weight vector.
The optimization problem is expressed as follows:

min
w;b;x;x*

J
�
w; x; x*; b

� ¼ 1

2
kwk2 þ C

X
i

�
xi þ x*i

�
(2)

subject to equality constraints:

yi � 4T(xi)w � b # 3 + xi (3)

4T ðxiÞwþ b� yi # 3þ x*i (4)

where C (>0) represents the penalty constant of errors, 3 means
the prescribed training parameter in Vapnik's 3–insensitive loss
function, x and x* are the slack parameters reecting the devi-
ations from the constraints of the 3-tube. In SVR, the 3-insen-
sitive loss function is introduced to minimize the regression
error:

jf ðxÞ � yj3 ¼
�

0; jf ðxÞ � yj\3

jf ðxÞ � yj � 3; jf ðxÞ � yj$ 3
(5)

Thus, eqn (1) can be converted to eqn (6):

f ðxÞ ¼
Xn

i

�
ai � a*i

�
4ðxiÞ � 4ðxÞ þ b (6)

Here ai and a*i are Lagrange multipliers, which are intro-
duced for solving the quadratic optimization problem. Intro-
ducing a kernel function k(x,y) into eqn (6) yields eqn (7):

f ðxÞ ¼
Xs

i

�
ai � a*i

�
Kðx; yÞ þ b (7)

where s is the number of support vectors. In present work,
Gaussian radial basis function (RBF) is chosen as a kernel
function:

K(Xi,Xj) ¼ exp(�gkXi � Xjk2) (8)

where g is the kernel width. For SVM models, the parameters C
and g can greatly inuence the performance of the prediction
models. In this paper, SVM parameters C and g were optimized
with genetic algorithm.17
3. Results and discussion

To select the optimal descriptor subset affecting pLC50 of
organic chemicals towards fathead minnow, stepwise MLR
analysis was performed to identify correlations between 963
pLC50 and 1618 molecular descriptors stated above, by applying
IBM SPSS Statistical 19. Model summary obtained was listed in
RSC Adv., 2020, 10, 36174–36180 | 36175
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Table 1 Model summary obtained with stepwise MLR

Model R R square
Adjusted R
square

Std. error of
the estimate

1 0.722a 0.522 0.521 1.005398
2 0.773b 0.598 0.597 0.922460
3 0.791c 0.626 0.624 0.890379
4 0.806d 0.649 0.648 0.862459
5 0.821e 0.674 0.672 0.831622
6 0.830f 0.689 0.687 0.812323
7 0.836g 0.699 0.697 0.800239
8 0.840h 0.706 0.703 0.791266

a Predictors: (constant), CLOGP. b Predictors: (constant), CLOGP,
SM6_B(P). c Predictors: (constant), CLOGP, SM6_B(P), NDB.
d Predictors: (constant), CLOGP, SM6_B(P), NDB, nHM. e Predictors:
(constant), CLOGP, SM6_B(P), NDB, nHM, SPMAD_EA. f Predictors:
(constant), CLOGP, SM6_B(P), NDB, nHM, SPMAD_EA, MOR10E.
g Predictors: (constant), CLOGP, SM6_B(P), NDB, nHM, SPMAD_EA,
MOR10E, B10[C–N]. h Predictors: (constant), CLOGP, SM6_B(P), NDB,
nHM, SPMAD_EA, MOR10E, B10[C–N], MLOGP.
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Table 1. The increment of determination coefficient DR2 > 0.01
was used as the criterion for introducing new variables. There-
fore, the six molecular descriptors (CLOGP, SM6_B(P), NDB,
nHM, SPMAD_EA, and MOR10E) in Model 6 were used to
develop regression eqn (9)–(12) with IBM SPSS Statistical 19.
The denitions of molecular descriptors used in models were
shown in Table S2† in Supplemental le.

Moriguchi octanol–water partition coefficient (MLOGP) is
calculated from Moriguchi log P model that is a regression
equation based on 13 structural descriptors19 Ghose–Crippen–
Viswanadhan octanol–water partition coefficient (ALOGP) is
estimated with the AlogPmodel, a regression equation obtained
with the hydrophobicity contribution of 115 atom types.19 The
AlogP method is applicable for molecules possessing atoms of
C, H, O, N, S, Se, P, B, Si, and halogens. Both MLOGP and
ALOGP were calculated with Dragon 6.0. The octanol–water
partition coefficient CLOGP can be calculated with the CLogP
Driver in Chem3D Ultra 8.0 that adopts the fragment method.
Fundamental fragments include isolating carbons, polar frag-
ments, halogens, H-polar fragments, ions, double bonds, triple
bonds, chain bonds, ring bonds, branch bonds, chain branch,
group branch, electronic (or topological) interaction factors,
intra-molecular hydrogen bonding, and so on. The CLogP
method covers most neutral organic compounds. Furthermore,
the CLOGP values are more accurate than the coefficients of
MLOGP and ALOGP for molecules in the range of 20�45 atoms,
especially for small molecules in the 1�20 atoms.20 CLOGP
becomes valuable in many elds, including drug design and
hazard assessment. When the descriptor CLOGP inmodel 6 (see
Table S2† in ESI) was replaced with MLOGP (or ALOGP), the
coefficient of determination (¼ 0.672 or 0.686) of models
slightly deceases. Therefore, the octanol–water partition coeffi-
cient CLOGP was used to develop QSAR models.

The partition coefficient CLOGP measures the lipophilicity
of a compound.21,22 While the lipophilicity describes the
kinetics of uptake of chemicals from water and acts as the
driving force in the whole interactions between toxic molecules
36176 | RSC Adv., 2020, 10, 36174–36180
and targets in fathead minnow.15,23,24 Thus, CLOGP has a posi-
tive correlation with toxicity pLC50, which can be reected with
eqn (9):

pLC50 ¼ 2.74 + 0.559 CLOGP, n ¼ 963, R ¼ 0.722, R2 ¼ 0.522,

Radj
2 ¼ 0.521, se ¼ 1.005, F ¼ 1.05�103 (9)

where n is the number of samples in the training set, R2 is the
coefficient of determination, Radj

2 is the adjusted R square, se is
the standard error of the estimate, and F is the Fischer ratio.
Fig. S1† shows the correlation between CLOGP and pLC50. As
can be seen from Fig. S1,† some sample points with small
CLOGP values possess prediction values biased toward large
ones, e.g., 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (no. 3 in Table
S1†) and propane-1,2,3-triyl trinitrate (no. 188). These mole-
cules have strong polar groups –NO2. Therefore, some molec-
ular descriptors describing molecular polarity should be
introduced to correlate with molecular toxicity pLC50.

The spectral moment of order 6 from Burden matrix
weighted by polarizability, SM6_B(P), belongs to 2D matrix-
based descriptors. It is derived from an H-depleted molecular
graph based on the Burden matrix. The diagonal elements are
atomic carbon-scaled properties; the off-diagonal elements are
related to pairs of bonded atoms and conventional bond orders;
entries corresponding to terminal bonds are augmented by 0.1;
and other elements are set to 0.001. SM6_B(P) measures the
number of graph vertices and molecular polarizability.19 When
SM6_B(P) is allowed to enter the model, eqn (9) becomes:

pLC50¼�2.08 + 0.408 CLOGP + 0.656 SM6_B(P),

n ¼ 963, R ¼ 0.773, R2 ¼ 0.598, Radj
2 ¼ 0.597,

se ¼ 0.922, F ¼ 713 (10)

The coefficient of determination R2 in eqn (10) increases
obviously. As is shown in Fig. S2,† a larger SM6_B(P) value
results in higher toxicity. A larger molecule in size usually has
a high SM6_B(P) value than the small molecule, e.g. the
diphenyl (3-phenyl-5-propan-2-ylphenyl) phosphate (no. 49 in
Table S1†) and the methanol (no. 7).

Both NDB and nHM belong to constitutional indices. The
former means the number of double bonds, and the later
denotes the number of heavy atoms with principal quantum
number L larger than 2. Perchloropentacyclodecane (no. 2 in
Table S1†) possesses the maximum nHM value. Obviously, the
two descriptors are related to molecular size. An increasing NDB
(or nHM) causes an increase in the toxicity of the compounds.4

When they are also introduced, eqn (11) was obtained:

pLC50¼�0.430 + 0.423 CLOGP + 0.394 SM6_B(P) + 0.255 NDB

+ 0.166 nHM, n ¼ 963, R ¼ 0.806, R2 ¼ 0.649,

Radj
2 ¼ 0.648, se ¼ 0.862, F ¼ 443 (11)

The correlation between experimental and predicted pEC10

with eqn (11) was depicted in Fig. S3,† which shows the sample
points are relatively evenly and loosely distributed. Thus more
descriptors should be introduced.

The edge adjacency index SPMAD_EA denotes spectral mean
absolute deviation from edge adjacency matrix.25 The edge
This journal is © The Royal Society of Chemistry 2020
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adjacency matrix is a square symmetric matrix of the dimension
NBO� NBO and calculated with the H-depleted molecular graph
that encodes the connectivity information between edges i and j
of the graph. The entries of the matrix are equal to 1 if the bonds
under consideration are adjacent. Otherwise, they equal zero.
Similar to the descriptor CLOGP, SPMAD_EA describes different
structural fragments (subgraphs) in the graph and is related to
molecular two-dimensional shapes and polarization,15,26

although CLOGP measures the total number of fragments and
SPMAD_EA represents their connectivity information.

Besides molecular two-dimensional shapes, molecular three-
dimensional shapes also used to correlate with molecular
toxicity pLC50. 3D-MoRSE means 3D-Molecule Representation
of Structures based on Electron diffraction.27 The 3D-MoRSE
descriptor MOR10E means signal 10/weighted by Sanderson
electronegativity. It reects the three-dimensional arrangement
of the atoms in molecules.26,28 Thus MOR10E describing three
dimensional shapes relates to molecular permeability in
fathead minnow.

When SPMAD_EA and MOR10E that respectively reect
molecular two-dimensional and three-dimensional shapes were
introduced to eqn (11), eqn (12) is obtained:

pLC50 ¼ �0.181 + 0.427 CLOGP + 0.793 SM6_B(P)

+ 0.283 NDB + 0.163 nHM � 2.62 SPMAD_EA

+ 0.387 MOR10E, n ¼ 963, R ¼ 0.830, R2 ¼ 0.689,

Radj
2 ¼ 0.687, se ¼ 0.812, F ¼ 354 (12)

When the descriptors B10[C–N] and MLOGP were entered,
the statistical qualities of models 7 and 8 (see Table S2†) were
not improved obviously. In addition, the coefficient of deter-
mination (R2 ¼ 0.689) of eqn (12) is close to that (R2 ¼ 0.698) of
the eight-descriptor model for the same dataset.15 Thus the six
descriptors in eqn (12) can be used as the optimal subset to
develop QSAR models for toxicity pLC50.

Based on the six descriptors in eqn (12), the Kennard-Stone
algorithm29 was adopted to divide the 963 experimental pLC50

data into a training set (482 compounds) and a test set (481
compounds) at the ratio close to 1 : 1. The data sets are listed in
Table S1† in Supplemental le. A MLR model (eqn (13)) was
obtained from the training set:

pLC50 ¼ �0.309 + 0.408 CLOGP + 0.725 SM6_B(P)

+ 0.305 NDB + 0.149 nHM � 2.25 SPMAD_EA

+ 0.390 MOR10E, n ¼ 482, R ¼ 0.825, R2 ¼ 0.680,

Radj
2 ¼ 0.676, se ¼ 0.922, F ¼ 168 (13)
Table 2 Characteristics of molecular descriptors in MLR model

Descriptor Coefficients Std. error t-Test Sig. VIF

Constant 0.309 0.510 0.605 0.546 —
CLOGP 0.408 0.025 16.1 0.00 1.89
SM6_B(P) 0.725 0.097 7.46 0.00 3.84
NDB 0.305 0.040 7.68 0.00 1.39
nHM 0.149 0.027 5.53 0.00 1.26
SPMAD_EA �2.25 0.363 �6.21 0.00 2.54
MOR10E 0.390 0.075 5.22 0.00 1.15

This journal is © The Royal Society of Chemistry 2020
The MLR model was validated with the test set. The coeffi-
cient of determination R2 for the test set is 0.675. The statistical
characteristics of the six descriptors in eqn (13) are listed in
Table 2. As can been seen from Table 2, these descriptors have
sig.-values (or P-values) less than the default value of 0.05. Thus
all the six descriptors make signicant contribution to toxicity
pLC50. Moreover, these descriptors have variance ination
factors (VIF) less than the default value of 10, which indicate
that there is no obvious multicollinearity among descriptors;
that is to say, each descriptor reects different structure factors
correlating with pLC50. The t-test is used to compare descriptor
signicance. A large absolute value of t-test indicates the cor-
responding descriptor more signicant. According to the t-test
in Table 2, the absolute values of t-test decrease in the sequence:
CLOGP, NDB, SM6_B(P), SPMAD_EA, nHM and MOR10E, their
signicances to toxicity pLC50 decrease in the same sequence.

The six molecular descriptors in eqn (13) were adopted to
build SVM models for toxicity pLC50 of chemicals against
fathead minnow. The LibSVM toolbox30 was used to train SVM
models for 482 compounds in the training set, which was
executed in the MATLAB R2014a soware platform. The penalty
factor C and the parameter g of RBF nuclear function were
optimized by genetic algorithm with the conditions of the
searching ranges of C being [0, 2 � 103] and g being [0, 1], them
(¼5) in m-fold-cross-validation, the maximum generation
(¼200), the maximum population size (¼20), and the 3 (¼0.01)
in the 3 -insensitive loss function.

The optimization results of parameters C being 320 and g

being 0.0127 were obtained. Leave-One-Out (LOO) cross-
validation was carried out for the SVM model. An internal
correlation coefficient qint

2 of 0.699 was obtained, which is large
than the default threshold of 0.5 and suggests the SVM model
stable. Further, 481 compounds in the test set were used to
validate the SVM model. The prediction pLC50 values are listed
in Table S1† in ESI and sketched in Fig. 1, which shows the
predicted pLC50 close to the experimental pLC50. The external
Fig. 1 Plot of experimental versus predicted pLC50 with SVM model.

RSC Adv., 2020, 10, 36174–36180 | 36177
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Table 3 Comparison of the current SVM model with previous relative works

Algorithm p ntrain Rtrain
2 (or Radj

2) Ntest Rtest
2 (or qext

2) Reference

MLR 3 556 0.65 219 0.51 9
MLR 3 556 0.65 169 0.41 9
Consensus — 557 0.71 201 0.60 9
Consensus — 557 0.71 144 0.58 9
MLR + ANN 5 445 0.712–0.776 110 0.553–0.632 11
MLR 3–5 63–247 (0.707–0.903) 16–62 (0.660–0.858) 13
GA-kNN 6 726 0.62–0.73 182 0.61–0.77 14
MLR + ANN 6 340 0.865 99–226 0.504–0.548 4
GA-MLR 8 771 0.70 192 (0.641) 15
SVM 6 482 0.756 481 0.686 Current study

Fig. 2 Williams plot with a warning leverage of 0.0436.
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validation correlation coefficient qext
2 is 0.744, also greater than

the default value of 0.5, which is satisfactory.
Generally, it is difficult to develop QSAR models when more

samples are included in the test set, especially for nonlinear
QSARs. Moreover, successful QSARs should have fewer molec-
ular descriptors, to reduce model complexity and multi-
collinearity. In this paper, the determination coefficients of the
training set (482 compounds) and test set (481 compounds) are
0.756 and 0.686, respectively. Wu et al. investigated the same
data set (963 compounds) in Table S1† with eight molecular
descriptors.15 Their training set (771 compounds) and test set
(192 compounds), respectively, have R2 of 0.70 and 0.64. Obvi-
ously, our SVM model has better prediction ability, although
our SVM model possesses more samples in the test set and
fewer molecular descriptors.

Table 3 shows the comparison of the current SVM model
with previous relative works. The prediction results (n ¼ 481
and R2 ¼ 0.686) in our SVM model are still accurate and satis-
factory, compared with other results: n ¼ 201 and R2 ¼ 0.60;9 n
¼ 144 and R2 ¼ 0.58;9 n ¼ 110 and R2 ¼ 0.553–0.663;11 n ¼ 182
and R2 ¼ 0.61–0.77;14 and n ¼ 99–226 and R ¼ 0.504–0.548.4

Therefore, the six descriptors, CLOGP, SM6_B(P), NDB, nHM,
SPMAD_EA and MOR10E, were successfully used to correlate
with the acute toxicity pLC50, although many factors affect the
toxicity of chemicals against fathead minnow.

The Williams plot (see Fig. 2) was adopted to reect the
relationships between leverages and standardized residuals
from the SVM model. As can be seen from Fig. 2, the training
and test sets respectively have six and three samples with
absolutes values of standard residuals greater than 3, which
suggest these compounds possessing chemical structures
distinct from that in the training set. These outliers include
oleic acid (no. 77 in Table S1 in ESI†), acrylaldehyde (no. 116),
4(1H)-pyridinone, 1-methyl-3-phenyl-5-[3-(triuoromethyl)
phenyl] (no. 137), N,N-dimethylhydrazine (no. 191), 1,3,5,7-tet-
raazaadamantane (no. 259), N,N-dimethyl-2,2-diphenyl-
acetamide (no. 337), 1-methyl-4-(1-methylethenyl)-cyclohexene
(no. 539), p-dihydroxybenzene (no. 953), 2-bromo-1-(2,5-
dimethoxyphenyl)ethanone (no. 959). In addition, as is shown
in Fig. 2, there are 12 samples whose leverages h greater than
the warning leverage h* of 0.0436 (z3 � (6 + 1)/482 ¼ 3 � (p +
1)/n, where p and n are, respectively, the numbers of descriptors
36178 | RSC Adv., 2020, 10, 36174–36180
and compounds used in training set). But their absolutes values
of standard residuals are lower than 3, which indicate that the
SVMmodel built in this work possesses good prediction ability.2
4. Conclusions

Although many factors affect the acute toxicity of chemicals
against fathead minnow, the six descriptors, CLOGP, SM6_B(P),
NDB, nHM, SPMAD_EA and MOR10E, were successfully used to
develop SVM model for 96 hour pLC50. Aer optimization with
genetic algorithm, the optimal SVM model (C ¼ 320 and g ¼
0.0127) gives coefficients of determination R2 of 0.756 for the
training set; and of 0.686 for the test set. Although our SVM
model has fewer molecular descriptors andmore samples in the
test set, our SVM model has satisfactory prediction ability
compared with other QSARs reported in the literature for the
toxicity pLC50 of organic chemicals against fathead minnow.
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