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In this study, the (5,10,15,20-tetrakis[(4-methoxyphenyl)lporphyrinato)cadmium(i) complex ([Cd(TMPP)])
was successfully used as a modifier in a carbon paste electrode (CPE) and exploited for bisphenol A
(BPA) detection. Analytical performance revealed two linear ranges from 0.0015-15 uM and 0.015-
1.5 mM with a detection limit of 13.5 pM. The proposed method was implemented in water samples,
which resulted in quantitative signals over the range 6.5-1000 puM with recoveries between 92.6 and
107.7% for tap water and between 96.6 to 106.0% for mineral water.

1. Introduction

Bisphenol A (BPA) is a contaminant of environmental concern
and an important component in the production of plastics. It
has been widely used as an additive in the production of epoxy
resins and polycarbonate substances* which are widely used in
food and beverage containers®* due to their transparent, strong
and light characteristics.” There is evidence that BPA can act as
an endocrine disruptor, and its toxicity® has been widely re-
ported in the literature, with an LDs, of approximately 3250 mg
per kg body weight [bw] per day,”® mainly based on body weight
changes in two- and three-generation studies in mice and rats.
Studies have shown that even low levels of BPA mimic and
interfere with hormonal activity by interfering with growth and
reproductive development.” It may be associated with several
types of cancer (e.g. testicular, prostate, and breast cancer).'*"*
There is concern that the species can migrate from packaging
into a wide range of food matrices; from water storage tanks to
drinking water for instance. In addition, BPA contamination in
the environment has created significant risks to ecosystems
during production and recycling. Therefore, due to the harmful
effects of BPA on the environment and the health of humans, it
is of great importance to control its levels in environmental,
biological, and food samples.”> Hence, a rapid, specific and
sensitive analytical method for BPA detection is required in the
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fields of environmental monitoring, food safety, and toxicity
evaluation.

It is noteworthy that several analytical methods are currently
used to detect BPA, including liquid chromatography-mass
spectrometry, electrochemiluminescence, colorimetry, liquid
chromatography coupled to UV/vis, fluorescence, enzyme-
linked immunosorbent assay (ELISA) and surface-enhanced
Raman scattering (SERS)"*™** However, they have many draw-
backs, all these methods need complicated pre-treatment due to
requirements for the extraction and purification of the sample,
they are expensive, complicated and time-consuming, thus
restricting their application.'® These methods do not allow fast
processing of multiple samples and real-time detection.
Therefore, researchers have turned their attention to the use of
electrochemical sensors as an alternative solution for BPA
quantitation due to their inherent advantages.

Electrochemical sensing lends itself to rapid on-site BPA
detection at different electrode materials, including carbon'”*®
and metallic transducers.*?° However, electrode fouling which
occurs during the electrooxidation of phenols is a challenge.*>*
It has been found that the most common way to deal with
electrode fouling problems is to modify the electrode surface
with e.g. composite electrocatalytic materials containing nano-
particles.>*® As a result, a time-consuming, re-modification
step (such as drop-dry or dip-coating method) is usually rec-
ommended for the regeneration of the modified electrode for
every new measurement.

Carbon Paste Electrodes (CPE), which involve a coupling of
pure graphite powder and liquid binder, was initially reported
in 1958 by Adams,* and this type of electrode offers surface
renewability, a stable response, high versatility, low cost, low
background currents and ease of modification.”®*° The addition
of electroactive materials into the paste is advantageous and has
been extensively applied in the electroanalytical community.

This journal is © The Royal Society of Chemistry 2020
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One of the most important roles of modifiers is to reduce the
redox potential required for electrochemical reactions and to
increase the sensitivity and selectivity of the assay.** Many
materials involving metals or metal alloys, various nanotubes
and nanoparticles, graphene and fullerenes, porphyrins and
their derivatives, and some organic dyes have been widely used
to construct electrochemical sensors.’>*

Amongst such materials, porphyrins and their derivatives
have been used as excellent electron donors in recent years and
have received extensive attention. Indeed, porphyrins are
naturally occurring macrocyclic species that bind metals via N
donor atoms on four pyrrole subunits, resulting in versatile
chelating systems. Synthetic metalloporphyrins have been
investigated as models for hemoproteins and enzymes such as
hemoglobin, myoglobin, and cytochromes. In recent decades,
researchers have extended the use of porphyrin-based
compounds known as porphyrinoids (as free bases or metal-
lated) where they are involved in several areas of chemistry,
biochemistry, medicine, and physics. Actually, these applica-
tions include catalysis, photodynamic therapy, photodynamic
destructions of viruses, semiconductors, nonlinear optics,
photovoltaic materials, and chemical sensors.**¢

It is noteworthy that the cadmium ions as well as the Zinc IIB
group metal are unambiguously in the +2 oxidation state in
porphyrin derivatives. The direct metalation of porphyrin with
zinc or cadmium leads to the tetracoordinated porphyrin
species type [M"(Porph)] (Porph = porphyrinato and M = Zn or
Cd). The [Zn(Porph)] species are very reactive to yield penta-
coordinated and  hexacoordinated  complexes  type
[Zn(Porph)(L),] (L = neutral monodentate axial ligand, x = 1 or
2) while [Cd(Porph)] complexes are less reactive than
[Zn(porph)] and only few pentacoordinated [Cd(porph)(L)]
species are reported.*” This is the major reason why we choose
this latter species for our investigation because this Cd(u)
coordination compound is inert compared to other metal-
loporphyrins such as [Zn(Porph)]. On the other hand, very few
[Cd(Porph)] complexes are reported in the literature and the
only reported Cd-tetravalent porphyrin species is the [Cd(TPP)]
complex where TPP is the (5,10,15,20-tetraphenyl)porphyr-
inato.*® Up to date, there are no reported investigations using
a tetracoordinated cadmium(u) complex with the (5,10,15,20-
tetrakis)[(4-methoxyphenyl)] porphyrin (TMPP).

In this paper, a carbon paste electrode (CPE) was modified
with the (5,10,15,20-tetrakis[(4-metoxyphenyl)]porphyrinato)
cadmium(u), complex [Cd(TMPP)], to obtain a novel electro-
chemical sensor CPE-[CA(TMPP)] for the determination of
bisphenol A (BPA). The [Cd(TMPP)] species were prepared and
characterised by elemental analysis, FT-IR, UV/vis and "H-NMR
and the prepared CPE-[Cd(TMPP)] electrode was characterized
using cyclic voltammetry (CV). The parameters that influence
the electrochemical reaction i.e. pH, scan rate and interferences
were examined electrochemically. The prepared sensor showed
two linear ranges from 1.5-15 000 nM and 0.015-1.5 mM with
a 3.75 x 107" M limit of detection (LOD, S/N = 3). The
percentage recoveries for two tested water samples (tap water
and mineral water) were >92%, which shows the usefulness of
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this new sensor for the electrochemical detection of BPA in
drinking water samples.

2. Experimental

2.1. Chemicals and apparatus

Bisphenol A (=99.0%), Nujol oil, graphite powder (fine powder
pure pH 5-6 (50 g 17, H,0, 20 °C) and solvents were purchased
from Sigma-Aldrich. All chemicals were of analytical grade and
used without any further purification. Phosphate buffer was
used as a supporting electrolyte and prepared with appropriate
amounts of 0.1 M KCI and 0.1 M KH,PO,. A glassy carbon
electrode (GCE) was used for electrochemical characterization
studies. Working solutions were freshly prepared before use.
The 5,10,15,20-tetrakis[(4-metoxyphenyl)]porphyrin) (H,TMPP)
was prepared according to the standard literature method.*
The "H NMR spectra were recorded on a Bruker Advance 300
MHz spectrometer. Infrared spectra were obtained with a Shi-
madzu FTIR-8400 spectrophotometer in the 4000-400 cm ™ *
region. UV/Vis spectra were recorded with a WinAspect PLUS
(validation for SPECORD PLUS version 4.2) scanning spectro-
photometer using dichloromethane solutions in 1.0 cm path
length cuvette. Mass analysis was performed by LC-MS spec-
trometer 2020 (Shimadzu, Japan) through electron-spray ioni-
zation (ESI) technique.

2.2. Preparation of the [Cd(TMPP)] complex

The  (5,10,15,20-tetrakis[(4-metoxyphenyl)]porphyrinato)cad-
mium(u) ([Cd(TMPP)]) was synthesized according to the litera-
ture.* H,TMPP (300 mg, 0.42 mmol) and CdCl,-2H,0 (1 g,
1.344 mmol) were refluxed in DMF for 5 h. The color of the
solution rapidly changed from purple to dark green (Scheme 1)
and the reaction was monitored by UV/vis spectroscopy. The
reaction mixture was then filtered, and the solvent was removed
under reduced pressure to afford 0.45 g (yield ~80%) of
[CA(TMPP)] as dark blue solid. CHN analysis (calculated)
C4sH36CdN,0, (845.25 g mol™') C, 68.20; H, 4.29; N, 6.63%.
Found: C, 68.36; H, 4.32; N, 6.74%. UV/vis [CH,Cl,: Aay in nm
(log ¢)]: 437(4.95), 573(3.65), 617(3.66). IR [(solid, cm~")]: »(CH).:
2986-2836, ¥(O-CH,): 1246, (C=N): 1507, »(C=C): 1601, »(CN):
1329, 6(CCH): 999. MS-ESI (CH,Cl,): (m/z) = 845.5 [Cd(TMPP)]".
'H NMR (300 MHz, CDCl;, 298 K): §(ppm) 8.86 (s, 8H, Hg pyrr-)s
8.14 (s, 8H, H-ortho), 8.11 (s, 8H, H-meta), 4.10 (s, 12H, O—CHz).

2.3. Preparation of the electrodes

The CPEs were prepared according to reported procedures.*>****
Graphite powder and the Nujol oil were thoroughly mixed in
a 7 : 3 (w/w) ratio in a mortar to form a very fine homogeneous
paste. The paste was then packed into a glass tube (2 mm
diameter) with electrical contact via a copper wire. In the case of
the modified CPE-[Cd(TMPP)] sensor, an optimised amount of
[Cd(TMPP)] was added to the graphite/oil mixture and mixed to
form a well dispersed and homogeneous paste.

RSC Adv, 2020, 10, 31740-31747 | 31741
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Scheme 1 Synthesis of the [CA(TMPP)] complex.

3. Results and discussion

3.1. Characterisation of [Cd(TMPP)]

3.1.1. UV/vis and IR spectra. Porphyrins and metal-
loporphyrins have a strongly conjugated 7 electron system.
These species exhibit two w — 7* electronic transitions in the
visible region with a very strong B absorption band known as
the Soret band, in the range 350-450 nm, with molar absor-
bance of about 10> M™" em ™', and Q bands at 500-750 nm
which are approximately five order of magnitude lower than the
Soret band. Fig. 1 shows the spectrum of [Cd(TMPP)] in
dichloromethane solution, with Soret band at 437 nm and Q
bands at 573 and 617 nm.

The solid IR spectrum of [Cd(TMPP)] depicted in Fig. 2
shows absorption bands at 2986-2836 cm ™" attributed to »(C-
H) stretching frequency of the porphyrin. The C-O stretch of the
OCHj; group at the para positions of the phenyls of the TMPP
moiety give rise to an absorption band at 1246 cm ™. The bands
at 1507 ecm ™' and 1601 cm™ ' correspond respectively to the
C=C and C=N vibrations of the porphyrin while the band at
1329 cm ™' is attributed to the C-N stretch and the band at
999 cm™ " is assigned to the C-H deformation vibration of the
porphyrin [6(CCH)].**

3.1.2. 'H NMR spectra. The proton NMR spectrum of the
[Cd(TMPP)] complex is shown in Fig. 3. The phenyl protons (Ho,
Ho' and Hm, Hm') resonate in the 7.50-8.50 ppm range and the
peaks corresponding to the pB-pyrrolic protons appear at
8.86 ppm. These chemical shift values are very close to those of
the free base H,TMPP porphyrin indicating a diamagnetic

Soret Band
13 437

1,0

0,8
—CdTMPP

Absorbance
o
[=>}

Q-Bands

573 617

3 200 500
wavelength (nm)

Fig.1 UV/vis absorption spectrum of [Cd(TMPP)] with a concentration
~107° M recorded in dichloromethane.
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Fig. 2 Solid IR spectrum of [Cd(TMPP)] recorded in the [4000-
500] cm~* domain.

character of our Cd(u)-porphyrin derivative.*® The absence of
the peak corresponding to the N-H protons of the pyrroles,
shown at —2.74 ppm for the free base porphyrin indicates the
insertion of the Cd(u) cation in the cavity of the H,TMPP
porphyrin.

3.1.3. Cyclic voltammetry behavior of [Cd(TMPP)] at GCE.
The electrochemical behavior of [Cd(TMPP)] was studied by CV
in tetrahydrofuran (THF) solvent using tetrabutylammonium
tetrafluoroborate ((n-Bu),NBF,) as supporting electrolyte (0.1
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10 ) [ 7 6 s . 3 2 1 ° a1 2 2
Chemical Shift (ppm)

Fig.3 H NMR spectrum (300 MHz) of [Cd(TMPP)] recorded in CDCls.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra04793g

Open Access Article. Published on 26 August 2020. Downloaded on 1/13/2026 5:15:47 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances

Paper
\) Oxidaton »
40 4
1®
20
i 0 4
g. 0 S ¢
2 §
£ -
® s o
B -]
5 2 O
© : (i): = CPE
40 — CPE 104 (ii)== CPE/Cd(TMPP)
— (n-Be) NBF,
T?O.A a8
49 Reduction
20 - . v
L] 10 05 00 05 10 - A o o
Potential'V Potential/V
Fig. 4 (A) Cyclic voltammograms of 1 mM [Cd(TMPP)] (black) dissolved in THF with background electrolyte 0.1 M ((n-Bu)4NBF,) (red), scan rate:

100 mVs™ at a GCE with non-aqueous reference electrode. (B) cyclic voltammograms of (i) CPE and (i) CPE—[Cd(TMPP)] in 5 mM Fe(CN)>~"4~

solution containing 0.1 M KCL. Scan rate of 100 mVs ™.
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Fig. 5 Response to 1.5 mM BPA for CPE-[Cd(TMPP)] modified elec-

trode over the range 0-7% w/w. Electrolyte concentration of 0.1 M
phosphate buffer/20% acetonitrile (v/v) (pH 7 at 100 mV s73).

M). Fig. 4(A) presents the cyclic voltammograms of [Cd(TMPP)]
and the background n-Bu,;NBF, supporting electrolyte recorded
in THF at a glassy carbon electrode. Fig. 4(A) shows 3 oxidation
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Fig. 6
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waves (E, at 0.63, 0.25 and —0.55 V vs. Ag/Ag") with corre-
sponding cathodic processes (E,, at 0.125 V, —0.55 Vand —1.0 V
Ag/Ag"), representing the central metal possibly Cd(0/u) re-
oxidation at —0.55 V (O3/R3) and the m conjugated ring
system of the porphyrin ligand (O1/R1, O2/R2) with contribu-
tion from methoxy electron-donating groups.**.

3.1.4. Electrochemical characterisation @ of  CPE-
[Cd(TMPP)]. Fig. 4(B) shows the redox behavior of the
[Cd(TMPP)] modified CPE using an anionic probe — K;[Fe(CN)e]
over the potential range —0.9 to 1 V vs. Ag/AgCl at 100 mVs™ ™.
Fig. 4(B) curve (i) shows a cyclic voltammogram at the unmod-
ified CPE in the presence of 5 mM K;[Fe(CN)¢] resulting in a pair
of well-defined voltammetric peaks with cathodic peak potential
(Epe) at 0.072 V and anodic peak potential (Ey,) at —0.286 V with
peak-to-peak separation (AEp) 267 mV vs. Ag/AgCl. Curve (ii)
represents the CPE-[Cd(TMPP)] response in the same solution
(Epe of 0.019 V, Ep, —0.562 V AE}, 490 mV). Compared with the
bare CPE, the peak currents of the [Cd(TMPP)] modified elec-
trode decreased dramatically with increased AE, indicating
hindered electron transfer for the Fe(CN)s> /*~ species as
a result of the porphyrin modifier.

0.60
(B)
0.5 %
0.50 - e 8
-3 '
% 0.45-
=
0.40 +
0.354
. . , . .
4 5 6 7 8

pH

(A) Cyclic voltammograms of 1.5 mM BPA at CPE—-[Cd(TMPP)] (3% loading w/w) over pH 4-8. (B) plot of £, vs. pH.
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3.2. Optimization of experimental conditions

3.2.1. % [Cd(TMPP)] loading in carbon paste. The purpose
of this work was to fabricate a simple, low cost and a highly
sensitive electrochemical sensor for the measurement of BPA.
In order to obtain the best electrode configuration, different
quantities of [Cd(TMPP)] (0-7% w/w) were added to the carbon
paste electrode. The effect on the voltammetric response to
1.5 mM BPA (dissolved in 0.1 M phosphate buffer/acetonitrile
20% (v/v)) was studied. The inspection of Fig. 5 shows that
the sensor response increases with an increasing amount of
[CA(TMPP)] modifier up to 3%. Then, the signal decreases
significantly which could be due to the presence of more
adsorption sites at higher % loadings leading to the accumu-
lation of oxidation products.**

3.2.2. pH effect. The effect of electrolyte pH on the
response of the CPE-[Cd(TMPP)] based sensor was studied by
CV over the pH range 4-8. It was found that the intensity of the
oxidation peak gradually increases with increasing pH
(Fig. 6(A)) where a pH of 7 resulted in the optimal signal. The
anodic peak potentials appeared to be strongly dependent on
solution pH and the oxidation potential (Ep,) shifted negatively
with increasing pH in a linear relationship indicating that
protons are directly involved in the oxidation of BPA (Fig. 6(B)).
This relationship obeys the following equation: E,, =
—0.0586pH + 0.7648; (correlation coefficient: R”> = 0.9084). A
slope of 55 mV pH !, which is close to the theoretical value of
0.0576 VpH ", clearly indicates that equal numbers of electrons
and protons were involved in charge transfer.

1.8 4 [=—=20mVss

Current/pA

02 04 0.6 0.8 1.0
Potential/V

View Article Online
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wo— Do = o= )=0

Scheme 2 Electrooxidation process of BPA at the CPE-[Cd(TMPP)].

3.2.3. Scan rate. In order to understand the electrocatalytic
mechanism of BPA at the CPE-[Cd(TMPP)] electrochemical
sensor, the effect of scan rate (v) on the oxidation current of
bisphenol A was examined (Fig. 7(A)). The peak currents ()
increased linearly with the scan rate (v) in the [20-300] mV s™*
range, indicating an electrochemical process under adsorption
control where the linear regression equation can be estimated
by: Ia (HA) = 0.061 +0.0042 V (with a correlation coefficient R* =
0.96) (Fig. 7(B)). Meanwhile, a linear relationship between E,,
and Inv was also observed over the 20-300 mV s~ ' range. The
equation can be expressed as: Ep, (V) = —0.113 In v + 0.611 (with
a correlation coefficient R* = 0.9) (Fig. 7(C)).

As for a surface controlled and totally irreversible electrode
process, Ep, is defined by the Laviron equation:*”

RT . RTk, RT

Epu = Eo + ankF In anF + anF v

where « is the transfer coefficient, k, is the standard rate
constant of the reaction, n is the electron transfer number
involved in rate determining step, v is the scan rate, E, is the
formal redox potential, R is the gas constant, T is the absolute
temperature, and F is Faraday's constant. According to the
linear correlation of E, vs. In v, an was found to be 1.1 from the
slope of the plot. Assuming o to be 0.5,"** the number of the
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Fig.7 (A) Cyclic voltammograms of 1.5 mM BPA at CPE-[Cd(TMPP)] over the range 20~300 mV s™* (B) /. vs. scan rate, (C) Ep, vs. In(scan rate).
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Fig. 8 (A) CV for various concentrations of BPA over the range 1.5 x 1072 to 1.5 x 107> M in 0.1 M PBS (pH 7), (B) calibration plot of peak current

vs. log[BPAL.

electrons included in the electrochemical oxidation of BPA was
found to be 2. According to previous reports with regards to the
oxidation of BPA and other phenolic compounds and the results
obtained from this work, the electrooxidation process of BPA at
the modified electrode is as shown by Scheme 2. The 4 fold
enhancement in current in the presence of 3% [Cd(TMPP)]
indicates an electrocatalytic role for the porphyrin modifier. The
Cd metal centre and associated redox process may play a role in
accelerating the electrooxidation of the BPA molecule, making
for more efficient electron and proton transfer with the asso-
ciated lowering of BPA overpotential (from 0.7 to 0.6 V vs. Ag/
AgCl). The enhancement of the available surface area results
in the increase of the oxidation current and the modifier can
also act to minimize surface fouling from the oxidation
products.

3.2.4. Determination of the linear range and limit of
detection. The analytical performance of the CPE-[Cd(TMPP)]
sensor for BPA quantitation was tested using CV. Fig. 8(A) shows
the electrochemical response of BPA oxidation as a function of
BPA concentration with the corresponding calibration curve

shown in Fig. 8(B). Two linear domains are visible on this curve.
This behaviour has also been reported in the literature for the
electroanalytical detection of BPA which was attributed to
adsorption effects.®*>> These two linear regions covered the
concentration ranges of 0.0015-15 uM and 0.015-1.5 mM
according to the two equations: I, (A) = 1.005 10~ log[BPA] +
9.97 107 (with a correlation coefficient R* = 0.998) and I, (A) =
4.263 x 10”7 log[BPA] + 2.56 10~ (with a correlation coefficient
R?> = 0.997) respectively. The detection limit (LOD) calculated by
the formula: [(3 x Standard deviation of low concentration)/
slope of the calibration curve]** was 1.35 10 '* M. This value
is one of the lowest LODs obtained so far in comparison with
recent reported BPA sensors literature values (Table 1).

3.2.5. Interference study. The selectivity of the electro-
chemical sensor was also examined in phosphate buffer (pH =
7). Some phenolic species and common inorganic ions have
been tested to check their levels of interference in BPA deter-
mination in the presence of 1.5 pM BPA (Table 2). In addition,
inorganic ions, such as Ca’, K", Zn** and Na" at 100-fold
concentrations were shown to have no influence on BPA signals.

Table 1 Comparison of the prepared sensor for BPA detection with other reported sensors

Electrodes Linear range (M) LOD? (M)  Ref.
CTAB-CPE? 2.5 x 107 %t01.10 x 10°° 7.5 x107° 54
CoPc-CPEf 8.75 x 10 ¥ t0 1.25 x 10™° 1.1 x 107° 55
Thionine/CPE 0.15 x 10 ®to 45 x 10° 1.5 x 1077 56
Ordered mesoporous silica (SBA-MIP)/CPE? 1.0 x 1077 t0 5.0 x 10~* 3.2 x 1077 57
Magnetic molecularly imprinted nanoparticles-surfactant 6.0 x 1077 t0 1.0 x 10~ * 1.0 x 1077 58
modified/CPE
MCM-41/CPE® 0.22 x 107 °t0 8.8 x 107° 38 x 1077 59
ILs-GO/CPE 0.09 x 10° to 250 x 10™° 55 x 107° 60
nAg-PVP/CPE? 4x10%t01.0 x 107° 2.5 % 107° 61
MWCNTox-MCPE" 3.0x 1077 t02.1 x 107" and 2.4 x 10 ° to 1.0 x 10™* 40.4 x 10™° 62
[cd(TMPP)]/CPE 1.5 x 10’ to 1.5 x 10~° 1.35 x 10~ '" This
work

“LOD = limit of detection. ” CTAB = cetrimonium bromide. ° CoPc = cobalt phthalocyanine. ¥ SBA-MIP = mesoporous silica-molecularly

imprinted polymers. * MCM-41 = mesoporous silica molecular sieves.

fILs-GO = ionic liquids-graphene oxide. € nAg-PVP = silver

nanoparticles-polyvinylpyrrolidone. ® MWCNTox = oxidized multi-walled carbon nanotube.

This journal is © The Royal Society of Chemistry 2020
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Table 2 Influence of interferents, 100/50-fold concentration on the
electrode response of 1.5 uM BPA at 0.42 V vs. Ag/AgCl

Peak change

Interferents (%)
50-Fold Hydroquinoe —3.28
Phenol +2.54
4-Octylphenol +4.89
Pyrocatechol —3.78
Dopamine +2.96
Ascorbic acid +2.15
100-Fold Ca’ —4.52
K -1.56
Zn** -3.12
Na® —-3.21

Table 3 BPA detection in real drinking water samples

RSD%
Sample Added (M)  Found (M) Recovery%  (n=3)
Tap water 1.5x107°  1.39x107° 926 1.24
1.5x10*  1.61x10*  107.7 2.35
1.5x107° 152 x 107> 101.5 3.52
1.5x10° 147 x10° 983 2.82
1.5x 107 146 x 1077 97.5 1.09
Mineral water 1.5 x 10°° 145 x 10°°  96.6 1.34
1.5x107* 156 x 10°* 104 2.11
1.5x10° 149 x10°  99.3 1.65
1.5x107° 157 x 10°°  104.6 1.9
1.5x 107  1.55x 107  103.3 1.56
1.5x107% 159 x 10°° 106 1.15

These results indicated that CPE-[Cd(TMPP)] electrode exhibits
selective reactivity to BPA in the presence of these ionic species.

3.3. Real sample analysis

In order to confirm the sensitivity and applicability of the
proposed method, the fabricated [Cd(TMPP)]/CPE sensor was
used to determine BPA in water samples (tap and mineral
water). Under the optimized conditions, a known-amount of the
sample was added into pH 7 phosphate buffer and then
analyzed according to the above-described procedures. No BPA
species were detected in the water samples (Table 3). The same
samples were then spiked with different amounts of BPA and
the recoveries were in the range 92.6-107.7% and 96.6-106% for
tap and mineral water respectively, indicating that the sensor is
perfectly adequate for application in natural samples.

4. Conclusions

This article reports the fabrication of a simple, cost-effective,
and highly sensitive sensor for BPA based on a carbon paste
matrix encapsulating a new cadmium(u) porphyrin derivative.
The synthesis, the UV/vis, IR and proton NMR characterisation
of the (5,10,15,20-tetrakis[(4-metoxyphenyl)]porphyrin)cadmiu-
m(u) complex ([Cd(TMPP)]) was reported. The use of the

31746 | RSC Adv, 2020, 10, 31740-31747
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porphyrin compound as a modifier in a carbon paste electrode
improved the analytical performance compared to that exhibi-
ted by glassy carbon modified with other nanomaterials. The
results show that the bisphenol A oxidation signal was
enhanced ad the modified electrode proved to be highly sensi-
tive, with acceptable stability. Two linear ranges were observed
from 0.0015-15 uM and 0.015-1.5 mM with a detection limit of
13.5 pM. Quantitation of BPA was enabled at this surface and
analytical performance was excellent in spiked drinking water
samples.
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