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Systematic microstructure design requires reliable thermodynamic descriptions of each and all

microstructure elements. While such descriptions are well established for most bulk phases,

thermodynamic assessment of microstructure defects is challenging because of their individualistic

nature. In this paper, a model is devised for assessing grain boundary thermodynamics based on available

bulk thermodynamic data. We propose a continuous relative atomic density field and its spatial gradients

to describe the grain boundary region with reference to the homogeneous bulk and derive the grain

boundary Gibbs free energy functional. The grain boundary segregation isotherm and phase diagram are

computed for a regular binary solid solution, and qualitatively benchmarked for the Pt–Au system. The

relationships between the grain boundary's atomic density, excess free volume, and misorientation angle

are discussed. Combining the current density-based model with available bulk thermodynamic databases

enables constructing databases, phase diagrams, and segregation isotherms for grain boundaries,

opening possibilities for studying and designing heterogeneous microstructures.
1. Introduction

Grain boundaries (GBs) are one of the main sources of hetero-
geneity in polycrystalline microstructures; they interact with
various microstructure elements, e.g. GB networks,1 secondary-
phase particles,2–4 dislocations,5–7 and vacancies,8,9 while they
themselves possess distinct physical properties similar to the
bulk phases. A critical source of microstructure heterogeneity is
GBs' interaction with solute atoms that inuences both the local
and global chemistry of the microstructure. Solute segregation
to GBs canmediate a whole different sort of phenomena such as
segregation-assisted GB premelting,10 phase transition,11–13

precipitation14,15 and embrittlement16,17 as well as stabilization
of nanocrystalline materials.18–20 Hence, understanding and
controlling GBs and their spatial interactions with other
microstructure elements can unravel new ideas for designing
heterogeneous microstructures.

The studies on interfacial segregation can be traced back to
the works of Gibbs,21 Langmuir,22 McLean23 and Fowler and
Guggenheim24 on the adsorption. Since then, numerous studies
on the segregation phenomena have been conducted.25–42 van
der Waals,43 Cahn and Hilliard44 and Cahn45 worked out free
energy functionals that account for heterogeneous interfacial
features on the mesoscale. Based on this idea, several models
for GB segregation were proposed. Ma et al.46 developed a phase-
eld model for studying GB segregation in which GB region was
nd Testing (BAM), Unter den Eichen 87,
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described by its reduced atomic coordination number. Based on
Kobayashi–Warren–Carter's work,47 Tang et al. developed
models for order-disorder transition48,49 and phase transition50

at GBs. Heo et al.51 proposed a model for GB segregation and
drag including mist elastic interactions. The common feature
of these models is the non-vanishing gradients in GB structure
and/or composition. Due to this fact, GB phases are sometimes
referred to as ‘complexions’52–54 to emphasize their conned
heterogeneous nature in contrast to a bulk phase that is – by
denition – homogeneous.

Despite the enormous knowledge accumulated over the last
century about the fundamental aspects of GBs,39,40,55,56 its
application at a technical level is awaiting more comprehensive
tools to allow systematic GB engineering. In particular, data-
bases on GBs' properties are less popular; while thermodynamic
and kinetic descriptions for most bulk phases are well estab-
lished, analogous systematic and general descriptions for GBs
are rarely investigated. This is because of the individualistic
nature of GBs as every GB can be different depending on its
crystallographic properties.55 Although GB properties are func-
tions of a large space of crystallographic variables, one may not
neglect the fact that they are made of the same constituents as
for the grain interior (bulk), albeit deviating in local structure.
An alternative view, therefore, can be to picture GBs with
reference to their corresponding bulk phases. Thus, parallel to
the current characterization techniques57 and automated
simulation methods58,59 that are mainly focused on studying
individual GBs, a general approach could be assessing the
thermodynamic and kinetic properties of GBs with reference to
the known bulk. For this purpose, we need to establish a phys-
ical framework that allows an approximation of the GB envi-
ronment with respect to its reference bulk material.
This journal is © The Royal Society of Chemistry 2020

http://crossmark.crossref.org/dialog/?doi=10.1039/d0ra04682e&domain=pdf&date_stamp=2020-07-16
http://orcid.org/0000-0002-5906-9673
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra04682e
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA010045


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 2
:5

8:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
In the current study, I propose a continuous atomic density
eld and its spatial variations to describe the GB region, relative
to its adjacent homogeneous bulk material, in a regular
substitutional binary solution. Based on this idea, (i) the GB's
Gibbs free energy is approximated, (ii) GB segregation and the
coexistence of the bulk and GB phases are discussed and, (iii)
a concept for computing GB phase diagram is described. The
novelty of the current model is that it enables a rapid, pragmatic
assessment of GB properties based on available bulk thermo-
dynamic data. To demonstrate the application of the current
model, GB segregation and interfacial phase separation in the
Pt–Au system are qualitatively studied. Furthermore, the rela-
tionships between the relative atomic density eld and the GB
nature in terms of GB excess free volume and misorientation
angle are discussed. In two parallel studies, the applications of
this model are further demonstrated in understanding segre-
gation and interfacial phase separation in different alloy
systems. In one case, we apply the density-based formulation to
realize the Fowler–Guggenheim segregation isotherm for co-
segregating Ni and Mn atoms at various types of GBs in
a FeMnNiCrCo high-entropy alloy.60 A simpler version of the
model has been applied to studying Mn segregation in the
binary FeMn alloy system.61 The current density-based model
offers a pragmatic approach to build GB thermodynamic data-
bases, segregation isotherms and phase diagrams for studying
heterogeneous polycrystalline microstructures.
2. Density-based model for GB
thermodynamics

In his seminal work, van der Waals proposed that an interface
can be described by a continuous density eld43 and its spatial
variations. For a GB, that needs to accommodate for the
geometrical mismatch between two adjacent grains, an analo-
gous picture can be portrayed in which the density of the GB will
be different than that of the bulk materials. This is, on the one
hand, even a simpler case than the van der Waals's setup, as the
bulk density on the two sides of the GB are the same. On the
other hand, however, it can be more complex because of the
crystalline nature of the bulk material that may extend into the
GB region. As a rst attempt, here we neglect the heterogeneity
of GB density (the density variation within the GB plane due to
the crystallinity) and instead focus on the possibility of
considering an ‘average’ atomic density parameter and density
gradient terms to describe GB region.

In the following, we derive the density-based Gibbs free energy
of a GB in unary (Section 2.1) and a substitutional binary regular
solution (Section 2.2) systems. To do so, we take a variational
approach to obtain density-based free energy density and cast this
into the conventional thermodynamic framework, as used in
CALPHAD approaches. We obtain the Gibbs free energy func-
tional as a function of the atomic density eld, concentration
eld, and their respective spatial variations. Using this free energy
description, we obtain the GB phase diagram and segregation
isotherm, Section 3. The model is demonstrated on the Pt–Au
system. Different aspects of the current model, i.e., the
This journal is © The Royal Society of Chemistry 2020
coexistence of the bulk and GB phases and the relationship
between the GB density, GB excess free volume, and GB misori-
entation angle, are discussed in Section 4.
2.1 A GB in a pure substance

At constant temperature T and pressure p, the Gibbs free energy
functional of a systemmade of pure substance A can be written as

GA ¼
ð
U

GA d~r ¼
ð
U

rn ðHA � TSAÞ d~r (1)

where rn(~r) is the atomic density eld equivalent to the inverse
molar volume eld (Vm(~r))

�1, HA is enthalpy per unit mole with
HA ¼ KA + EA + pVA (KA: kinetic energy, EA: potential energy and
pVA: mechanical energy), and SA is entropy per unit mole,
respectively. van der Waals has shown43 that the potential
energy of a heterogeneous system depends on the (local) density
as well as (nonlocal) density gradients. In this study, we
consider a symmetric at GB separating two innitely large
homogeneous grains. For this system, breaking the symmetry
only normal to the GB plane, the interactions can be realized
considering only one spatial dimension. The potential energy
density will be

EAðxÞ ¼ EAð�NÞ þ 1

2

ðx
�N

f ðrÞ dr: (2)

Here EA(�N) is the potential energy inside the homogeneous
grain at x ¼ �N and the second term describes the energy
stored in matter when brought from �N to a given position x.
f(r) is the sum of all forces acting on point r:

f ðrÞ ¼
ðN
0

½zðrþ qÞ � zðr� qÞ� dq (3)

where z(r� q) is the force density at point r upon the interaction
between the twomaterial points separated by a distance�q. The
interaction forces between atoms depend on the interatomic

potential U(r � q) with zðr � qÞ ¼ vUðr � qÞ
vq

.

Although the detailed form of the interatomic potentials/
forces can vary for different types of atoms, it is well-known
that the atomistic interactions rapidly decays over the
distance between atoms. For the sake of our discussion, we
consider here a simple functional form

zðr� qÞ ¼ a nðr� qÞ
qz

¼ jðqÞrnðr� qÞ (4)

where a is a material constant, n(r� q) is the number of atoms, z

is a positive exponent and we dene jðqÞ ¼ aVL

qz
. Eqn (4) with

z [ 1 is inspired by interatomic force relations in the absence
of the long-range electrostatic interactions.62 Here VL is the
characteristic coarse-graining volume over which the mesoscale

atomic density eld is measured by rnðrÞ ¼
nðrÞ
VL

. Similar coarse-

graining descriptions are worked out in dening mesoscale free
energy formulations.63,64 The specic form of j(q) can be obtained
from atomistic simulations. The second- or higher-order depen-
dencies of the interaction forces on the atomic density (including
RSC Adv., 2020, 10, 26728–26741 | 26729
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repulsive atomic interactions) can also be assumed. In the current
treatment, however, we limit ourselves to the simplest rst-order
linear approximation as in eqn (4).

In the theories of atomistic simulations, the atomic forces
are practically calculated up to a cut-off radius Rc beyond which
the interatomic forces are neglected.62 Hence, one reasonable
approximation for the coarse-graining volume would be

VL z
4p
3
Rc

3 which can relate the atomistic simulation length-

scale with the current mesoscale density-based formulation.
Inserting eqn (4) in eqn (3), and integrating by part we can write

f ðrÞ ¼
ðN
0

jðqÞ ½rnðrþ qÞ � rnðr� qÞ� dq

¼ jðqÞ ½rnðrþ qÞ � rnðr� qÞ�N0

�
ðN
0

jðqÞ v½rnðrþ qÞ � rnðr� qÞ�
vq

dq

¼ �
ðN
0

jðqÞ v½rnðrþ qÞ � rnðr� qÞ�
vq

dq (5)

with lim
q/N

jðqÞ ¼ 0 and lim
q/0

½rnðr þ qÞ �rnðr� qÞ�¼ 0. Applying

the Taylor expansions rnðr � qÞ ¼ rnðrÞ �
vrn

vr
qþ 1

2!
v2rn

vr2
q2

� 1
3!

v3rn

vr3
q3 þ 1

4!
v4rn

vr4
q4 � 1

5!
v5rn

vr5
q5 þ., eqn (5) gives

f ðrÞ ¼ �
ðN
0

2 jðqÞ
�
vrn

vr
þ 1

2!

v3rn

vr3
q2 þ 1

4!

v5rn

vr5
q4 þ.

�
dq

¼ 2E0
A

�
vrn

vr

�
� kA

�
v3rn

vr3

�
� k

0
A

�
v5rn

vr5

�
�.

(6)

where we dene E0
A ¼ �

ðN
0
jðqÞ dq , kA ¼

ðN
0
jðqÞq2 dq and

k
0
A ¼ 1

12

ðN
0
jðqÞq4 dq . Using eqn (2) and (6) with the boundary

values EA(�N) ¼ E0Arn(�N),
�
v2rn

vr2

�
�N

¼ 0 and
�
v4rn

vr4

�
�N

¼ 0,

we obtain the potential energy as a function of atomic density:

EAðxÞ ¼ E0
ArnðxÞ �

kA

2

�
v2rn

vr2

�
x

� k
0
A

2

�
v4rn

vr4

�
x

�. (7)

As a consequence of the Tylor expansions, it is clear that the
sixth and higher-order spatial derivatives of the atomic density
eld can still contribute to the potential energy. These are,
however, neglected in the following. Thus, the free energy
functional in eqn (1) can be written as

GA ¼
ð
U

"
E0

Arn
2 þ ðKA þ pVA � TSAÞ rn þ

kA

2
ðVrnÞ2

þ k
0
A

2

�
V2rn

�2 #
d~r (8)

where we use a three-dimensional notation,
Ð
(Vrn)

2 dV ¼ �Ðrn-
V2rn dV and

Ð
(V2rn)

2 dV ¼ �ÐrnV4rn dV with Vrn ¼ 0 and V3rn ¼
0 at the boundaries of the integrals. Here two density-dependent
26730 | RSC Adv., 2020, 10, 26728–26741
terms (KA + pVA � TSA)rn and E0Arn
2 appear in the free energy

functional that scale differently with respect to the density rn.
The bulk atomic densities on the two sides of the GB can

have different isotropy, depending on the crystallographic
planes that meet at the GB plane. This can result in asymmetric
GB structure and density prole. In the current study, however,
we neglect this possibility and assume the same bulk density on
the two sides of the GB. Thus we can further simplify our
description by dening a dimensionless density parameter

rðxÞ ¼ rnðxÞ
rBn

with rBn ¼ rn(�N) and writing

GA ¼ EB
Ar

2 þ �
KB

A þ pVB
A � TSB

A

�
rþ kr

2
ðVrÞ2 þ k

0
r

2

�
V2r
�2
(9)

in which EBA ¼ E0A(r
B
n)

2, kr ¼ kA(r
B
n)

2, k
0
r ¼ k

0
A ðrBnÞ2, KB

A ¼
KAr

B
n, pV

B
A ¼ pVAr

B
n, S

B
A ¼ SAr

B
n and, the Gibbs free energy of the

homogeneous bulk phase (for r ¼ 1) recovers as

GB
A ¼ EB

A + KB
A + pVB

A � TSB
A ¼ HB

A � TSB
A. (10)

To obtain the GB free energy, one can compare a heteroge-
neous system including a GB against a homogeneous bulk
system (without the boundary). Thus, subtracting eqn (10) from
eqn (9) we obtain

GGB
A ¼ EB

A

�
r2 � 1

�þ �KB
A þ pVB

A � TSB
A

�ðr� 1Þ

þkr

2
ðVrÞ2 þ k

0
r

2

�
V2r
�2
: (11)

Eqn (11) gives an approximation of the GB Gibbs free energy
density, GGB

A . For the symmetric at GB centered at position x ¼
0, the equilibrium density prole across the GB region (for 0# x
# h) will be

rðxÞ ¼ rGB �
X4
i¼1

Ci þ C1e
b1x þ C2e

�b1x þ C3e
b2x þ C4e

�b2x (12)

which satises
dGGB

A

dr
¼ 0 with k

0
r . 0. The coefficients Cis need to

fulll boundary conditions r(x ¼ 0) ¼ rGB, r(x ¼ h) ¼ 1 and the

continuity conditions
vr

vx
ðx ¼ 0Þ ¼ vr

vx
ðx ¼ hÞ ¼ 0. Here

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2 � 8EB

Ak
0
r

q
2k0

r

vuut
, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2 � 8EB

Ak
0
r

q
2k0

r

vuut
and h is

the GB half width. For a simpler case, assuming k
0
r ¼ 0, the

equilibrium density prole across the GB region reads

rðxÞ ¼
�
1þ rGB

2

�
�
�
1� rGB

2

�
cos

�
px

h

�
(13)

with h ¼ p

ffiffiffiffiffiffiffiffiffiffiffi
kA

�2EB
A

r
. Eqn (12) or (13) give a continuous atomic

density prole across the GB. For more details on these
equations see Appendix A. The continuity of atomic density
prole across the GB region is conrmed by atomistic simula-
tions.61 Fig. 1 compares the atomic density prole eqn (13)
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra04682e


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 2
:5

8:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
versus previous phase-eld models for GBs47–50 (Fig. 1(c)) as well
as the classical phase-eld prole across an interface65–67

(Fig. 1(d)). Using eqn (13) with k
0
r ¼ 0, the GB energy

g ¼ 2
ðh
0
GGB
A dr can be analytically obtained as

g ¼ a0(1 � rGB)2 (14)

with a0 ¼ p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2EB

AkA

q
. This equation approximates the direct

relation between g and rGB for an equilibrium density prole
Fig. 1 (a) and (b) Continuous density profile across a symmetric flat GB
with a density r(x ¼ 0) ¼ rGB (eqn (13)). The GB width is related to the
model parameters EBA and kA. The current density profile across GB is
compared versus schematic drawing of order parameters from (c) the
KWC phase-field model for GBs47 usually applied for studying GB
phase transitions48–50 and (d) the classical phase-field profile (see for
instance ref. 65). (e) The energy of the GB as a function of its density
(eqn (14)) is shown (see Section 4.2 for discussions).

This journal is © The Royal Society of Chemistry 2020
across the GB. Fig. 1(e) shows the normalized value
g

a0
as

a function of rGB. In the following, rGB, the average relative
atomic density within the GB plane, will be referred to as ‘GB
density’. The signicance of the GB density and its relationship
with the GB character is discussed in Section 4.2.
2.2 A GB in a regular binary alloy

In order to extend the current density-based model for a GB in
a binary alloy, we need to discuss the signicance of mixing energy
as a function of atomic density. For a bulk regular solutionmade of
A (solvent) and B (solute) atoms, the change in the Gibbs free
energy due to the mixing can be approximated as68

DGB
mix(XB) ¼ DHB

mix � TDSB
mix ¼ UXAXB

+ RT[XA ln XA + XB ln XB] (15)

with

U ¼ NaZD3 (16)

in which R is the gas constant,U is themixing enthalpy coefficient,
Na is Avogadro number and Z is the coordination number.

D3 ¼
	
3AB � 3AA þ 3BB

2



is bonding energy in which 3ij is the

bonding energy between atoms i and j and XA (XB) is the mole
fraction of atoms A (B). In principle, the mixing energy terms in
eqn (15) can be assumed to follow the same scaling found in eqn
(9). The effect of changing the coordination number Z on the GB
enthalpy of mixing and GB segregation has been previously dis-
cussed (see for instance ref. 40, 46 and 69 and references therein).
While the coordination number is proportional to the local
density, the stretch in the bonding energy D3 is also expected to
changewith the density in the limit of linear elasticity. Considering
these facts and neglecting the dependency of congurational
entropy for the sake of simplicity, we can write

DGmix(XB, r) z r2DHB
mix � TDSB

mix. (17)

Following Cahn and Hilliard,44 an energy term due to the
concentration gradients – in the presence of chemical hetero-
geneity – enters the free energy description as well. Thus, using
eqn (9) and (17), the density-based Gibbs free energy of a regular
solid solution (SS) can be written as

GSSðXB; rÞ ¼ XAGAðrÞ þ XBGBðrÞ þ DGmixðXB; rÞ

¼ XA

 
EB

Ar
2 þ �KB

A þ pVB
A � TSB

A

�
rþ kA

2
ðVrÞ2 þ k

0
r

2

�
V2r
�2!

þXB

 
EB

Br
2 þ �KB

B þ pVB
B � TSB

B

�
rþ kB

2
ðVrÞ2 þ k

0
r

2

�
V2r
�2!

þ r2UXAXB � TDSB
mix þ

kX

2
ðVXBÞ2

(18)

where kX is the concentration gradient coefficient. In eqn (18),
correspondingmolar fractions XB

i and XGBi will be considered for
RSC Adv., 2020, 10, 26728–26741 | 26731
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the bulk and GB regions, respectively. For the homogeneous
bulk phase, one recovers

GB
SS(X

B
B, r ¼ 1) ¼ XB

A(H
B
A � TSB

A) + XB
B(H

B
B � TSB

B)

+ UXB
AX

B
B � TDSB

mix. (19)

Using eqn (18) we are able now to study the GB phase
equilibria and segregation isotherms as presented in the next
section.
3. Applications of the density-based
model
3.1 Equilibrium GB phase diagram

Obviously, a GB may not exist without its corresponding bulk
phase(s). It is, however, useful to study the equilibrium phase
diagram of a hypothetical GB as a function of its atomic density.
As eqn (18) suggests, for such hypothetical GB with r < 1 the
phase equilibria should differ from that of the corresponding
bulk material with r ¼ 1. The equilibrium states are evaluated
by minimizing the Gibbs free energy functional with respect to
Fig. 2 Gibbs free energy density of the Pt–Au system (eqn (22)) is
shown as a generalized function of composition and atomic density at
T¼ 300 K. For rGB¼ 1¼ rB, the Gibbs free energy of the reference bulk
is recovered. For rGB < 1 the free energy increases.

Fig. 3 The Gibbs free energy density of the bulk and our hypothetical
compared at different temperatures. As expected, the GB Gibbs free en

26732 | RSC Adv., 2020, 10, 26728–26741
the concentration and atomic density elds, i.e.
dGalloy

dr
/0 and

dGalloy

dXB
/0 with

dGalloy

dq
¼ vGalloy

vq
� V

vGalloy

vVq
þ V2 vGalloy

vV2q
and

Galloy ¼
Ð
GSS d~r. A numerical solution of these equations can

provide information about the spatiotemporal evolution of
phases in the GB region. This has been quantitatively demon-
strated in a parallel study on the Mn segregation in Fe–Mn
system.61 The aim of the current study, however, is to provide
analytical descriptions for equilibrium GB thermodynamics.
Hence, in the following, we rather investigate a single material
point at the GB center where spatial gradients of the atomic
density eld vanish, i.e. Vr(x ¼ 0) ¼ 0. We further assume that
for this point the concentration gradient and higher-order
density gradients can be neglected. Thus, with r(x ¼ 0) ¼ rGB

and XB(x ¼ 0) ¼ XGB
B , the density-based Gibbs free energy

description at this material point simplies to

GSS(X
GB
B , rGB) ¼ XGB

A (EB
A(r

GB)2 + (KB
A + pVB

A � TSB
A)r

GB)

+ XGB
B (EB

B(r
GB)2 + (KB

B + pVB
B � TSB

B)r
GB)

+ (rGB)2UXGB
A XGB

B � TDSB
mix. (20)

Eqn (20) allows to approximate the GB thermodynamic
properties, analytically. To demonstrate application of the
current density-based model, we consider a hypothetical GB
with rGB ¼ 0.75 in the Pt–Au system. In this alloy system, the
only difference to the theoretical regular solution is in the
enthalpy of mixing that extends to the second term in Redlich–
Kister polynomial:

UPtAu ¼ L0 + L1(X
B
Pt � XB

Au). (21)

Inserting eqn (21) in eqn (20) we obtain

GSS(X
GB
Au , r

GB) ¼ XGB
Pt (E

B
Pt(r

GB)2 + (KB
Pt + pVB

Pt � TSB
Pt)r

GB)

+ XGB
Au (E

B
Au(r

GB)2 + (KB
Au + pVB

Au � TSB
Au)r

GB)

+ (rGB)2UPtAuX
GB
Pt X

GB
Au � TDSB

mix. (22)

Grolier et al.70 have assessed the bulk thermodynamic data
for binary the Pt–Au and reported L0 ¼ 11 625 + 8.3104T and L1
¼ �12 616 + 5.8186T [J mol�1] for the FCC Pt–Au solid solution.
The rest of the thermodynamic data for pure Pt and Au are
GB with rGB ¼ 0.75 in the Pt–Au system obtained from eqn (22) are
ergy density is higher than the bulk.

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Equilibrium phase diagram for the bulk r ¼ rB ¼ 1 and our
hypothetical GB with r ¼ rGB ¼ 0.75 are obtained for the Pt–Au
system. The dash lines represent the chemical spinodals. The colored
area marks the possible domain where GB phase diagrams for 0.75 <
rGB < 1 can appear. Note that the equilibrium bulk and GB phase
diagrams are plotted independently. The coexistence of the bulk and
GB phases will be discussed in Sections 3.2 and 4.1 and Fig. 6.
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extracted from SGTE compilation by Dinsdale.71 Inserting these
values in eqn (21) and (22), one obtains the Gibbs free energy as
a function of GB density and composition. Fig. 2 shows a 3D
XGB
B

1� XGB
B

¼ XB
B

1� XB
B

� exp

 
� ½DEB þ U�ðrGB2 � 1Þ þ ðDKB þ pDVB � TDSBÞðrGB � 1Þ þ 2U

�
XB

B � rGB2
XGB

B

�
RT

!
: (23)
map of the Gibbs free energy for the Pt–Au system at 300 K as
a function of composition XAu and GB density rGB. We found
that as the GB density decreases, the Gibbs free energy increases
and deviates larger from the corresponding bulk values. Fig. 3
compares bulk and GB Gibbs free energy for rGB ¼ 0.75 at
different temperatures.
XGB
Au

1� XGB
Au

¼ XB
Au

1� XB
Au

� exp

�
� ½DEB þ L0�ðrGB2 � 1Þ þ ðDKB þ pDVB � TDSBÞðrGB � 1Þ þ 2L0

�
XB

Au � rGB2
XGB

Au

�þQ

RT

�
(24)
Using eqn (22), the equilibrium phase diagrams of the
bulk and any specic standalone GB (with a given GB density)
in the Pt–Au system can be generated. Fig. 4 compares the
phase diagrams of the bulk and our hypothetical GB (with rGB

¼ 0.75) in the Pt–Au solid solution. The results show that,
inside a (hypothetically standalone) GB, the interfacial phase
separation becomes possible but for smaller ranges of
temperature and composition when compared to the bulk
phase diagram.

As it is evident from the Gibbs free energy plots (Fig. 2 and
3), the GB thermodynamics strongly depend on the GB density
This journal is © The Royal Society of Chemistry 2020
rGB. Although the phase diagram is a nonlinear function of the
GB density, the possible values for GB density rGB are nite
and vary close to 1. For instance, the colored area in Fig. 4
indicates where the GB phase diagram can appear for 0.75 <
rGB < 1. Thus, once the range of GB density is determined, the
equilibrium GB phase diagrams can be approximated. The GB
density represents the nature (type) of the GB and correlates
with the GB energy and misorientation angle. These aspects
of the current density-based model are discussed in
Section 4.2.
3.2 GB segregation behavior

In Section 3.1 a hypothetical standalone GB was discussed. For
a complete description of GB phase equilibria, however, the
coexistence between the GB and bulk phases must be under-
stood. In a binary system, this requires equality of the (relative)
chemical potentials mBB � mBA ¼ mGBB � mGBA all across the system
(parallel tangent construction).24,72 In reality, these are not
sufficient conditions as a minimum energy state with respect to
the atomic density eld must be satised as well. However, if we
consider the same material point at the GB center as above, we
can simplify the problem and solve for the equality of the
(relative) chemical potentials using eqn (20) which gives
In eqn (23), XGB
B is the composition of the GB with r ¼ rGB, XB

B is
the composition of the bulk far from the GB, DEB¼ EBB� EBA, DK

B

¼ KB
B � KB

A, pDV
B ¼ pVBB � pVBA, and DS ¼ SBB � SBA. Eqn (23)

resembles the Fowler–Guggenheim segregation isotherm24 but
also takes the specic effect of a given GB, represented by its
density rGB, into account. For the Pt–Au system, we obtain
with Q ¼ L1½2rGB2XGB
Au ð1� XGB

Au Þ � ð1� 2XGB
Au Þ2 � 2XB

Auð1� XB
AuÞ

þð1� 2XB
AuÞ2�, DEB ¼ EBAu � EBPt, DK

B ¼ KB
Au � KB

Pt, pDV
B ¼ pVBAu �

pVBPt, and DS ¼ SBAu � SBPt. Eqn (23) and (24) use GB density and
bulk thermodynamic data as the inputs and give the corre-
sponding GB segregation isotherms.

Fig. 5 presents the (relative) chemical potentials and the
segregation isotherms for the bulk and the exemplar GB with
rGB ¼ 0.75 in the Pt–Au system at three different temperatures.
The chemical potential of the GB which is a function of GB
density differs from the corresponding bulk chemical poten-
tial. The Maxwell construction (dening the two-phase
RSC Adv., 2020, 10, 26728–26741 | 26733
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regions) and the spinodal compositions for both GB and bulk
materials are built. The graphs show that the GB spinodal
decomposition (interfacial spinodal) can occur for lower
chemical potential values below the bulk spinodal (e.g. in
Fig. 5(a)). As a result, the two-phase GB can be in equilibrium
with a single-phase bulk. As a matter of fact, it has been re-
ported that a segregation-assisted interfacial phase separation
can occur in Pt–Au system which results in the formation of
two-phase GBs coexisting with a single-phase bulk.73,74 The
results in Fig. 5 suggest that the two-phase bulk will be in
equilibrium with a single-phase GB. In fact, at a given
temperature, for any bulk composition within the two-phase
region of the phase diagram, the two-phase bulk is expected
to be in equilibrium with a single phase/composition GB.
These are because of a vertical shi in the GB chemical
potential (with respect to the bulk chemical potential) that can
be seen in Fig. 5(a). Combining these results with the equi-
librium bulk and GB phase diagrams (Section 3.1), we are able
now to study the complete GB thermodynamic phase diagram.
This is discussed in Section 4.1.
4. Discussion
4.1 Coexistence of GB and bulk phases

In this model, the GB region is described by a continuous
atomic density and its spatial gradients. For the sake of
simplicity, here we have limited our derivations to the rst-
order approximation of the potential energy with respect to r
Fig. 5 (a)–(c) The chemical potentials of the Au atoms in bulk and a GB (w
(f) Using the parallel tangent condition the segregation isotherms are
segregation appear depending on the GB density and temperature. See

26734 | RSC Adv., 2020, 10, 26728–26741
and its spatial variations. The current density-based model
provides a simple method for approximating the Gibbs free
energy of a given GB based on available bulk thermodynamic
data. The continuity of the atomic density eld across GB allows
further simplifying the Gibbs free energy description at the GB
plane where the gradient term Vr vanishes. The results of the
current study are obtained for this single material point within
the GB region. The model can be applied in full-eld simula-
tions of GBs as well, to evaluate the temporal evolution of the
atomic density and concentration elds. In two parallel study,
we have demonstrated the application of the density-based
model for studying GB segregation in a FeMnNiCrCo high
entropy alloy60 and segregation engineering of Fe–Mn alloys.61

In the current study, we focus on the equilibrium GB prop-
erties in a binary substitutional solid solution. Using the
density-based formulation we extend the concept of the phase
diagram for GBs, Fig. 6(b). To arrive there, we started with the
equilibrium phase diagram for the bulk and a hypothetical
standalone GB, with rGB ¼ 0.75, in the Pt–Au solid solution
(Fig. 4). The results show that similar to the bulk materials, GBs
in the Pt–Au system can also undergo an interfacial spinodal
phase separation. In this case, we show that GB two-phase
region is conned to smaller temperature and composition
ranges. As the GB density deviates larger from the bulk density,
the GB miscibility gap in the phase diagram becomes smaller.

The coexistence of the bulk andGB phases can be studied using
the equal chemical potential condition.24,72 Here the bulk phase,
which is the dominant part of the microstructure, is assumed to
ith rGB ¼ 0.75) Pt–Au are plotted for three different temperatures. (d)–
obtained for the corresponding temperatures. Different regimes of
discussions in Section 4.2.

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 (a) For Pt–Au system at 700 K, a jump (GB spinodal) occurs before the bulk spinodal decomposition takes place. This is a zoomed in plot in
Fig. 5(d) (left corner), see also Fig. 5(a). (b) Based on the current density-basedmodel the coexistence of the bulk and GB phases is depicted in the
phase diagram for the Pt–Au system. A two-phase bulk will be in equilibriumwith a single-phase GBwhile a two-phase (spinodally-decomposed)
GB is shown to be in equilibrium with a single-phase bulk.
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dedicate the ultimate thermodynamic states and behavior of the
GBs. According to eqn (23) (or eqn (24) for the Pt–Au system), the
GB segregation level depends on the temperature, bulk composi-
tion, as well as GB type represented by its density rGB. For a regular
solution discussed here, the driving forces for the segregation can
be divided into two parts: the rst contribution is the ideal segre-
gation energy DEBðrGB2 � 1Þ þ ðDKB þ pDVB � TDSBÞðrGB � 1Þ
that is analogous to the segregation driving force in Langmuir–
McLean isotherm.72 If we neglect the energetic contributions due
to the mixing (U ¼ 0), we obtain a density-based version of Lang-
muir–McLean relation as:

XGB
B

1� XGB
B

¼ XB
B

1� XB
B

�exp

�
� DEBðrGB2 � 1Þ þ ðDKB þ pDVB � TDSBÞðrGB � 1Þ

RT

�
(25)

that describes solute segregation for a given GB in an ideal
solution. The second contribution in eqn (23) is
UðrGB2 � 1Þ þ 2U½XB

B � rGB
2XGB

B � due to the mixing which
contains a term with the GB concentration XGB

B . The two
contributions discussed above can have cooperative or
competitive effects on the segregation level, depending on the
magnitude and sign of U and DEB.

Fig. 5 presents the chemical potentials and segregation
isotherms for the Pt–Au system. In this system, three regimes of
bulk-GB coexistence could be identied as a function of the bulk
composition. First, segregation to the GB occurs as the Au content
increases in Pt-rich alloys (regime I). For a two-phase bulk, the GB
composition becomes xed (regime II) that applies to the entire
range of bulk composition in the two-phase bulk region. Any
further increase of the Au content results in solute depletion in the
GB (regime III) with respect to the bulk. In Fig. 5(a) and (d)
different regimes of segregation are marked.
This journal is © The Royal Society of Chemistry 2020
For a Pt-rich Pt–Au alloy (regime I), the GB, which is enriched in
Au due to the segregation, can undergo an interfacial spinodal
decomposition before a bulk spinodal becomes possible. At 700 K,
for instance, a jump in the GB segregation, associated with the
interfacial phase separation, is revealed in the Pt–Au system.
Fig. 6(a) shows this jump in the GB composition as a function of
bulk composition (this is a zoomed-in plot of the le corner in
Fig. 5(d)). At this jump, the GB decomposes into low-concentration
and high-concertation domains that occurs in the presence of
a single-phase bulk. This means that for a specic bulk composi-
tion (in the single-phase region of the bulk phase diagram) a spi-
nodally-decomposed two-phase GB will form. Consistent with
the current predictions, a segregation-assisted interfacial spinodal
decomposition has been indeed reported in nanocrystalline Pt–Au
alloy.73 Also, atomistic simulations of the Pt–Au system conrmed
such interfacial spinodal phase separation for bulk compositions
well below the bulk spinodal range.74 GB spinodal phase separa-
tion is also evidenced in other material systems with technological
signicance.75,76

For the two-phase Pt–Au bulk materials (regime II), the
model predicts that a single-phase GB comes to coexist. This is
because of the vertical shi in the GB chemical potential with
respect to the corresponding bulk chemical potential curve, as
depicted in Fig. 5(a). In practice, a range of atomic densities and
compositions exists in the GB region (between the GB plane and
bulk interior) that can enable interfacial phase separation in the
GB region. Combining the equilibrium GB phase diagram
(Fig. (4)) and the GB segregation isotherms (Fig. (5)), we can
obtain the complete GB phase diagram as presented in Fig. 6(b).

The discontinuous jump in the GB segregation isotherm
(Fig. 6(a)) is a result of the difference in the free energy functional
and chemical potentials of the bulk and GB phases, captured by
the density-based model. Depending on the sign of DEB and the
shape of U(XB) function (in composition space), the GB chemical
potential and its corresponding spinodal decomposition can lie
RSC Adv., 2020, 10, 26728–26741 | 26735
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Fig. 7 The GB chemical potential can be ‘Below’ or ‘Above’ the bulk's
curve. XBS1B and XBS2B show the bulk equilibrium compositions in the
two-phase region. The two-phase GB will be in equilibrium with
a single-phase bulk material as marked by the arrows. The dots on the
bulk chemical potential curve indicates the single-phase GB is equi-
librium with the two-phase bulk.
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‘Above’ or ‘Below’ the bulk spinodal (Fig. 7). In either case, one can
activate a segregation-assisted interfacial phase separation, that
can act as a precursor for subsequent nucleation, before reaching
the bulk two-phase region. It has been shown that a segregation-
assisted transient spinodal phase separation comes to exist at
GBs for a larger range of bulk compositions61 which enables
manipulation of GB segregation by desired heat treatments.

In a polycrystalline material having a large population of GBs
of various types (with different crystallographic properties), the
GB densities are expected to differ from one GB to another. A
quantitative application of the current model to technical
materials, therefore, requires determination of the GB structure
and densities for different types of GBs. For this purpose,
atomistic simulations, for instance, can provide the necessary
means to evaluate GB density proles. Though atomistic
simulation of GBs is beyond the scope of this study, in the
following we briey analyze the relationships between the rGB,
GB excess free volume and GB misorientation angle that can
provide more insights to the density-based concept.
4.2 The relation between the GB density and GB nature

In order to make use of the current model, it is helpful to
explore the signicance of the average GB density and its rela-
tionship with the GB nature. Using atomistic simulations and
an appropriate numerical coarse-graining scheme, 3D density
map of any GB can be extracted from its equilibrium atomic
conguration that gives h and rGB.61 GB energy g can be related
to the h and rGB values. Eqn (14) approximates the relationship
between GB energy and its density rGB when k

0
r ¼ 0 is assumed.

It is observed that GBs with higher energies, i.e., lower GB
densities, attract more solute content during the segregation.77

Using eqn (14) and (20), the GB Gibbs free energy of a regular
solution can be written as a function of its initial GB energy.
Accordingly, we can rewrite eqn (23) as
XGB
B

1� XGB
B

¼ XB
B

1� XB
B

�exp

0
BB@�

½DEB þ U�
��

1�
ffiffiffiffiffi
g

a0

r �2
� 1

�
þ ðDKB þ pDVB � TDSBÞ

��
1�

ffiffiffiffiffi
g

a0

r �
� 1

�
þ 2U

�
XB

B �
�
1�

ffiffiffiffiffi
g

a0

r �2
XGB

B

�
RT

1
CCA (26)
that gives a useful approximation for describing GB's tendency
for segregation as a function of its initial energy.

One way to elaborate about the GB density rGB is to nd its
relationship with the GB excess free volume dened as78

DV ¼ WNB

N0

�
1� NGB

NB

�
: (27)

Here W is the atom diameter, NGB is the number of atoms in the
GB,NB is the number of atoms in the bulk within the same volume
and N0 is the number of atoms per unit area of the GB. In prin-
ciple, the ‘excess’ volume represents the ‘shortage’ of atoms in the
GB plane. On the other hand, comparing a GB against the bulk of
26736 | RSC Adv., 2020, 10, 26728–26741
the same volume and using eqn (13), the relative number of atoms

in a GB will be nGB ¼ ð1þ rGBÞ
2

(where nB ¼ 1) and the relative

difference (with respect to the bulk) will be

Dn ¼ 1 � rGB (28)

where n ¼ 2
ðh
0
r dr is the (relative) total number of atoms in the

GB. Comparing eqn (27) and (28) one can nd the one-to-one
relationship between Dn and DV, where we can identify DV f (1
� rGB). Extensive works have been devoted to calculate and
measure GB excess free volume (see for instance ref. 79–81). Aaron
and Bolling78 have shown that the energy of different types of GBs
can be associated with their excess free volume which can be
extended as well for the GB density parameter rGB.
The lower limit of the GB density value (highest excess free
volume) shall be obtained for general high angle GBs (HAGBs).
Aaron and Bolling remarked that the excess free volume in
a general HAGB is comparable to that of a liquid phase.78 On the
other hand, the maximum GB density value is the correspond-
ing bulk density rB ¼ 1. Special GBs such as coherent twin
boundaries (TBs) with low coincidence values show small GB
energy and excess free volumes.78 This is well consistent with
the current model in which as DV goes to zero, rGB approaches
rB ¼ 1 and g approaches zero (eqn (14)).

For a low-angle GB (LAGB), the situation becomes a bit more
complex because of the dislocations. Since dislocations are
This journal is © The Royal Society of Chemistry 2020
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localized defects with a lower atomic density in their core, one
expects the local GB density rGB within the LAGB plane to uctuate
accordingly. In addition, elastic interactions between dislocations
can play a role in determining rGB for LAGBs. For a simple case
neglecting these elastic interactions, we can approximate the
average GB density for a LAGB by a simple volume averaging of
regularly spaced dislocations, as detailed in Appendix B. For a tilt
GB, a simple geometrical construction of a LAGB gives the average

GB density rGBtilt z 1� sin q

4
with the GB misorientation q, and the

edge dislocation core density rD z 0.75. For a larger misorienta-
tion angle, the GB density will be smaller, deviating larger from
bulk properties. We also obtain a misorientation-dependent

Dnz
sin q

4
and thus a corresponding GB excess free volume DV

f sin q that is consistent with the previous studies.78,82 GB segre-
gation as a function of GB misorientation has been studied in the
Pt–Au system. Seki et al.83,84 and Seidman85 studied Au segregation
to twist boundaries and have shown that although the GB segre-
gation is not homogeneous, its average level increases as the
misorientation angle increases (with the exception of special GBs).
These observations conrm the results from the current density-
based model where a higher misorientation angle corresponds
to a lower GB density. An in-depth study of LAGBs requires
consideration of elastic energy contributions which is le for
a future study.
5. Summary and outlook

In this work, we have derived a density-based model for assessing
GB thermodynamics. The current model uses available bulk
thermodynamic data, as input, and gives a rather general formu-
lation for GB's Gibbs free energy. GB segregation isotherm and
phase diagram for a regular binary solid solution have been ob-
tained. We further discussed the relationships between GB
density, GB excess free volume and, GB misorientation angle. The
results are qualitatively demonstrated on the Pt–Au system. We
show that in a Pt-rich Pt–Au alloy, Au atoms tend to segregate to
the GB. The average level of segregation increases with decreasing
GB density, i.e., increasing GB misorientation angle (with the
exception of special GBs). We also show that an interfacial spino-
dal decomposition can occur in these alloys for single-phase bulk
alloys. A comparison with previous studies on the Pt–Au system
conrms these predictions.

The current density-based model offers a simple, pragmatic
approach to develop GB thermodynamic databases. Despite its
simplicity, applications of this model can unroll new microstruc-
ture design concepts by segregation engineering of GBs.60,61 A
systematic atomistic study of the coarse-grained atomic density
proles for different types of GBs can enrich the development of
this model. In order to assess engineering alloys with interstitial
solute atoms, the density-based free energy description needs to be
extended for multi-component materials and including elastic
energy contributions.
This journal is © The Royal Society of Chemistry 2020
Appendix
A Equilibrium GB density prole

The equilibrium GB density prole across a symmetric at GB
in a pure substance can be obtained by minimizing the GB free
energy functional with respect to the relative atomic density. For
a 1D setup,

dGA

dr
¼ vGA

vr
� d

dx

vGA

v

�
vr

vx

�
0
BB@

1
CCAþ d2

d2x

vGA

v

�
v2r

vx2

�
0
BBB@

1
CCCA

¼ 2EB
Arþ CB

A � kr
v2r

vx2
þ k

0
r

v4r

vx4
¼ 0 (A.1)

where CB
A ¼ KB

A + pV
B
A � TSBA (see eqn (9)). The general solution for

this higher-order linear ordinary differential equation reads

rðxÞ ¼ � CB
A

2EB
A

þ C1e
b1x þ C2e

�b1x þ C3e
b2x þ C4e

�b2x (A.2)

with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2 � 8EB

Ak
0
r
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2k0

r
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and b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
r

q
2k0

r

vuut
.

We also obtain

vrðxÞ
vx

¼ C1b1 eb1x � C2b1e
�b1x þ C3b2e

b2x � C4b2e
�b2x: (A.3)

Applying the boundary conditions r(x¼ 0)¼ rGB, r(x¼ h)¼ 1

and the continuity conditions
vr

vx
ðx ¼ 0Þ ¼ 0 and

vr

vx
ðx ¼ hÞ ¼ 0,

we obtain

rGB þ CB
A

2EB
A

¼ C1 þ C2 þ C3 þ C4 (A.4)

1þ CB
A

2EB
A

¼ C1e
b1h þ C2e

�b1h þ C3e
b2h þ C4e

�b2h (A.5)

C1 � C2

C3 � C4

¼ �b2

b1

(A.6)

C1e
b1h � C2e

�b1h

C3eb2h � C4e�b2h
¼ �b2

b1

(A.7)

The solution to eqn (A.4)–(A.7) can be computed numeri-
cally. The continuity of the average atomic density prole across
the GB region is conrmed using atomistic simulations.61 For
a simpler case assuming k

0
r ¼ 0, we nd another general solu-

tion for eqn (A.1):

rðxÞ ¼ � CB
A

2EB
A

þD1 cos

 ffiffiffiffiffiffiffiffiffiffiffiffi
�2EB

A

kr

s
x

!
þD2 sin

 ffiffiffiffiffiffiffiffiffiffiffiffi
�2EB

A

kr

s
x

!
(A.8)

where D1 and D2 are constants and
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Fig. 8 (a) The core of an edge dislocation has a lower density than that of the bulk that is captured by a simple geometrical analysis. GB density (b)
and energy (c) as a function of the misorientation angle, with the exception of special GBs, are plotted (eqn (B.4) and (B.5)).
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¼
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kr
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�D1 sin

 ffiffiffiffiffiffiffiffiffiffiffiffi
�2EB

A

kr

s
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þD2 cos

 ffiffiffiffiffiffiffiffiffiffiffiffi
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kr

s
x

!#

(A.9)

Applying the boundary conditions to this solution we obtain

D1 ¼ � 1� rGB

2
(A.10)

D2 ¼ 0 (A.11)

h ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffi
kA

�2EB
A

r
(A.12)

CB
A

EB
A

¼ �1þ rGB

2
(A.13)

Although solution eqn (A.8) is limiting, it provides a possi-
bility for further analytical treatment of the density prole and
therefore is used for approximating GB energy, eqn (14). For
more details see Section 2.1.
B A simple geometrical calculation of GB density

The objective of this appendix is to provide a simple analysis of
the GB density and its dependence on the misorientation angle.
We consider a LAGB that can be mapped with a set of regularly
spaced dislocations separated by a distance68

D ¼ b

sin q
(B.1)

in which b is the Burgers vector of the dislocations and q is the
GB misorientation angle. The ‘average’ relative GB density can
be obtained by averaging the density of a dislocation in the unit
area of the LAGB. For a tilt LAGB one obtains

rGB
tilt ¼ Db� bb

Db
þ bb

Db
rD (B.2)

where rD is the relative atomic density at the core of an edge
dislocation. Inserting eqn (B.1) in eqn (B.2)

rGB
tilt ¼ 1 � (1 � rD)sin q. (B.3)
26738 | RSC Adv., 2020, 10, 26728–26741
Here it is assumed that the volume between the two dislo-
cations has the same density as bulk (rB ¼ 1). For an edge
dislocation depicted in Fig. 8(a), one can approximate

rD z
3
4

�
1þ b

4a� b

�
where a is the interatomic distance

normal to the edge dislocation line – here we neglect the effect
of elastic energy of the dislocation on its core density.
Neglecting the second term inside the parenthesis then we have
rD z 0.75 that gives the atomic density of a tilt GB as

rGB
tilt z 1� sin q

4
(B.4)

In this relation, as q approaches zero, rGB approaches rB ¼ 1
and the GB energy (according to eqn (7)) decreases towards zero.
Inserting eqn (B.4) into eqn (14), we obtain

gtilt ¼ a0

ðsin qÞ2
16

(B.5)

that is the tilt GB energy as a function of the misorientation
angle. Eqn (14), (B.4) and (B.5) give the relationship between the
GB density, energy and misorientation angle based on the

current simple analysis. From eqn (28) and (B.4), Dntilt z
sin q

4
and thus the corresponding average GB excess free volume will be
proportional to the misorientation angle as DV f sin q. Fig. 8(b)
and (c) show the variation of GB density and energy as a function of
the misorientation angle according to this analysis.

Although eqn (B.4) and (B.5) are based on a very simplied
averaging method that does not account for the elastic energy
of the dislocations, the current analysis is solid in establishing
the trend in GB densities as a function of its misorientation
angle, with the exception of special GBs. It is useful to show
that the GB density converges to the expected GB energies in
the limiting cases, consistent with the previous derivations of
GB energy based on the excess free volume concept.78 In order
to connect the GB segregation isotherm with its initial
misorientation angle, we can approximate by replacing the
atomic density parameter using eqn (B.4). From eqn (B.4)
and (20)
This journal is © The Royal Society of Chemistry 2020
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Thus, using eqn (B.6) and (23) the GB segregation isotherm
follows
XGB
B

1� XGB
B

¼ XB
B

1� XB
B

� exp �
½DEB þ U�

��
1� sin q

4

�2

�1

�
ðDKB þ pDVB �TDSBÞ

��
1� sin q

4

�
� 1

�
þ2U

�
XB

B �
�
1� sin q

4

�2

XGB
B

�
RT

0
BBB@

1
CCCA (B.7)
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