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A highly diastereoselective dearomative [3 + 2] 1,3-dipolar cycloaddition reaction of nitrobenzothiophenes
with an in situ-generated nonstabilized azomethine ylides has been developed. The transformation
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The dearomative cycloaddition reactions are a powerful
synthetic strategy to obtain valuable structural motifs which
exist in numerous biologically active natural products, phar-
maceutical agents, and also in synthetic and materials building
blocks.! Among them, indole substrates gained more and more
research interest to develop effective methods for the
construction of indole-based skeletons and their functionali-
zation via dearomative transformation.> Because the unique
properties of indole ring systems are ubiquitous in biologically
active alkaloids,* the range of methodologies that have been
explored to access dearomatized indole heterocycles is
extremely extensive. In contrast to the dearomative reactions of
indole substrates, the analogous benzothiophenes derivatives
have been less explored.* In addition, the benzo[b]thiophene
derivatives that have found widespread application are
frequently found in many bioactive compounds, pharmaceuti-
cals, and as synthetic building blocks.® Therefore, the develop-
ment of efficient synthetic method to realize the
dearomatization of benzo[b]thiophenes for the construction of
diverse functionalized heteroarenes molecules continues to be
an important and highly desirable in the organic synthetic
community.

On the other hand, 1,3-dipolar cycloaddition of azomethine
ylides with electron deficient dipolarophiles that have a wide
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provides a series of functionalized fused tricyclic benzol[4,5]thieno[2,3-clpyrroles in good yields (up to
reaction conditions. In addition, a gram-scale experiment and the synthetic
transformation of the cycloadduct further highlighted the synthetic utility. The relative configurations of
the typical products were clearly confirmed by X-ray crystallography.

range of applications in organic synthesis, is a useful and facile
synthetic process for five or six membered heterocyclic rings in
one step.® Especially, nonstabilized azomethine ylides gener-
ated in situ are highly active intermediates,” with electron-
deficient benzoheterocycles, including 2-nitroindoles or 3-
nitroindoles (Scheme 1a)® and benzo[b]thiophene 1,1-dioxides
(Scheme 1b)°® as robust electrophiles to construct various poly-
cyclic heterocyclic skeletons via the dearomative [3 + 2] 1,3-
dipolar cycloaddition reaction in the simple way. However, 3-
and 2-nitrobenzothiophenes have been uncovered as electro-
philes for the dearomative 1,3-dipolar cycloaddition reactions
with nonstabilized azomethine ylides to provide S-containing
polyheterocyclic compounds. Enormous efforts have been
devoted to the development of ever more efficient synthetic
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Scheme 1 Dearomative cycloaddition reaction of electron-deficient
heteroarenes with nonstabilized azomethine ylides.
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methods for the construction and direct functionalization of
these heteroaromatic compounds. Herein, we describe a dear-
omative [3 + 2] cycloaddition reaction of 3-nitro-
benzothiophenes with nonstabilized azomethine ylides without
metal catalysts under mild reaction conditions, providing
a convenient and efficient access to functionalized fused tricy-
clic benzo[4,5]thieno[2,3-c]pyrroles derivatives bearing two
contiguous stereocenters. Additionally, we also successfully
extended this new protocol to 2-nitrobenzothiophene and 2-
nitrobenzofuran for the corresponding dearomatization
products.

Initially, we chosed 3-nitrobenzothiophene 1a and N-
(methoxymethyl)-N-(trimethylsilyl-methyl)-benzyl-amine 2a
which generated in situ nonstabilized azomethine ylide in the
presence of trifluoroacetic acid (TFA) as model substrates to
optimize the reaction conditions. As the results are shown in
Table 1. To our delight, the cycloaddition reaction proceeded
smoothly and the desired [3 + 2] cycloadduct 3a was obtained in
90% yield with in high diastereoselective CH,Cl, (entry 1).
Moreover, the yield could not be further improved when the
reaction time was prolonged (entry 2). The yields were
decreased (5-81%) when we employed other organic solvents
(entries 3-10). In order to further improve the yield, the reaction
was performed at 40 °C in CH,Cl,. However, the yield of the
product decreased to 72% (entry 11), which the possible reason
may be that the nonstabilized azomethine ylide was unstable at
high temperature that resulted in unexpected side reactions.
When the amount of trifluoroacetic acid was loaded to 1.2
equiv., the reaction does not improve the yield of product 3a

Table 1 Optimization of reaction conditions®

' Bn solvent Nk N-Bn
@f\g *oTMs_N_OMe T Q_ﬁ/
S S H
1a 2a 3a

Entry Solvent Time Yield of 3a” (%)
1 CH,Cl, 12 90
2 CH,Cl, 24 90
3 CHCl, 24 81
4 DCE 24 80
5 EtOAc 24 <5
6 CH;CN 24 <5
7 Toluene 24 <5
8 THF 24 22
9 Et,O 24 20
10 Dioxane 24 73
11° CH,Cl, 12 72
124 CH,Cl, 12 90
13° CH,Cl, 24 62
14 CH,Cl, 6 64
“Unless noted otherwise, reactions were performed with 3-

nitrobenzothiophene 1a (0.1 mmol) and 2a (0.12 mmol), TFA
(0.1 mmol, 1 equiv.) in solvent (1.0 mL) at rt. ? Yield of the isolated
product and dr >20:1 by 'H NMR analysis. ¢ The reaction was
performed at 40 °C. ¢ 1.2 equiv. TFA were used. © 0.5 equiv. TFA were
used.
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Table 2 Substrate scope and limitations of the [3 + 2] cycloaddition®

FWG EWG

R
|
meRz . TMSVNYOMe TFA RN N-R
Z~g X CH,Cly, 1t, 12 h =
S" Rz X
1 2 3
2a,R=Bn,X=H

2b,R=Me, X=H
2¢,R=Bn,X=CF;

Entry R' R? Substrate Yield” (%)

1 H H 2a 3a, 90
5-Me H 2a 3b, 92

3 4-Cl H 2a 3¢, 90

4° 5-Cl H 2a 3d, 91

5 4-Br H 2a 3e, 92

6 5-Br H 2a 3f, 88

7 6-Br H 2a 3g, 87

8 7-Br H 2a 3h, 89

9 H H 2b 3i, 84

10 4-Cl H 2b 3j, 86

11 5-Cl H 2b 3k, 85

12 4-Br H 2b 31, 82

13 5-Br H 2b 3m, 83

14 6-Br H 2b 3n, 81

15 7-Br H 2b 30, 84

16 H H 2¢ 3p, 0

174 H H 2a 3q, 0

18 H Me 2a 3r, 0

% Unless noted otherwise, reactions were performed with 3-

nitrobenzothiophene 1 (0.1 mmol), 2 (0.12 mmol), TFA (0.1 mmol, 1
equiv.) in CH,CI, (1.0 mL) at rt for 12 h, EWG = NO,. ? Yield of the
isolated product and dr >20:1 by 'H NMR analysis. ° The relative
configuration of 3d was determined by X-ray analysis. The other
products were assigned by analogy.  EWG = CN.

(entry 12). Lowering the amount of trifluoroacetic acid led to
a decreased yield despite with a prolonged reaction time (entry
13). In addition, the yield of the product 3a was 64% when the
reaction was carried out for 6 h (entry 14) (Table 1).

With the optimized conditions in hand, we set out to
investigate the scope and limitation of 3-nitrobenzothiophenes
1 with nonstabilized azomethine ylides via dearomative [3 + 2]
cycloaddition reaction to provide fused tricyclic benzo[4,5]
thieno[2,3-c]pyrroles. The representative results are summa-
rized in Table 2. Under the optimized conditions, the dear-
omative [3 + 2] cycloaddition reactions were tolerated all the
screening various 3-nitrobenzothiophenes 1, regardless of the
different positions and electronic properties of substituents
into the aryl ring of 3-nitrobenzothiophenes when the 3-

R R H
N + 2a standard conditions N-Bn
NO,
X X" o,
4a, R=Br,X=8 5a, 91% yield
4b,R=H,X=0 5b, 90% vyield
Scheme 2 Dearomative cycloaddition reaction of 2-nitro-

benzothiophene and 2-nitrobenzofuran with nonstabilized azome-
thine ylide.
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Scheme 3 Scaled-up version of synthesis of fused tricyclic benzo[4,5]
thieno[2,3-clpyrrole.

nitrobenzothiophenes 1 reacted smoothly with the precursor of
nonstabilized azomethine ylides 2a or 2b. The reaction afforded
the corresponding products 3 (3a-0) in high isolated yields with
excellent diastereoselectivities (>20:1 dr). In addition, the
relative configuration of product 3d was determined unambig-
uously as (35,85) or (3R,8R) via single-crystal X-ray diffraction
analysis (CCDC 20068267)."> For its structural details, see the
ESI.7*° The other products were assigned by analogy. However,
when the 2c¢ substrate reacts with 3-nitrobenzothiophene 1a and
3-cyanobenzothiophene 1q reacts with N-(methoxymethyl)-N-
(trimethylsilyl-methyl)-benzyl-amine 2a under the standard
conditions (entries 16 and 17). These reactions didn't work.
These reactions revealed that the compounds 2c¢ and 1q had
significantly lower reactivity. Subsequently, when we tried the
reaction of 3-2-methyl-3-nitrobenzothiophene 1r with N-
(methoxymethyl)-N-(trimethylsilyl-methyl)-benzyl-amine 2a
under the standard conditions (entry 18). Unfortunately, it was
observed that the reaction did not take place. The possible
reason may be due to the increased steric hindrance at the C2-
position of the 2-methyl-3-nitrobenzothiophene, inhibiting the
cycloaddition reaction.

Having proven the effectiveness of our protocol for dear-
omative [3 + 2] cycloaddition of 3-nitrobenzothiophenes with
nonstabilized azomethine ylides. Then, we next turned our
attention to dearomative annulation of other heteroaromatic
ring bearing nitro group to confirm the practicability of the
methodology (Scheme 2). The results show that the 2-nitro-
benzothiophene and 2-nitrobenzofuran proved to be well
compatible with the dearomative [3 + 2] cycloaddition reaction
and underwent the transformation successfully to provide the
expected products in the 91% and 90% yield, respectively.

Moreover, in order to highlight the synthetic utility of our
methodology, a gram scale experiment between 5 mmol of 3-
nitrobenzothiophene 1a and 6 mmol of N-(methoxymethyl)-N-
(trimethylsilyl-methyl)-benzyl-amine 2a proceeded smoothly
under the standard conditions and offered compound 3a (1.373
g) in 88% yield with dr >20: 1 (Scheme 3). Subsequently, the
attempt to reduce the nitro group and remove the benzyl group
of 3a through Pd/C-catalyzed hydrogenation. However, the
benzyl group was not removed,*' while the nitro group on the
quaternary carbon center in 3a was reduced to give an NHOH

O:N 5 OHN N H,N 5
-Bn - —|
—_ e
s™Y CH3OH, 1t, 8 h s CH30H, 60 °C, 8 h sy,
3a 6, 85% yield 7, 82% yield

Scheme 4 Transformations of product 3a.
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intermediate 6 in 85% yield at room temperature.**” Next, Pd/C-
catalyzed hydrogenation of the NHOH intermediate 6 was
successfully conducted at 60 °C to give a free amine 7 in 82%
yield (Scheme 4).**

In conclusion, we have successfully developed an efficient
dearomative [3 + 2] cycloaddition reaction of nitro-
benzothiophenes with nonstabilized azomethine ylides gener-
ated in situ. The functionalized fused tricyclic benzo[4,5]thieno
[2,3-c]pyrroles frameworks were efficiently constructed in high
yields (up to 92%) with excellent diastereoselectivities (>20 : 1
dr) under mild reaction condition without metal catalyst. The
potential synthetic utility and practicality of the approach were
also highlighted by the gram-scale experiment and the synthetic
transformation of the product into other polycyclic heterocyclic
compounds. The further application of this strategy is presently
under bioactive investigation in our laboratory.
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