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Aberrant misfolding and amyloid aggregation, which result in amyloid fibrils, are frequent and critical

pathological incidents in various neurodegenerative disorders. Multiple drugs or inhibitors have been

investigated to avert amyloid aggregation in individual peptides, exhibiting sequence-dependent

inhibition mechanisms. Establishing or inventing inhibitors capable of preventing amyloid aggregation in

a wide variety of amyloid peptides is quite a daunting task. Bleomycin (BLM), a complex glycopeptide,

has been widely used as an antibiotic and antitumor drug due to its ability to inhibit DNA metabolism,

and as an antineoplastic, especially for solid tumors. In this study, we investigated the dual inhibitory

effects of BLM on Ab aggregation, associated with Alzheimer's disease and hIAPP, which is linked to type

2 diabetes, using both computational and experimental techniques. Combined results from drug

repurposing and replica exchange molecular dynamics simulations demonstrate that BLM binds to the b-

sheet region considered a hotspot for amyloid fibrils of Ab and hIAPP. BLM was also found to be involved

in b-sheet destabilization and, ultimately, in its reduction. Further, experimental validation through in

vitro amyloid aggregation assays was obtained wherein the fibrillar load was decreased for the BLM-

treated Ab and hIAPP peptides in comparison to controls. For the first time, this study shows that BLM is

a dual inhibitor of Ab and hIAPP amyloid aggregation. In the future, the conformational optimization and

processing of BLM may help develop various efficient sequence-dependent inhibitors against amyloid

aggregation in various amyloid peptides.
Introduction

Amyloid peptides have several biological functions, varied
sequences, and lengths, and their native 3D structures can
misfold into b-sheet-rich amyloid aggregates, which are the
pathological hallmarks of several neurodegenerative disorders,
such as Alzheimer's disease (AD), Parkinson's disease (PD), and
type 2 diabetes (T2D).1–3 Each of these disorders is linked to
protein misfolding and amyloid aggregation of distinct amyloid
peptides, such as amyloid beta (Ab) in AD, alpha-synuclein (a-
syn) in PD, and human islet amyloid polypeptide (hIAPP) in
T2D. Although amyloid aggregation is a convoluted nucleation
and polymerization mechanism with various conformational
intermediates and transitions from disorganized monomers to
transitional oligomers, protolaments, and complex matured
brils,4,5 it is commonly acknowledged that inhibiting the
amyloid aggregation of misfolding amyloid peptides plays
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f Chemistry 2020
a signicant role in understanding and curing these
disorders.6–10

Previous attempts to discover or develop various types of
inhibitors for the amyloid aggregation of intrinsically disordered
peptides (IDPs) investigated small organic molecules (e.g., carbe-
noxolone,11,12 fullerene and fullerenols,13 fullerenemalonates,14

EGCG,15–20 oil palm phenolics,21 curcumin,22–32 oleuropein,33–35 and
tanshinone36), various nanoparticles (e.g., GQD-T,37,38 CeONP@-
POMs,39 Res@SeNPs,40 L1T1-SeNPs,41 AgNPs,42–48 and IDA-NP49),
selective peptide inhibitors (e.g., Ab39–42,50 Ab31–42,51 Ab17–21,52 and
Ab16–20,53 including analogues54–56), and several polymers (e.g.,
polyA-FF-ME,57 poly-[amidoamine] dendrimer,58 and poly[acrylic
acid]59). Most of these amyloid inhibitors act on specic amyloid
peptides and show a higher capacity for inhibition based on
sequence dependence. Very few of them have been studied to
explore dual inhibition against the aggregation of amyloid
peptides. As there is substantive evidence to prove that T2D,
obesity, and prediabetic conditions of insulin resistance60 might
stimulate AD growth.61–63 Patients with T2D are two to ve folds
more susceptible to develop AD,63,64 and the frequency of alteration
from trivial cognitive damage to dementia instigated by AD is
greater in people with a prior antiquity of T2D.65 Additionally,
peripheral insulin resistance is more oen in patients with AD
than in neurologically asymptomatic matured cases,66 and the
RSC Adv., 2020, 10, 25929–25946 | 25929
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awed brain insulin action in AD67 appears to be related with
peripheral insulin resistance.68 Though, the process by which
patients with AD deprived of T2D reveal peripheral insulin resis-
tance, and whether peripheral or central dysregulation of insulin
signaling starts the pathological measures in AD, are weakly
understood.68

Non-neuronal tissues of several organs like liver, skeletal
muscle, and pancreas vital for glucose regulation have been
involved in Ab aggregation.69–71 Also, human pancreas are found
to be convoluted on expression of spliced tau isoforms,72 and an
enhancement of hyperphosphorylated tau in the pancreatic
tissue is linked with T2D.70 Hence, these facts point toward
a strong link among the two diseases, and among peripheral
and brain insulin resistance. Nevertheless, to our acquaintance
the role of pancreas in AD pathogenesis has not yet been scru-
tinized. Recently, Paul et al. determined the anti-amyloidogenic
effects of naphthoquinone tryptophan-based hybrid molecules
against s-derived aggregation peptide (PHF6), Ab, and hIAPP,
which are involved in AD and T2D.73 Genistein has also been
found to show inhibitory activity against Ab and hIAPP and has
been utilized extensively as a cerebrovascular and anti-
inammatory drug because of its anti-acetylcholinesterase
and antioxidation effects.74 A well-known natural compound,
polyphenol (�)epigallocatechin gallate (EGCG), reportedly
binds to a variety of amyloid peptides of k-casein and a-synu-
clein, hindering their aggregation pathways and misfolding,
and, therefore, exhibits prevalent inhibitory effects.75,76 Penta-
galloyl glucose has also been proclaimed a dual inhibitor of Ab
and hIAPP, which prevents brillization in both Ab and hIAPP
and helps in the disassembly of existing Ab brils.77,78 Mariano
et al. introduced bis(hydroxyphenyl)-substituted thiophenes as
selective dual inhibitors of both Ab aggregation and tau kinase
dual-specicity tyrosine phosphor-regulated kinase 1A
(Dyrk1A).79 Fragment-based QSAR and molecular docking
studies have been conducted to develop dual inhibitors among
20 1,4-dihydropyridine (DHP) derivatives against b-amyloid
cleavage enzymes (BACE-1) and acetylcholine (AChE).80 Mancini
et al. demonstrated that a component of brewed coffee, phe-
nylindanes, help in the inhibition of Ab and tau aggregation
and are a probable mechanism by which coffee exhibits neu-
roprotective effects.81 Curcumin, obtained from turmeric, has
also been found to have inhibitory effects, and the ability to
disassemble and prevent the bril formation of Ab and a-syn-
uclein in a dose-dependent, destabilizing manner.82 The major
component of the herb danshen (Salvia miltiorrhiza Bunge),
tanshinones, are also involved in amyloid aggregates' inhibition
of Ab and hIAPP, including disaggregate-achieved hIAPP and Ab
amyloid brils, and they defend cells from hIAPP- and Ab-
induced toxicity.36,83 Despite these discoveries, there is still no
cure for these fatal neurodegenerative disorders, and the chal-
lenge remains for researchers to invent potent dual or multiple
inhibitors against the amyloid aggregation and brillization of
different amyloid peptides.

Drug repositioning (i.e., drug repurposing, reproling, or re-
tasking) involves determining new uses for approved or inves-
tigational drugs that are further the opportunity of the real
medical action.84 This approach offers several benets over
25930 | RSC Adv., 2020, 10, 25929–25946
establishing a completely new drug for a particular purpose.
The best and, perhaps, the most vital aspect of drug reposi-
tioning is that the risk of failure is quite low because reproled
drugs have already undergone early phase trials in preclinical
animal models and human testing and have been found to be
sufficiently safe. Hence, they are less likely to fail, at least from
a safety standpoint, in subsequent efficacy trails. Furthermore,
the duration of drug development can be decreased since most
of the preclinical trials, safety appraisals, and, in some cases,
formulation development, have already been completed.
Moreover, minimal investment is required for drug reproling,
but costs may vary depending on the phase and mechanism of
development of the reproling candidate.85 Recently, drug
repurposing using the neuroinformatics approach was imple-
mented to study the inhibitory mechanism of bexarotene, an
anticancer drug against Ab amyloid aggregation.86 Doxycycline
(Doxy), a widely used antibiotic, has been found to exhibit
neuroprotective effects by decreasing the progression and
severity of disease in various experimental models of neuro-
degeneration by neutralizing these common features.87–94 Bor-
tolanza et al. proposed repurposing tetracyclines, which are
a multitarget antibiotic but also utilized to treat PD.95 Hayes
et al. investigated their effects on arresting or decreasing
amyloid plaques loaded in an AD mouse model aer chronic
treatment with carmustine.96

In this study, we investigated the dual inhibition effect
against the amyloid aggregation of Ab and hIAPP using both
computational and experimental approaches. To achieve this
goal, we performed drug repurposing through high-throughput
virtual screening of the Food and Drug Administration (FDA)-
approved drugs library against Ab and hIAPP, followed by
extra-precision docking to identify potent inhibitors of amyloid
aggregation. We analyzed the most potent inhibitor (i.e., bleo-
mycin [BLM]) using several energy and docking score-based
parameters. Furthermore, atomistic conformational sampling
using replica exchange molecular dynamics (REMD) simula-
tions of Ab and hIAPP both in the presence and absence of BLM
suggests strong interactions among BLM and amyloid peptides
(Ab and hIAPP), and potent binding sites were identied that
might be responsible for inhibiting the amyloid aggregation of
these peptides by BLM. Additionally, experimental validations
were performed by utilizing thioavin T (ThT) uorescence
assay and transmission electron microscopy, which yielded
results consistent with our computational studies. The repur-
posed drug (i.e., BLM) may serve as a leading structural
template for the future development of BLM-based inhibitors of
various amyloid peptides.

Material and methods
Drug repurposing

High throughput virtual screening of Ab and hIAPP against the
FDA-approved drugs library was performed using GLIDE,97

a module of Schrodinger.98 The 3D structures of AD-associated
Ab1–42 (PDB ID: 1Z0Q) and T2D-associated hIAPP1–37 (PDB ID:
2L86) were downloaded from the database RCSB PDB.99 The
sequence
This journal is © The Royal Society of Chemistry 2020
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1DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA42

was used for Ab1–42 and 1KCNTATCATQRLANFLVHSSNN
FGAILSSTNVGSNTY37 for hIAPP1–37; they were pre-processed,
optimized, and minimized using Schrödinger's protein prepa-
ration wizard by enumerating missing atoms, amending the
overlapping coordinates, assigning bond orders, adding
hydrogen and minimizing energy via 0.30 Å RMSD, and opti-
mizing the force eld (i.e., OPLS 2005 (ref. 100)), as generally
required for docking simulations.101 The FDA-approved drug
library of 2162 compounds was prepared using the LigPrep102

module, and all probable states at pH 7 � 2 were developed by
employing an ionizer and conning it to the exact chirality of
molecules. Twenty-ve ligands were achieved per ligand mole-
cule, and the results were saved for docking in the maestro
format. Two-step docking was performed: high-throughput
virtual screening (HTVS) and extra precision (XP) docking.103

Depending on the docking score, the presence of the same lead
compound for both Ab and hIAPP docking results were inves-
tigated. The protein-ligand interactions for the same lead
compound separately with Ab and hIAPP, were analyzed using
LigPlot+104 and Chimera.105
REMD simulation

The same initial structures of Ab and hIAPP prepared by the
protein preparation wizard were utilized for atomistic confor-
mational sampling using REMD in the presence and absence of
the selected lead compound. Ab and hIAPP were simulated at
500 K to obtain extended coil states and avoid bias in the initial
secondary structures. Additionally, the amidation and acetyla-
tion of C and N terminals were performed to reduce the liability
of sudden results from uncapped and non-neutralized ends of
Ab and hIAPP. The lead compound's 3D structure was down-
loaded from PubChem106 in SDF format, and its GROMACS
coordinates and topology les were prepared using PRODRG.107

Four separate REMD simulation systems for both Ab and
hIAPP in the presence and absence of the same lead compound
were performed using GROMACS.108 Newton's equation of
motion was incorporated with a time step of 2 fs using the
leapfrog algorithm integrator. van der Waals interactions were
determined, along with short- and long-range electrostatics and
the particle-mesh Ewald algorithm.109 It was combined with
a fast Fourier transform algorithm to decrease the barriers of
MD simulations. Periodic boundary conditions were also
applied to improvise system size effects, and an OPLS force eld
was used to develop Ab and hIAPP topologies. Furthermore, the
water-model used as a solvent was the transferable intermo-
lecular potential with three-point (TIP3P) rigid water,110 with the
addition of charged ions to neutralize the charges of Ab and
hIAPP.

First, the four REMD simulation systems were NPT equili-
brated to obtain a static number of atoms and constant pressure
and temperature (i.e., isotropic pressure for 1 bar and at 300 K),
applying the Berendsen weak coupling thermostat and a baro-
stat111 to accomplish equilibrated box dimensions at
a compressibility of 4.5 � 10�5 bar�1. Also, NVT equilibrium
conditions with a static number of atoms and a constant
This journal is © The Royal Society of Chemistry 2020
volume and temperature were employed via a Nose–Hoover
thermostat112 and an advanced Hamiltonian combined super-
cially with the heat-bath to achieve precise thermodynamic
ensembles. Separate peptide and water bonds were constrained
via the linear constraint solver algorithm (LINCS)113 and SETTLE
algorithm,114 respectively. Both algorithms use Lagrange
multipliers and a symplectic integrator to constrain chemical
bonds.

In these conditions, REMD simulations were performed to
enhance conformational sampling. Several replicas were run
with marginally alternative ensembles, swapping the coordi-
nates of replicas within the ensembles periodically. In recent
studies, temperatures were selected and distributed based on
the exponential spacing law to perform REMD.115 Another
method used in previous studies116 is the webserver at http://
folding.bmc.uu.se/remd,117 which we used in this study for
temperature selection in REMD simulations of each case of 32
replicas with a 20% average exchange probability within replica
purses every 2 ps. The peptide in each of the four systems was
simulated for 100 ns per replica, and further analysis was per-
formed on the nal trajectories.
REMD analysis

A series of trajectory analyses were performed using GROMACS
tools and built-in scripts. First, energy components or the
distance restraint inputs from the energy le were obtained using
the GROMACS in-house command ‘g_energy’. We also conrmed
that all physicochemical properties of the system had reached
equilibrium, where their averages no longer altered as a function
of time. The simplest way to measure stability was by calibrating
the root mean square deviation (RMSD) using ‘g_rms’. Similarly,
root-mean-square uctuation (RMSF) analysis was performed
using ‘g_rmsf’ to measure the peptides' exibility, thereby
detecting changes in C-alpha atoms' coordinates from their
initial position. Hydrogen bonds were calculated using ‘g_hbond’
to detect the peptides' folding or unfolding behavior, peptides'
interaction with the lead compound calculated with an oxygen–
hydrogen–nitrogen angle of 30� or less, along with an oxygen–
hydrogen distance of 2.5 Å or less.

Furthermore, to predict the compactness of Ab and hIAPP,
the radius of gyration (Rg) about the center of mass was
measured using ‘g_gyrate’, and the peptides' end-to-end
distance (Ree) was determined using ‘g_polymer’. Ree was
calculated from the C-terminal's center of mass (i.e., the acety-
lated end) to the N-terminal's center of mass (i.e., the amidated
end). Secondary structure analysis was also conducted using
‘do_dssp’, which performs pattern recognition of hydrogen-
bonded and geometric characteristics. Cluster analysis of the
peptides was also performed to predict the similar structures
sampled together in the course of MD simulations using
‘g_cluster’ with a cutoff of 0.35 nm. Daura's118 algorithm was
employed on MD trajectories, so the peptide conformations
could be clustered together to compare several orientations of
the protein backbone without terminals, and clusters were
grouped together based on RMSD. The radial distribution
function (RDF) of water and the lead compound corresponding
RSC Adv., 2020, 10, 25929–25946 | 25931
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to the peptides' surface and the lead compound's center of mass
were determined using ‘g_rdf’.

Population density analysis

Population density analysis was performed using GNUPLOT 5.0,
a convenient command-line tool used extensively for graphing
and contouring in different operating systems. Population
density analysis accounts for the well-known entities of associ-
ated processes and develops them across the landscape based
on the quantity that is measured at each location and the spatial
relationship of the locations of the measured quantities. The
population density plots representing a function of Rg and Ree

for each were plotted in GNUPLOT 5.0. Population density plots
for salt-bridges among distant and nearby residues of the
peptide were also analyzed.

Experimental conditions

Preparation of peptides. Ab and hIAPP peptides with the
sequences 1DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA42
and 1KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY37 were purchased
from GenPro Pvt., Ltd. (India) at purity levels of 98%. The mass,
purity, and quantity of both these peptides were ascertained by
performing analytical HPLC, combination matrix-assisted laser
desorption/ionization time-of-ight mass spectrometry, and
quantitative amino acid analyses.

Stock preparation of peptides

Ab. A stock solution of Ab was prepared as reported previ-
ously.119 Briey, 1 mM of Ab solution was prepared by dissolving
the lyophilized Ab peptide in 100% hexauoroisopropanol
(HFIP). Equal aliquots of Ab solution were then distributed in
sterile 1.5 ml micro-centrifuge tubes. HFIP was removed under
vacuum using Speed Vac, and the dried peptide was then stored
at �20 �C for future use. An aliquot of Ab peptide was resus-
pended in dry DMSO prior to each experiment.

hIAPP. A stock solution of hIAPP was prepared as described
previously by Cao et al.,120 with slight modications. Briey, 100%
hexauoroisopropanol (HFIP) was added to the lyophilized
peptide and allowed to dissolve, yielding a nal peptide solution of
615 mM. This solubilized peptide was ltered through a 0.2 mm
lter, divided into aliquots in sterile micro-centrifuge vials, and
stored at �20 �C until further experimentation.

Thioavin-T (ThT) uorescence kinetics

Ab. Amyloid brils were produced using a procedure described
previously.119 Briey, Ab peptides were diluted to a concentration
of 10 mM in a 50 mM phosphate-buffered saline and 0.02% NaN3

(ref. 121) at pH 7.4 in a 100 ml total reaction volume in 1.5 ml
microcentrifuge tubes. Subsequently, these tubes were incubated
in an aggregation-prone condition (i.e., at 37 �C and�180 rpm) for
one week in the absence and presence of increasing concentra-
tions of BLM (Cayman Chemicals) corresponding to peptide-to-
compound ratios of 1 : 1, 1 : 2, and 1 : 5.

The presence of aggregates and amyloid brils were detected
by measuring thioavin uorescence intensity. In brief, 10 ml of
25932 | RSC Adv., 2020, 10, 25929–25946
each Ab reaction sample was mixed with 90 mL of 10 mM ThT
solution (in a PBS buffer), followed by incubation for 30 min at
room temperature (25 � 1 �C). Fluorescence intensity was
measured in a Nunc F96 Microwell Plate (Thermo Scientic)
using a Perkin Elmer-Enspire multimode plate reader with
excitation and emission wavelengths of 450 and 485 nm.

hIAPP. Amyloid aggregation was initiated by diluting the
peptide to a nal concentration of 16 mM in 20 mM Tris–HCl
(pH 7.4) in the absence and presence of BLM. Peptide:BLM
molar ratios of 1 : 1, 1 : 2, and 1 : 5 were used, as in the case of
Ab, to test the efficacy of BLM in controlling the brillation of
hIAPP. The aggregation reaction was set up in triplicates for all
the tested conditions in a Nunc F96 Microwell Plate (Thermo
Scientic) at 25 �C with continuous rotation in a Perkin Elmer-
Enspire multimode plate reader.

To quantify amyloid brillation, ThT was added to each of
the reaction wells at a nal concentration of 25 mM at the
beginning of the aggregation experiment, along with the other
components. ThT uorescence was monitored continuously at
excitation and emission wavelengths of 450 nm and 485 nm,
respectively, using the same instrument.

Additionally, efficiency of brillization inhibition and t-test
statistical analysis was performed on the acquired ThT data, to
scrutinize the effectiveness of BLM treatment in countering the
individual aggregation of both these peptides. The test was con-
ducted by comparing readings of the treated peptide samples
(individually for all the tested molar concentration ratios) with
those of the control aggregation sample, for both the peptides.

Transmission electron microscopy (TEM)

Visualization of the Ab and hIAPP aggregation samples was
performed by transmission electron microscopy. At the end of
a kinetic run, a 10 ml sample was taken from all the tested
treatments and allowed to adsorb on Formvar carbon-coated
copper mesh grids (Agar Scientic Formvar 300 mesh). The
samples were negatively stained with an aqueous solution of
uranyl acetate, followed by washing with distilled water, and
nally, air-dried before visualization on a JEM-2100F (JEOL,
USA) transmission electron microscope operated at 200 kV.

Results

This study was designed to investigate the dual inhibition effect
against the amyloid aggregation of Ab and hIAPP, which are
responsible for AD and T2D, respectively. The comprehensive
computational and experimental approach was implemented
mainly through drug repurposing, replica exchange molecular
dynamics simulations, and biophysical characterizations of Ab
and hIAPP, both in the presence and absence of a common lead
compound.

Selection of the most potent inhibitor through drug
repurposing

The FDA-approved drug library of compounds showing docking
scores greater than –6kcal mol�1 in HVTS was further employed
for the XP docking protocol. GlideScore estimates the ligand
This journal is © The Royal Society of Chemistry 2020
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Table 1 Result of XP docking parameters for Ab + BLM and hIAPP +
BLM

Glide parameters Ab + BLM hIAPP + BLM

GlideScore (kcal mol�1) �8.38 �9.47
Glide_evdw (kcal mol�1) �49.96 �60.16
Glide_ecoul (kcal mol�1) �30.63 �26.34
Glide_emodel (kcal mol�1) �80.14 �78.29
Glide_energy (kcal mol�1) �80.59 �86.50
Glide_hbond (kcal mol�1) �0.55 �1.09
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binding free energy by considering force eld conditions and
other individual conditions rewarding or penalizing ligand
binding. Therefore, most of the drugs docked with Ab and
hIAPP showed an XP GlideScore greater than �7 kcal mol�1.
Among them, we found the common drug bleomycin (BLM)
showed a good GlideScore of�8.38 and�9.47 kcal mol�1 for Ab
and hIAPP, respectively. BLM was selected for further analysis
based on various ligand-binding parameters, such as glide_e-
nergy and glide_hbond (Table 1). Glide_hbond explains the
Fig. 1 Protein ligand interaction (2D and 3D) diagram (A) Ab and BLM (B

This journal is © The Royal Society of Chemistry 2020
sum of individual hydrogen bond scores between the ligand and
target. More negative values for glide_hbond indicate stronger
hydrogen bonds and the type of atoms, along with the geometry
of atoms affecting the glide_hbond scores. Glide_evdw provides
information about protein-ligand steric interactions. A
combined value of ‘glide_evdw and glide_ecoul’ gives glide_e-
nergy. Glide_emodel is important for correlating various
conformers and utilized by glide to select the best pose and rank
of ligands. BLM was found to show a good glide_emodel value,
suggesting a better pose for Ab and hIAPP binding pockets.

A ligand–protein interaction diagram showing the binding
residues for Ab or hIAPP with BLM is shown in Fig. 1. The
interactions among BLM and Ab and hIAPP separately showed
strong hydrogen bonding with residues Glu3, Asp7, Glu11, and
Ser26, along with various hydrophobic interactions with resi-
dues Phe4, Gln15, Val18, Gln22, Asp23, Asn27, Ala30, Ile41, and
Ala42 in case of Ab, and similarly, residues Asn3, Arg11, Asn14,
Ser28, Asn31, Asn35, and Tyr37 showed hydrogen bonds,
including some hydrophobic interactions with residues Lys1,
Leu12, Phe15, Asn21, Asn22, Ala25, Ser29, Thr30, and Ser34 for
hIAPP. The quantitative analysis of hydrogen bond formation
) hIAPP and BLM.
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Table 2 Intermolecular hydrogen bonds and hydrophobic residues showing close contact between Ab and hIAPP with BLM

Interacting residue
H-bond distance
(Å) H-bond (D–H/A) Hydrophobic residues

Ab + BLM
GLU 3.A OE2 – UNK900.hetN13 2.78 HOE2-H/N13 Phe4, Gln15, Val18, Gln22, Asp23, Asn27, Ala30, Ile41, Ala42
ASP 7.A OD2 – UNK900.hetO11 2.97 HOD2-H/O11
GLU 11.A OE2 – UNK 900.het N10 3.33 HOE2-H/N10
GLU 11.A O – UNK 900.het N10 3.14 HO-H/N10
SER 26.A OG – UNK 900.het O10 3.22 HOG-H/O10
SER 26.A O – UNK 900.het O17 3.01 HO-H/O17

hIAPP + BLM
ASN 3.A ND2 – UNK 900.het O18 3.06 HND2-H/O18 Lys1, Leu12, Phe15, Asn21, Asn22, Ala25, Ser29, Thr30, Ser34
ARG 11.A NH1 – UNK 900.het O18 3.26 HNH1-H/O18
ARG 11.A NH2 – UNK 900.het O16 3.10 HNH2-H/O16
ASN 14.A ND2 – UNK 900.het O6 2.97 HND2-H/O6
ASN 14.A ND2 – UNK 900.het O10 3.03 HND2-H/O10
SER 28.A O – UNK 900.het N13 3.18 HO-H/N13
SER 28.A OG – UNK 900.het O8 2.82 HOG-H/O8
SER 28.A OG – UNK 900.het N5 3.02 HOG-H/N5
ASN 31.A ND2 – UNK 900.het O12 2.85 HND2-H/O12
ASN 35.A OD1 – UNK 900.het O17 2.65 HOD1-H/O17
TYR 37.A O – UNK 900.het N12 3.29 HO-H/N12
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between Ab and BLM, as well as hIAPP and BLM, is shown in
Table 2. Here, all the hydrogen bond interactions have a bond
length within 3.0–3.2 Å (Table 2).
REMD simulations analysis of Ab and hIAPP in the presence
and absence of BLM

The drug repurposing results presented above suggest that BLM
has a strong potential to bind with Ab and hIAPP and prevent
their amyloid aggregation. To check the hypothesis, we per-
formed REMD simulations to investigate conformational
modulations, determine how BLM interacts with Ab and hIAPP,
and determine the specic interacting modes between BLM and
Ab and between BLM and hIAPP. REMD was performed for all
four systems (i.e., Ab, Ab + BLM, hIAPP, and hIAPP + BLM) in
Fig. 2 (A) Rootmean square deviation (RMSD) plots for Ab [top left] and h
that the peptide adopted various conformations. (B) Root mean square
[bottom right] in presence and absence of BLM.

25934 | RSC Adv., 2020, 10, 25929–25946
explicit solvent environments, and for Ab + BLM and hIAPP +
BLM systems, BLM molecules were randomly added around Ab
and hIAPP with arbitrary orientations. REMD implemented
a total of 32 replicas in each system for a wide range of
temperatures, and the trajectories were analyzed at 300 K.

Simulation convergence estimation was achieved, and the
average acceptance ratio was found to be more than 20% for
each case. The convergence of the REMD simulation was
investigated using trajectories, which revealed that the
temperature space was explored widely by each replica
throughout the simulation time. We also investigated the effect
of BLM binding on the structural stability of Ab and hIAPP
peptides. A visual inspection of all REMD trajectories indicates
that BLM interactions did not broadly disrupt the structural
probity and secondary structure of Ab and hIAPP, enabling
IAPP [bottom left] in presence and absence of BLMwhich demonstrates
fluctuation (RMSF) plots for all residues of Ab [top right] and hIAPP

This journal is © The Royal Society of Chemistry 2020
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Table 3 Average Rg and Ree values measured for all four systems

Peptide in respective
solvent/s Average Ree Average Rg

Ab 2.316 nm 1.084 nm
Ab + BLM 2.510 nm 1.155 nm
hIAPP 2.227 nm 1.192 nm
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them to maintain their folded structures either in the presence
or absence of BLM.

RMSD analysis of the peptides gave insights into their
structural conformation during REMD simulations, providing
an explanation for the peptides' stability and determining
whether the simulation had equilibrated. The average backbone
RMSD for all Ab and hIAPP systems varied (0.5–1.5 nm and 0.5–
2.0 nm, respectively) and attained various conformations over
the course of the REMD simulation time (Fig. 2A). The stable
curve for the RMSD of the peptides during the course of the
simulation shows that the REMD simulations were ideal for
further analysis. Furthermore, the RMSF curve for each residue
of Ab and hIAPP was determined, and the peaks showed local
residual uctuations along with the peptide during the REMD
simulations. Upon analyzing the RMSF curve, both N- and C-
terminals residues were found to show more uctuations than
the other residues of Ab and hIAPP (Fig. 2B). Moreover, the
residues of Ab and hIAPP in the presence of BLM were found to
show relatively similar uctuations as the Ab or hIAPP system
Fig. 3 Population density analysis for Ab and hIAPP in presence and abs
radius of gyration (Rg) around its center of mass. Blue part implies the heav
limited populated conformations.

This journal is © The Royal Society of Chemistry 2020
individually, except for hIAPP in the presence of BLM, which
reduced residue uctuation at the C-terminal.
Radius of gyration and peptide end-to-end distance
population density analysis

Furthermore, the distribution of data-points for the entire
REMD simulation time against the global parameters (i.e., the
radius of gyration [Rg] and end-to-end peptide distance [Ree])
was determined by population density analysis for all four
ence of BLM, peptide end to end distance (Ree) i.e. C to N terminal and
ily populated conformations, whereas red and yellow part indicates the

hIAPP + BLM 2.366 nm 1.189 nm

RSC Adv., 2020, 10, 25929–25946 | 25935
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Fig. 4 (A) Probability percentage (%) of intramolecular hydrogen bonds (C]O to N–H) formation for Ab and hIAPP in presence and absence of
BLM. (B) Probability percentage (%) of intermolecular hydrogen bonds with BLM in Ab and hIAPP.
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REMD simulations systems (Fig. 3). The Rg value was found to
be about 1 nm and similar in all the four systems, while Ree was
increased in the presence of BLM for the Ab and hIAPP systems,
25936 | RSC Adv., 2020, 10, 25929–25946
from 2 to 3 nm and 0.5 to 2.5 nm, respectively. The densely
populated region is represented in blue, which indicates most
of the coordinates reside in that area, and yellow, green, red,
This journal is © The Royal Society of Chemistry 2020
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and white show the less densely populated areas. The relative
observation attained from population density graphs for all four
systems conrms that the incorporation of BLM in Ab or hIAPP
resulted in shiing the densely populated region (i.e., the blue
color shied to higher coordinates). Table 3 shows the average
Rg and Ree values measured for all four systems. These results
clearly show that Ab + BLM and hIAPP + BLM had higher Ree

values, which led to the peptides being in extended unfolded
conformations.
Intra- and intermolecular hydrogen bond analysis

The quantitative analysis of intra- and intermolecular hydrogen
bonds of Ab or hIAPP with BLM were further analyzed by
determining the probability% of hydrogen bonds. The presence
of BLM led to the decreased formation of intramolecular
hydrogen bonds and the increased formation of intermolecular
hydrogen bonding with Ab or hIAPP, respectively. As a control,
both Ab and hIAPP were shown to have a higher intramolecular
hydrogen bond probability of 12.5% (27 hydrogen bonds) and
11.2% (13 hydrogen bonds), while Ab + BLM and hIAPP + BLM
were showed a lower intramolecular hydrogen bond probability
of 8.2% (20 hydrogen bonds) and 10.8% (18 hydrogen bonds),
respectively (Fig. 4A). The maximum intermolecular hydrogen
bond probability was found to be 19.2% (2 hydrogen bonds) for
Ab + BLM and 18.9% (2 hydrogen bonds) for hIAPP + BLM
(Fig. 4B).
Salt-bridge population density analysis

The presence of salt-bridges in Ab was investigated for far-off
residues (ASP23-LYS16) and adjacent residues (ASP23-LYS28),
both in the presence and absence of BLM, and the population
density plotted. Salt-bridge formation did not occur in hIAPP
due to the absence of negatively charged or acidic amino acids
(e.g., aspartic and glutamic acid) as the acidic side chains of the
proteins. In Fig. 3, it is quite clear that Ab alone was found to be
folded in a compact form, which conrms more salt-bridges
were formed between far-off residues (ASP23-LYS16) than
adjacent residues (ASP23-LYS28). However, incorporating BLM
Fig. 5 Population density analysis of monomeric salt bridges within ASP

This journal is © The Royal Society of Chemistry 2020
into the Ab + BLM system had the opposite effect on salt-bridge
formation, as salt-bridge formation involved more adjacent
residues (ASP23-LYS28) and fewer far-off residues (ASP23-
LYS16). The Ab and Ab + BLM systems were relatable, as the
Ab + BLM system's salt-bridges were fewer in number than the
Ab system's, denoted by the blue region of the population
density graph in Fig. 5. Therefore, depending on the relatable
results for hydrogen bonds and salt-bridges, we detected that
a supercial decrease in hydrogen bonds was managed by an
increase in salt-bridges.

Secondary structural characterization of Ab and hIAPP in the
presence and absence of BLM

Fig. 6A represents the secondary structures of Ab and hIAPP,
both in the presence and absence of BLM systems. For Ab and
hIAPP systems, the probabilities of coil structures are 31.5%
and 38.5%, and for b-sheet structures, they are 19% and 29%,
respectively. However, other secondary structures (i.e., b-bridge,
bend, turn, a-helix, 5-helix, and 3-helix conformations) occurred
less frequently for both Ab and hIAPP in the absence of BLM.
Aer adding BLM to Ab and hIAPP systems, the coil structure
probability increases from 31.5% to 44.5% (from 31.5% without
BLM to 44.5% with BLM) for Ab and remains similar, at about
38.3%, for the hIAPP + BLM system (38.5% without BLM in
hIAPP system). The opposite happens for b-sheet probabilities,
which decrease from 19% to 14% in the Ab + BLM system and
from 29% to 21% in the hIAPP + BLM system. The probability
percentages of other secondary structures do not change much.
These results illustrate that the BLM molecule decreases
signicantly the b-sheet structures that are considered the
characteristic feature of amyloids, and thus, BLM helps reduce
amyloid formation.

To obtain residue-based secondary structure details, we
determined the probability percentages for secondary struc-
tures as a function of Ab and hIAPP amino acid residues, which
are shown in Fig. 6B. In the Ab system, the N-terminal's
hydrophobic residues, along with a few C-terminal residues,
have a higher b-sheet propensity. Correspondingly, in the hIAPP
system, residues 5–13 and 19–26 have a higher b-sheet
(D) and LYS (K) of Ab in presence and absence of BLM.

RSC Adv., 2020, 10, 25929–25946 | 25937
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Fig. 6 (A) Probability% of secondary structures formation for Ab and hIAPP in presence and absence of BLM. (B) Detailed residue specific
probability% of secondary structures [coil (top), b-sheet (middle), and a-helix (bottom)] for Ab and hIAPP in presence and absence of BLM.
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propensity. Aer adding BLM, b-sheet propensity is reduced for
the N-terminal's hydrophobic residues, along with some C-
terminal residues, in the Ab + BLM system, and similarly, in
the hIAPP + BLM system, it is minimized for residues 5–13 and
19–26. However, coil propensity is higher for the Ab + BLM
system's residues than Ab alone, while it is relatively similar for
hIAPP with and without BLM. Furthermore, a-helix propensity
was foundmore frequently for the C-terminal residues of the Ab
without BLM system, while it was lower in the C-terminal resi-
dues of the hIAPP without BLM system (Fig. 6B). Residue-
specic probability percentages for other secondary struc-
tures, including b-bridge, bend, turn, 3-helix, and 5-helix, are
reported in the ESI (Fig. S1).†
25938 | RSC Adv., 2020, 10, 25929–25946
Clustering of Ab and hIAPP with and without BLM, where the
three/two-stranded anti-parallel cross b-sheet is transiently
populated but diminished by BLM binding

An abundant conformational ensemble was gathered for each
REMD-simulated temperature. To examine the three-
dimensional (3D) structures of Ab and hIAPP with and
without BLM, we performed cluster analysis for the conforma-
tions developed in the presence and absence of BLM for all
systems. Cluster analysis aids in determining the more popu-
lated structures and divides the low-temperature conformations
generated by OPLS-employed REMD simulations into new
clusters with related geometric attributes. Therefore, we
captured the pertinent structural properties of all four systems
This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Ideal conformations of primary three highest populated clusters of Ab and hIAPP raised in presence and absence of BLM. The corre-
sponding time consumed in every conformation over production run of all system is determined by percentages.
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by presenting denite structures that are representatives of
their appropriate clusters. The conformations in all four
systems (i.e., Ab, Ab + BLM, hIAPP, and hIAPP + BLM) were
separated into various clusters using cluster parameters. The
central axis of the top three most dominant clusters, including
their ensembles, is depicted in Fig. 7. The Ab and hIAPP systems
Fig. 8 (A) ThioflavinT (ThT) fluorescence monitored showing kinetics me
Transmission electronmicroscopy showingmorphology of Ab amyloid fib
100 nm scale.

This journal is © The Royal Society of Chemistry 2020
show the most dominant conformations and have cluster
probability percentages of 67.27% and 52.80%, respectively,
showing compact folded conformation with b-sheet formation
in the consecutive clusters that are dissimilar to the initial
conformation. In the absence of the BLM molecule, in the rst
cluster, Ab consists of a three-stranded cross b-sheet
chanism of fibril formation for Ab in presence and absence of BLM. (B)
rils stained in uranyl acetate at 25 000 foldmagnification and at 20 and
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conformation (anti-parallel) and hIAPP consists of a two-
stranded cross b-sheet conformation (anti-parallel), which, in
the second cluster, forms a two-stranded cross four-b-sheet
conformation (two b-sheets on each strand). However, adding
BLM to the Ab and hIAPP systems shows the most dominant
conformations have a cluster probability percentage of 48.73%
and 62.59%, respectively, showing less b-sheet-formation
despite a-helix and coil formations. Hence, in the presence of
BLM, Ab and hIAPP mainly created coil rich conformations with
the loss of b-sheet formation, which veries that the BLM
molecule prevents three-stranded anti-parallel b-sheets in the
case of Ab and two stranded anti-parallel four-b-sheets in case of
hIAPP.
BLM inhibits the aggregation and brillization of both Ab and
hIAPP: thioavin uorescence-based aggregation assays (ThT)

The efficacy of BLM in countering the aggregation of Ab and
hIAPP was tested by performing in vitro thioavin-T (ThT)
uorescence assay. The level of ThT uorescence gives
a measure of the brillar load resulting from the aggregation of
amyloidogenic proteins/peptides. The results of the ThT
kinetics are shown in Fig. 8A and 9A; in the presence of BLM,
both Ab and hIAPP exhibit lower levels of ThT uorescence.

BLM increased the lag phase of Ab amyloid aggregation, and
this increase was much more pronounced at higher concen-
trations of the compound. At the maximum tested concentra-
tion of BLM (i.e., Ab : BLM 1 : 5), the level of ThT uorescence
Fig. 9 (A) ThioflavinT (ThT) fluorescence monitored showing kinetics me
(B) Transmission electron microscopy showing morphology of hIAPP am
20 and 100 nm scale.

25940 | RSC Adv., 2020, 10, 25929–25946
increased very little over time, suggesting minimal Ab
brillation.

In the case of hIAPP, lower test concentrations of BLM (i.e.,
hIAPP : BLM – 1 : 1 and 1 : 3) were not able to delay the expo-
nential phase of amyloid aggregation, although lower levels of
ThT uorescence were detected when compared to hIAPP alone.
At the maximum-tested concentration of BLM, a clear increase
in the duration of lag was observed, but uorescence levels rose
signicantly by the end of the kinetic run. Thus, BLM lowered
the brillation of hIAPP but was less efficient in countering its
aggregation when compared to Ab (Fig. S2†).

The T-test statistical study revealed a high signicance level
for the compared populations. Results are presented for the
ThT values obtained at the end of the kinetic run, for both Ab
and hIAPP. Entire calibrations were conceded in triplicates,
with error bars demonstrating the standard deviation (Fig. S3†).
The signicance in all the cases is substantiated via p-value
symbolizations (*p < 0.05, **p < 0.01, and ***p < 0.001).
BLM modied the secondary structures and morphologies of
Ab and hIAPP aggregates: transmission electron microscopy
(TEM)

BLM's inhibitory effect on the aggregation of both Ab and hIAPP
was also visualized using TEM. The morphological character-
ization of the end-stage aggregates formed by these peptides in
the presence and absence of BLM reveals that BLM was able to
chanism of fibril formation for hIAPP in presence and absence of BLM.
yloid fibrils stained in uranyl acetate at 25 000 fold magnification and at

This journal is © The Royal Society of Chemistry 2020
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inhibit the brillation of Ab and hIAPP in a concentration-
dependent manner (Fig. 8B and 9B).

Both Ab and hIAPP, when present alone, formed numerous
larger-sized amyloid brils, in comparison to the aggregates
formed by these peptides in the presence of BLM at all tested
concentrations. In the presence of increasing molar concen-
trations of BLM, the size of Ab and hIAPP amyloid brils
diminished, and the abundance of amorphous off-pathway
aggregates increased.

Discussion

The biochemical commonalities between AD and T2D would
entail that trivial therapeutic approaches could be pursued. In
this study, by performing computational and experimental
techniques for AD and T2D, we determined the dual inhibitory
actions against the amyloid aggregation of Ab and hIAPP. FDA-
approved drugs are considered the most vital resources for
universal drug discovery and improvement because of the
evidence that they are greater in number and have unique
chemical diversity, and once selected for drug reproling,
preclinical trials do not need to be repeated. In this study, we
performed virtual screening of FDA-approved drugs to nd
potent inhibitors of amyloid aggregation in Ab and hIAPP.
Through docking analysis and renement, we demonstrated
that most of the ligands showed strong interactions. Among all
the ligands, the most potent and common inhibitor of Ab and
hIAPP aggregation, bleomycin (BLM), was selected using
various energy and docking score-based parameters.

BLM is a complex of associated glycopeptide antibiotics from
Streptomyces verticillus, including bleomycin A2 and B2. It
prohibits DNA metabolism and is utilized as an antineoplastic,
primarily for solid tumors.122,123 It is a well-known antitumor
and antibiotic in the treatment of squamous cell cancers,
melanoma, sarcoma, testicular and ovarian cancer, and Hodg-
kin's and non-Hodgkin's lymphoma.124 Berg et al. reported that
site-specic drug delivery administered by photochemical
internalization intensies the antitumor effect of BLM and
leads to a therapeutic release that is entrapped in endocytic
vesicles towards cytosol.125 BLMs are generally administrated
therapeutically as a composite of various analogs denoted ble-
noxane, which consists primarily of bleomycin A2 and bleomy-
cin B2.126,127 BLM's potency as an antitumor agent has also been
established by, for example, the nding that omitting bleomy-
cin from a multidrug regimen used to treat germ cell carci-
nomas resulted in decreased potency.128 It has also been found
to be effective in the treatment of malignant pleural effusion.
Nikbakhsh et al. assessed the efficacy of BLM in malignant
pleural effusion treatment for 50 cases and showed that pleu-
rodesis with BLM improved disease symptoms in about 88% of
patients without causing serious complications.129 Further-
more, a combination of BLM and tranexamic acid was found to
be an effective treatment for pleurodesis in patients suffering
from malignant pleural effusion.130

Aer identifying a potent inhibitor, the characterization for
the structures of short peptides (Ab and hIAPP) and the inter-
actions with BLM molecules are essential for the advancement
This journal is © The Royal Society of Chemistry 2020
of drugs that aim the preliminary brillation stage of Ab and
hIAPP aggregation. In this study, by implementing a 100 ns per
replica all-atom explicit REMD simulation for atomistic
conformational sampling, was performed to illustrate strong
interactions between Ab and BLM, as well as between hIAPP and
BLM, and we investigated conformational ensemble modula-
tions of both peptides (Ab and hIAPP) and the key Ab–BLM and
hIAPP–BLM interactions. We implemented the REMD method
to cross the potential energy barriers among unfolded confor-
mations and increase convergence towards the native structure.
To the preeminent of our information, this is themajor all-atom
explicit solvent REMD simulation research work on the full
length Ab and hIAPP peptides and the effect of BLM molecule.
Beginning from unfolded coil forms, our REMD simulations
illustrates that Ab and hIAPP attains both compact and
extended conformations. This atomistic simulation demon-
strates that secondary structure modulations, primarily b-sheet
formation and depletion mechanism of both Ab and hIAPP,
depend on the potent inhibitor, BLM, which leads to b-sheet
destabilization, followed by a-helix destabilization. The pres-
ence of the b-hairpin comprising b-sheet in our REMD run
claims the earlier proposition that the b-hairpin is the amyloi-
dogenic precursor of Ab and hIAPP.131,132 We observed an
enhancement in Ree values when BLM was present in both Ab
and hIAPP systems, making the peptides form in a slightly
unfolded and extended manner. We also observed a reduction
in intramolecular hydrogen bonds and increased intermolec-
ular hydrogen bonds with BLM in Ab + BLM and hIAPP + BLM
systems. In addition, secondary structure proles reveal that
BLM helped decrease b-sheet propensity, followed by the
increased propensity of coil structures. For further validation
purposes, we performed cluster analysis, in which the most
dominant clusters showed an absence of b-sheet formation in
BLM-treated Ab and hIAPP systems.

An in vitro assessment of BLM's effect on the aggregation of
Ab and hIAPP was examined via ThT uorescence assays and
TEM analysis. BLM was able to counter the aggregation of both
the amyloidogenic peptides. In the case of Ab, BLM increased
the lag phase of aggregation, which might be a consequence of
its stabilization of the native unfolded conformation of this
peptide and further directs it towards off-pathway amorphous
aggregates, which were also observed in our TEM analysis. BLM
also impacted hIAPP brillation; although the delay in the
exponential phase of aggregation was not observed, lower levels
of hIAPP ThT uorescence were detected in the presence of BLM
throughout the time of aggregation, in comparison to the
control reaction of hIAPP alone. On comparing the efficiency of
BLM induced inhibition of brillization for both the peptides, it
was observed that BLM is more effective in the case of Ab.
Analysis of the normalized ThT uorescence values acquired at
the end of the kinetic run for each of the peptides identied
that, when Ab and hIAPP are treated with equimolar concen-
trations of BLM, the percentage of inhibition in brillization
detected is 45% and 30% respectively (Fig. S2†). Similarly, when
the BLM concentration used is 5 times the molar concentration
of the Ab and hIAPP peptides, the percentage of inhibition
observed was 87% and 69% respectively (Fig. S2†). The TEM
RSC Adv., 2020, 10, 25929–25946 | 25941
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analysis of hIAPP aggregates formed in the presence of BLM
exhibited clear morphological changes in shape and size when
compared to hIAPP alone, indicating BLM hinders the growth of
hIAPP brils.

Inhibiting the formation of amyloid aggregates by amyloi-
dogenic peptides/proteins is the most widely used approach
sought by researchers for developing therapies against amyloid
diseases. The Ab–BLM and hIAPP–BLM interface scrutiny
reveals that hydrophobic and hydrogen bond interactions
synergistically play vital roles on the BLM-induced conforma-
tional shi of Ab and hIAPP. The present study shows an all-
atom interpretation of the conformational ensemble of Ab
and hIAPP and delivers the mechanistic acumens into the
inhibitory process of BLM against Ab and hIAPP aggregation. In
this milieu, drug repurposing is an encouraging setting where
a familiar remedy with novel anti-aggregating activity against
amyloidogenic proteins could be used to treat such debilitating
diseases. In this study, we identied BLM, a known antibiotic
and anti-cancer drug, and determined its ability to inhibit the
brillation of both Ab and hIAPP peptides.
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