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Electron configuration-based neural network
model to predict physicochemical properties of

inorganic compoundsT
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Registration, evaluation, and authorization of chemicals (REACH), the regulation of chemicals in use,

imposes the characterization and report of the physicochemical properties of compounds. To cope with

the financial burden of the experiments, the use of computational models is permitted for prediction of

properties. Although a number of physicochemical property prediction models have been developed,

their applicability domain is limited to organic molecules since most available data are concerned with

organic molecules, and most of the molecular descriptors are restricted to organic molecule

calculations. Prediction models developed for inorganic compounds were intended to predict endpoints

relevant to novel material design. Therefore, no models were available for predicting endpoints of

inorganic compounds that are significant to regulatory perspectives. In this study, boiling point, water

solubility, melting point, and pyrolysis point prediction models were developed for inorganic compounds

based on their composition. The electron configuration of each element in the molecule was used as
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a descriptor in this study. The dataset covered a wide range of endpoints and diverse elements in their

structure. The performance of the models was measured using R?, mean absolute error, and Spearman's

DOI: 10.1039/d0ra05873d

correlation coefficient, and

rsc.li/rsc-advances

1. Introduction

Understanding of risks imposed by chemicals leads to the
preparation of national legislation and regulations to protect
environmental and human health." In Europe, registration,
evaluation, and authorization of chemicals (REACH) has
entered into force to manage the risk of chemicals manufac-
tured, imported, or used. In South Korea, the act on registration
and evaluation of chemicals (K-REACH) has come into effect
since 2015.> In the registration process, (eco)toxicological and
physicochemical properties of chemicals are to be reported if
they are manufactured, imported or used over one ton per
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indicated good prediction accuracy of continuous endpoints and
prioritization of inorganic compounds.

year.>* Since experimental testing to measure physicochemical
properties of chemicals is time consuming and high cost, it is
allowed to use quantitative structure-activity/property rela-
tionship (QSAR/QSPR) models in their measurements.’> QSAR/
QSPR models are expected to significantly decrease redundant
experimental testing and to make the most out of data by
exploiting accumulated chemical data.

Physicochemical properties such as normal melting point
(MP), normal boiling point (BP), water solubility (log S), and
pyrolysis point (PP) are strongly related to the behavior of
chemicals in humans and the environment.® These properties
are to be reported for registration according to guidelines in
REACH.” Due to their importance, some QSPR models to predict
MP, BP, log S, and PP have been developed. Few review articles
were dedicated to evaluate available data, models, and software
for the properties.>*®* However, the currently developed QSPR
models predict only the properties of organic compounds.
Therefore, no models are available for the prediction of prop-
erties for inorganic compounds.

Studies on prediction model development targeting inor-
ganic molecules are increasing recently in the field of novel
materials design as more efficient methodologies are required
to explore the vast chemical space of inorganic compounds
rapidly.®*® Models developed for inorganic compounds were
intended to aid novel material design aiming prediction of
endpoints such as lattice thermal conductivity,"* electronic
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structure properties (quantum-mechanically-derived proper-
ties),>** crystallographic parameters,'>'® or material synthesis
parameters.””*® If prediction models for nanomaterials are
excluded from the scope of discussion, no models for inorganic
compounds were developed to predict endpoints significant in
a regulatory perspective except one which predicts inorganic
toxicity of substances toward rats.*

The major reason that prediction models for physicochem-
ical properties of inorganic compounds have not been devel-
oped, is mainly related to the lack of available data. In publicly
available physicochemical property datasets, the majority of
data are property measurements of organic compounds,
whereas inorganic compounds were rare or absent among these
datasets.”>** The second reason is related to the available tool
for descriptor calculation. In QSAR/QSPR model development
studies, a number of tools are developed to calculate descriptor
or fingerprint of organic molecules,”* and these are not
applicable to inorganic molecules.”® Novel descriptors have
been developed for metal/metal oxide nanoparticles; however,
these are not applicable to bulk inorganic compounds since the
descriptors are calculated in a size-dependent manner. In my
best knowledge, only two tools were developed for descriptor
calculation of inorganic compound: Magpie (Materials-Agnostic
Platform for Informatics and Exploration),** and matminer.>
Further descriptors for inorganic compounds were prepared
from fundamental information such as atom frequency'® or
elemental properties (e.g., atomic radius, electronegativity,
group number, and so forth)." Given that the molecular struc-
ture of inorganic compounds is more complex through
a combination of diverse atoms than organic compounds, more
studies are needed for the development of inorganic compound
descriptor easily and rapidly applicable in machine learning
model building.

In this study, neural network models were developed to
predict MP, BP, log S, and PP based on the composition of
inorganic molecules. The models cover a wide range of chem-
ical space as 87.5% of elements in the periodic table (91
elements out of 104 elements) were included in BP dataset, 74%
(77 out of 104) in log S dataset, 98% (102 out of 104) in MP
dataset, and 72% (75 out of 104) in PP dataset. The electronic
configuration of elements was used as a descriptor for inorganic
compounds. Hyperparameters of the models were determined
after cross-validation (CV) based grid search over all combina-
tions of them such as neural network architecture, activation
function, optimizer, regularization parameters, and dropout
ratio. Model performance was measured using R square (R?),
mean absolute error (MAE), and Spearman'’s rank correlation
coefficient (SpeaR). BP prediction model was developed and
validated with 537 inorganic compounds whose BP ranged from
—268.928 to 5590 °C (RZ: 0.88, SpeaR: 0.94, MAE: 222.65 °C on
test set). log S prediction model was developed and validated
with 1008 inorganic compounds whose log S ranged from
—12.95 to 1.75 (R*: 0.63, SpeaR: 0.83, MAE: 1.26 on test set). MP
prediction model was developed and validated with 1647 inor-
ganic compounds whose MP ranged from —259.16 to 3880 °C
(R?: 0.89, SpeaR: 0.93, MAE: 170.39 °C on test set). PP prediction
model was developed and validated with 442 inorganic
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compounds whose PP ranged from —185 to 1980 °C (R*: 0.66,
SpeaR: 0.76, MAE: 147.55 °C on test set). Developed models
achieved sound prediction accuracy for precise prediction of
continuous endpoint and prioritization of inorganic
compounds.

2. Results and discussion

2.1. Visualization of structure and property diversity

Before model development, data distribution, and chemical
space of four datasets (i.e., BP, log S, MP, and PP) were exam-
ined. The distribution of molecular weight (MW) and each
endpoint was visualized for training and test set to understand
the diversity of the properties in each data set (Fig. 1). The
models were intended to cover diverse inorganic compounds in
their applicability domain in terms of element diversity con-
sisting of the compounds. To understand compositional
diversity in four datasets, the presence of element among
inorganic compounds was visualized on the periodic table
(Fig. 1). In the figure, the number of each element according to
the molecular formula of the compounds were counted in
training and test set. Elements marked with three, two, and one
if they belong to both sets, training set alone, and test set alone,
respectively. In this study, elements from atomic number 1
(hydrogen) to 104 (rutherfordium) were covered in descriptor
calculation. In Fig. 1B, 87.5% of the elements (91/104) on the
periodic table were included in the BP dataset. Missing
elements within the BP dataset were elements in 7 period, few
actinides, and astatine. In Fig. 1D, 74% of the elements (77/104)
on the periodic table were included in the log S dataset. Missing
elements within the log S dataset were the noble gases,
elements in the 7 period except radium, some of the lantha-
nides and actinides, and other elements (gallium, technetium,
polonium, and astatine). In Fig. 1F, 98% of the elements (102/
104) on the periodic table were included in MP dataset.
Missing elements were helium and rutherfordium. In Fig. 1H,
72% of the elements (75/104) on the periodic table were
included in PP dataset. Missing elements were elements in 7
period, noble gases except krypton and xenon, some of
lanthanides and actinides, and other elements (scandium,
indium, and astatine). In four datasets, most elements on the
periodic table were covered, thus, models developed with the
datasets were expected to be effective on inorganic compounds
comprised of diverse elements.

2.2. Model development

2.2.1. Hyperparameter selection through cross-validation
based grid search. Artificial neural network (ANN) models
were developed with fully connected (FC) layers, and the intro-
duction of batch normalization (bN) layer right after FC layer
brought performance gain in all models. Table 1 summarizes
the best set of hyperparameters based on prediction accuracy in
CV. In log S, MP, and PP models, prediction accuracy of single-
layer architecture network was not improved after further
hidden layers were added in the model whereas two hidden
layer architecture improved prediction performance compared
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Fig. 1 Data distribution in training set and test set were presented with molecular weight and the target endpoint (A, C, E and G). In the periodic
table, element composition in training set and test set were presented (B, D, F and H). Color for each element was determined based on group
which is marked as three if elements found both training set and test set, two if elements found in training set alone, and one if elements found in
test set alone. Color bar next to the periodic table indicates color for each group.

to one hidden layer architecture in BP prediction model alone.

The increase in the number of hidden layers of the model
results in prediction accuracy improvements toward training set

33270 | RSC Adv, 2020, 10, 33268-33278

whereas prediction accuracy on external test set was not
improved, or even in worst case, deteriorated. The prediction
accuracy of ANN model was compared with support vector

This journal is © The Royal Society of Chemistry 2020
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machine (SVM) and random forest regressor (RFR); however,
ANN model outperformed them in all four datasets. According
to ANN architecture, all possible interactions between orbital
bits in electron configuration descriptors were calculated in the
model training process. Since property of a molecule is a result
of complex interaction between the electrons, the electron
configuration-based neural network performed better than
other machine learning methods by modeling interactions
between electrons within a molecule. Based on model accuracy,
it was concluded that the ANNs efficiently models physical
interactions between electrons significant for the target prop-
erties through composition alone.

2.2.2. Performance comparison between composition-
based descriptors. In this study, composition-based descrip-
tors were expected to make good prediction accuracy since
inorganic compounds in the data sets were already distin-
guishable by composition alone. Moreover, simplicity of
composition-based descriptors makes anyone with basic
understanding of chemistry use the model. In order to compare
performance of electron configuration vectors from other
composition-based descriptors, neural network models were
developed with two more descriptors: matminer® and element
composition.”® Models were developed with the hyper-
parameters selected from Section 2.2.1 in order to fairly
compare the performance difference between descriptors. Table
2 showed that electron configuration-based neural network
performed best compared to other two models. Possible reason
for lowest accuracy to matminer descriptors is that the features
calculated from the matminer is relevant for endpoints signif-
icant in novel material design; therefore, they are not well
correlated with physicochemical properties. The result that
element composition showed better performance than mat-
miner descriptors, implied that neural network performs better
with fundamental information since it automatically models
relevant relationship between input and output. For that
reason, neural network establishes better relationship with
electron configuration than with element composition as
interactions between electrons underlie interactions between
elements.

2.2.3. Prediction accuracy on external test set and predic-
tion error analysis. The ANN models were validated with
external test sets. Epochs were fixed with 500 in grid search;
however, a higher number of epochs could lead to overfitting of
the model on the training set, thus, models were tested with
different size of epochs, and best prediction accuracies on
external test set were presented in Table 3. All models achieved
good prediction accuracy as R* on test sets were higher than 0.6,
and MAE was within 10% compared to entire range of endpoint
in the test sets. Particularly, high SpeaR implied that the models
were good at ranking inorganic compounds according to each
endpoint. Given that major role of molecular descriptors in
model building is to differentiate molecules from one another
rather than to make precise prediction of the properties, the
models in this study can be served as a novel tool for inorganic
compounds' descriptor calculation. Particularly, four endpoints
studied in this work are significant properties for modeling
biologically-relevant endpoints. Therefore, properties predicted

This journal is © The Royal Society of Chemistry 2020
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Table 3 Performance of the selected artificial neural network models training and external test set

R SpeaR MAE The range of endpoint MAE/the range
Endpoint Epoch size Train Test Train Test Train Test Train Test Train Test
BP 500 0.96 0.88 0.95 0.94 178.7 222.65 —268 to 5590 —188.11 to 4785 3.05% 4.48%
log S 200 0.73 0.63  0.85 0.83 1.16 126 —12.95t0 1.75 —12.00 to 1.49 7.89%  9.16%
MP 500 0.93 0.89 0.95 0.93 136.41 170.39 —259.16 to 3880 —219.67 to 3414 3.30% 4.69%
PP 500 0.61 0.66 0.68 0.76 167.29 147.55 —185 to 1980 —40 to 1870 7.73% 7.73%
® BP regression model ® Absolute error distribution:BP

by the models are expected to provide valuable information in — o ]
studying interaction between biological system and inorganic ol & :'
compounds. In comparison between predicted values and 4000 - @ £ o0
experimental values, linear pattern of data distribution was 39 i §
observed in training sets and test sets as four models achieved Z oo b % 2 w00 1
good robustness and predictability (Fig. 24, C, E and G). Average - - 3
absolute error within certain range of endpoint was analyzed by e . 20 1
grouping BP data with an interval of 100 °C, log S data with 0.5, e
and MP and PP data with 50 °C. Errors were lower as more data : o o : Ef.iﬂmm. BP“'"“
were found within the range (Fig. 2B, D, F and H). © LOGS regression model ® " Absolute error distribution:LOGS

2.2.4. Model transferability. In this study, models were # e \
developed particularly for inorganic compounds since none of 00 ; T\
models already developed for small organic molecules, can 3 ] g4\
predict physicochemical properties of inorganic compounds ek ?
due to significant structural difference between them. In phys- £l o, % * \\\
icochemical property prediction models for organic small 100 1 g, \ A\
molecules, property descriptors or atomic/fragmental compo- 15 1 ~ A\L\,\ ~
sitions were served as input of the prediction models. The 150 . o A
structural dissimilarity makes it impossible to calculate already = o o, s ’ - Expe,,me;';, Logs °

available property descriptors for inorganic compounds, and
the compositional difference hinders applying atomic/
fragmental composition based models for inorganic
compounds. Therefore, model transferability was examined
between inorganic compounds alone. Main focus in model
transferability is on reliable application of the model to inor-
ganic compounds whose composition was absent in the
training set for each model. Since element composition of the
compounds in test set is different from that in training set,
prediction accuracy on test set was significant in understanding
transferability of the models.

In order to check accurate prediction on test set, number of
inorganic compounds whose absolute errors were smaller than
10% of entire range of endpoint in the test set, was used as cut-
off to count acceptable prediction outcomes within the test sets.
87% of test set (47 out of 54) was within the cut-off in BP, 62%
(126 out of 202) in log S, 88% (290 out of 330) in MP, and 78%
(35 out of 45) in PP. High number of acceptable prediction
results in test set supports that the models are transferable to
inorganic compounds with diverse composition. Basis of the
model transferability was further examined by comparing
electron configuration descriptors distribution between
training and test set. Even though compositions of inorganic
compounds were different, similar electron configuration
distribution was observed throughout four data sets (Fig. S17).
This showed that models were trained and validated based on

This journal is © The Royal Society of Chemistry 2020

Absolute error distribution:MP

o tain

800 |

3000 |

600
2000 |

Pred.

400
1000 -

Mean Absolute Errors

200 |

T T T T T T
0 1000 2000 3000 1000 2000 3000 1000
Exp. Experimental MP

(H)

@)

PYROLYSIS regression model Absolute error distribution:PYROLYSIS

2000 { "o train N
o test .

800

1500 . .

600 -

1000 o “

Pred.
.

400 4
.
¢ 200 \
. g

T T T T T T T
0 500 1000 1500 2000 o 500 1000 1500 2000
Exp. Experimental PYROLYSIS

500 -

Mean Absolute Errors

Fig. 2 Prediction model accuracy was visualized by comparing
prediction result on training set and test set (A, C, E and G). Absolute
errors averaged in ranges of the properties were presented (B, D, F and
H).
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electron composition, and thus weights in the ANN models can
be used reliably in prediction of different composition of inor-
ganic compounds. Models developed in this study can possibly
be used to predict the properties of organic polymers through
transfer learning since composition is also identically signifi-
cant information to distinguish organic polymers.>

2.2.5. Electron interaction analysis. In order to understand
how ANN modeled interactions between electrons, ANN model
outputs after first hidden layer, activation layer, and bN layer
were compared. Principal component analysis (PCA) was
applied to electron configuration descriptors and the outputs
for visualization of feature space change in 2D space (Fig. 3). In
figure, numerical values of endpoints were shown by color
gradient of the points: bright yellow for higher values and dark
purple for lower values. In electron configuration level, data

® Input PCA: bp ® Layer1 PCA: bp

View Article Online

Paper

points were distributed regardless of the properties. After the
descriptor processed through first hidden layer, slight change
was observed. From activation layer, data points were spread
over the feature space, and data points with high and low values
were visually separable except BP data set. After features were
processed through bN layer, data points were rearranged
according to color gradient of data points. Since color change
represents quantitative change of the properties, it is certain
that model establishes high correlation between electron
configuration and the properties at this states. Feature space
change showed that interactions calculated by linear combi-
nation of electron configuration descriptors became effective in
prediction of the target properties through activation and bN
layers.

© Activation PCA: bp © BatchNormalization PCA: bp
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Input PCAs are feature space of electron configuration descriptors (A, E, | and M). Layer 1 PCAs are from linear combination of electron

configuration in first hidden layer (B, F, J and N). Activation PCAs are from converted linear combination by each activation function (C, G, K and
0O). Batch normalization PCAs are from output of batch normalization layer (D, H, L and P). By examining, plots from input PCA to batch
normalization PCA, feature space change is visualized layer by layer. Color gradient represents numerical values of the properties. Bright yellow is

the highest values whereas dark purple is the lowest.
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ANN models in this study modeled complicated interactions
between electrons in much simpler way by calculating possible
interactions between electrons and transforming them through
activation and bN layers. Since electron configuration descrip-
tors in this study considered every atomic orbital identically,
activation and batch normalization layers were essential to
transform combination of electron configuration descriptors
into molecular features relevant for the target property predic-
tion. As transformed features by activation and bN layers
identified correlation to the properties, it was concluded that
physical interactions between electrons in the compounds were
efficiently modeled in data-driven manner for prediction of the
target properties.

3. Materials and methods

3.1. Data collection

Data points for MP, BP, log S, and PP were initially collected
from CRC handbook of chemistry and physics 97" edition (CRC
handbook) in which inorganic compounds and organometallics
used in laboratory and industry were selected.”” Additional data
points for MP and PP were obtained from the work of Igor V.
Tetko et al.,”® and further log S data points from AqSolDB,*
which were filtered into three groups to select only inorganics
and organometallics: (1) compounds without carbon, (2)
compounds without hydrogen, and (3) compounds with a metal
atom (Fig. S31). Data points in three groups were then inte-
grated after checking duplicated compounds between the
groups. By definition, inorganic compounds are chemicals
without carbon-hydrogen bonds; therefore, compounds
without carbon (group 1) or hydrogen (group 2) belong to
inorganics. To select molecules with a metal atom (group 3),
RDKit (http://www.rdkit.org/) was used to filter out molecules
containing C, H, O, N, F, P, S, Cl, Br, I, Na, Ca, K, and Si. The list
of atoms for filtering was decided since C, H, O, N, F, P, S, Cl, Br,
and I are commonly found among molecular structures of
pharmaceuticals, and Na, Ca, and K are frequently used as a salt
in medication. Properties of organosilicon compounds are
similar to organic compounds, hence, compounds with Si were
also removed from the set.** In case where compounds were
overlapped between CRC handbook and additional data sources
with a discrepancy in endpoint, data point from CRC handbook
was selected since CRC handbook data were manually curated
by experts while additional data sources were curated through
automated algorithm, and higher credibility was expected from
data manually curated and evaluated by an expert.

BP is normally measured in °C under 760 mmHg pressure,
and BP of 538 inorganic compounds were obtained from the
CRC handbook. No additional BP data points were obtained for
inorganic compounds since all available data for BP was
focused on organic compounds (Table S2+).

log S is the logarithmic scale of water solubility in mol L.
CRC book reported water solubility in g/100 g H,O with the
temperature at the point of measurement; therefore, water
solubility value was converted into mol L ™", and water solubility
values measured between 20-30 °C were selected. The water
solubility of 459 inorganic compounds were obtained from CRC

This journal is © The Royal Society of Chemistry 2020
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handbook. Further log S data were obtained from AqSolDB in
which 9982 log S data points were compiled from nine
distinctive log S database and out of them only 658 compounds
were inorganics or organometallics. After integrating two data-
sets, log S of 1008 inorganic compounds were obtained for
model development (Table S37).

MP is normally measured in °C, and MP of 1448 inorganic
compounds were obtained from the CRC handbook. MP of
inorganic compounds were further collected from the work of
Igor V. Tetko et al. in which 275133 MP data points were
available and from them only 256 compounds were inorganics
or organometallics. Data of 1448 MP from CRC handbook and
256 MP data from the work of Igor V. Tetko et al. were combined
to increase available data points. After the integration of the two
datasets, MP for 1647 inorganic compounds were obtained for
model development (Table S47).

PP is where a compound is decomposed. It is normally re-
ported during experiments for measurement of MP or BP. PP of
439 inorganic compounds were obtained from the CRC hand-
book. Additional PP data were collected from the work of Igor V.
Tetko et al. in which 13 769 PP data points were available and
out of them only four compounds were inorganics or organo-
metallics. In total, PP of 442 inorganic compounds were ob-
tained for model development (Table S57).

3.2. Electron configuration vector calculation

In this study, electron configuration vectors for inorganic
compounds were calculated as a descriptor for model develop-
ment. Molecular formula (MF) of inorganic compounds was
used to calculate electron configuration vectors (Fig. 4).

First, element types and the number of each element in MF
were specified. Element composition table is available in Table
S6 for BP dataset, Table S7 for log S, Table S8 for MP, and Table
S9 for PP.T For example, if Al,(M0O,); is an input, element types
of the compound are Al, Mo, and O, and the number of each
element is two for Al, three for Mo, and 12 for O according to the
MF (Fig. 4A)

Second, the electron configuration of each element was ob-
tained (Table S$10%).** Ground-state of configuration was
assumed for every element consisting of inorganic compounds.
In the current implementation, elements from atomic number
1 to 104 were accepted for the descriptor calculation. Atomic
orbitals considered in electron configuration vector generation
are s orbital for elements in period 1, s and p orbitals in period 2
and 7, s, p, and d orbitals in period 3 and 6, and s, p, d, and f
orbitals in period 4 and 5 (i.e., 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f,
5s, 5p, 5d, 5f, 6s, 6p, 6d, 7s, and 7p). Since degenerated p, d, and
f orbitals were notated as py, py, and p, for p orbitals, d,, d,.,
dy;, dz2, and d,z_ for d orbitals, and fy,, fy2, f)22, £33, fre ), frpes
ay?), and fy,5,22) for f orbitals, the notation for each orbital were
used as indices of electron configuration vector with their
period number. Each orbital possesses two electrons with
different spin; therefore, the index of electron configuration bits
were marked with plus and minus sign, and the bit assigned for
each index follows the sign of electron spin. Electron configu-
ration bit vectors are generated according to Hund's rule, empty
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(A) Count the number of atoms
Al (MoO,);
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(C) Sum of electron configuration bit vectors
multiplied by the number of each atom

Al: 2

1s+ 1s- 2s+ 2s-  2pxt 2pyt 2pzt ...
2 <2 2 -2 2 2 2
Mo: 3 1s+  1s-  2st+  2s-  2pxt+ 2pyt+ 2pzt ...

Al:2/Mo:3/0: 12

(B) Convert electron configuration into
spin number dependent binary vector
for each atom

Al: 1s22822p53s23p
Mo: 15225?2p¢3s23p63d104s24po4d3Ss
O: 1s2s22p*

1s+ 1s- 2s+

1 -1 1 -1 1

2s-  2px+

3 -3 3 -3 3 3 3

2s-  2pxt+  2pyt 2pzt ...

+ 2 =12 42 =2 12 12 12

1s+ 1s- 2s+ 2s- 2pxt 2pyt 2pzt ...
17 -17 17 -17 17 17 17

Electron configuration bit vector for Al,(MoO,);

2py+ 2pz+ 2px- 2py- 2pz- ...
1 1 -1 0 0

Example of electron configuration vector for oxygen

Fig. 4 Procedure of calculating the electronic configuration bit vectors for inorganic compounds, taking Al,(MoQO,4)s as an example molecule.

orbitals are singly occupied first. In singly occupied orbital,
a positive sign of bit was assigned first, and then a negative sign
of bit was assigned according to the total number of electrons
for an inorganic compound. For instance, oxygen's electron
configuration is 1s”2s”2p*. Thus, 1s and 2s orbitals are fully
occupied whereas 2p orbital is partially occupied with 4 elec-
trons. In case of 1s and 2s orbitals, bit vector contained two plus
ones and two minus ones (ie., [1s']: 1, [1s7]: —1, [2s']: 1, and
[2s7]: —1). For 2p orbital bit vector, [2p, '], [2p, ], and [2p,"] were
filled with plus-ones, and [2p, ] with minus one while [2p, ]
and [2p, ] with zeros. For the other orbitals, all were filled with
zeros as no electrons occupy them (Fig. 4B).

Third, electron configuration bit vector of each atom was
multiplied with the number of atoms according to MF, and then
each bit in the vectors were added along the indices to produce
electron configuration bit vector for an inorganic compound.
Electron configuration bit vector for inorganic compounds is in
Table S11 for BP dataset, Table S121 for log S dataset, Table
S13t for MP dataset, and Table S14 for PP dataset.t In the
example of Al,(M00O,);, Al, Mo, and O are present with ratio of
2 : 3 : 12 in the compound. Therefore, Al electron configuration
bit vector is multiplied with two, that of Mo with three, and that
of O with twelve, e.g., multiplied bit vector for O is as [1s']: 12,
[1s7]: —12, [25"]: 12, [287]: —12, [2p,']: 12, [2p,’]: 12, [2p,']: 12,
[2px ]: —12, and [other orbital bits]: 0. In summation of
multiplied bit vectors for Al, Mo, and O, a bit for the identical
orbital indices were added. For instance, a bit for [1s'] between
Al, Mo, and O was added to produce [15'] bit for Al,(M0Q,);
(Fig. 4C).

3.3. Data preprocessing and external test set design

After electron configuration bit vector was prepared for each
endpoint, orbital bits whose standard deviation was zero were
removed from the dataset since weights for them cannot be
properly trained in prediction model owing to the absence of
atom type covering the orbital bits. After preprocessing, the
length of electron configuration vectors were 97 bits in BP

33276 | RSC Adv, 2020, 10, 33268-33278

dataset, 93 bits in log S dataset, 105 bits in MP dataset, and 93
bits in PP dataset.

Since additional datasets were not available externally, they
were divided into training and test sets for the validation of
prediction models. As a relatively small number of data was
available for BP (538) and PP (442), datasets were divided into
training and test sets with ratio of 9 : 1 to use most of data in
training the models as MP (1647) and log S (1008) data were
divided with ratio of 8: 2 into training and test sets to apply
more data for validation. The external test set was prepared by
random sampling. For BP and PP data set, stratified random
sampling was applied for test set design; however, it gave no
difference in randomly sampled test set since entire range of
endpoint was large whereas majority of data points were
condensed within the short range. Therefore, random sampling
was equally applied for all four data sets.

3.4. Metrics to measure prediction accuracy

The performance of a model was evaluated with three metrics:
R?, MAE, and SpeaR. R*> measures the goodness-of-fit of
prediction outcomes to evaluate robustness and predictive
ability. A model with R* higher than 0.6 on the test set is
considered as a highly predictive model.>> MAE, an average of
the absolute difference between experimental values and pre-
dicted values, is used to measure quantitative errors in predic-
tion values on average. Even though R* is low, a model is
considered as useful in predicting the endpoints when MAE of
the test set is less than 10% of the whole range of target prop-
erties.®> MAE and R? are calculated as,

(yexp,i - ypred‘i) ?

R=1- ;
(yexp,i - ymean)

M:

1 <&
MAE = ; Zlyexp,i - ypfedJI
i=1

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ra05873d

Open Access Article. Published on 08 September 2020. Downloaded on 1/18/2026 8:24:17 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

where n is the number of data, Y p,; is experimental value of i-th
compound, Ypreq,; is predicted value of i-th compound, and
Ymean iS @ mean value of the entire Y, values.

SpeaR measures how accurately the compounds were
ordered by prediction outcome. If compounds were correctly
ranked based on predicted values, SpeaR can still be sufficiently
high with low R* or high MAE.?? SpeaR is calculated as,

6 (dexp.i - dpred.,i)2

n(n* —1)

n
i=1

SpeaR =1 —

where 7 is the number of data, and dexp,; and dpeq,; are an order
of the compound according to target endpoint and prediction
outcomes from one to the total number of compounds. Models
with SpeaR > 0.6 were considered as effective since results
higher than 0.6 in SpeaR indicate that the model prioritizes data
points fairly precisely.*?

4. Conclusions

Even though numerous prediction models already developed to
predict the physicochemical properties of small organic
compounds, none of them can predict the properties of inor-
ganic compounds due to significant structural dissimilarity. In
this study, QSAR models for inorganic compounds were devel-
oped to predict BP, log S, MP, and PP, which are significant in
regulatory perspective. Dataset used in this study not only
covered a wide range of endpoints but also diverse elements.
The electron configuration descriptors outperformed other
composition-based descriptors and showed good prediction
accuracy. Molecular properties were determined by complex
interaction of electrons, and ANN models efficiently modeled
the interactions between electrons significant for prediction of
the target endpoints. Accurate prediction outcomes on test set
implied that models developed in this study are transferable for
prediction of inorganic compounds with novel composition. In
ANN model analysis, activation and bN layers played major role
in establishing correlation between electron configuration and
the properties.
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