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A highly efficient TMSCl-mediated addition of N-nucleophiles to isocyanides has been achieved. This

transition-metal and oxidant-free strategy has been applied to the construction of various N-heterocyles

such as quinazolinone, benzimidazole and benzothiazole derivatives by the use of distinct amino-based

binucleophiles. The notable feature of this protocol includes its mild reaction condition, broad functional

group tolerance and excellent yield.
In the past decades, isocyanides have proved themselves to be
irreplaceable structural scaffolds in organic synthesis.1 The
chemistry of isocyanides is characterized by the great diversity
of transformations that includes multicomponent reactions
(MCRs, such as Passerini and Ugi reaction),2 transition metal-
catalyzed insertions (also called imidoylative reaction),3 as
well as isocyanide-mediated radical cascade reactions.4 Gener-
ally, the isocyanide group can act as a mild nucleophile by
electrophilic activation in the presence of carbonyl, imine or
transition-metal catalysts, which allow further transformations
aer the incorporation of isocyanide core into starting material
(Scheme 1a). In contrast, the reactions of isocyanides with
external nucleophiles are particularly challenging because of
the poor electrophilicity of isocyanides, and most of these
reactions require highly reactive organometallic nucleophiles
(Scheme 1b).5Only a few reports achieved the direct additions of
weak nucleophiles to isocyanides by Lewis acid complexation6

or NHC catalyst (Scheme 1b).7 Therefore, the development of
new catalyst system for the activation of isocyanide as electro-
philic reagent would be highly desirable.

On the other hand, nitrogen-containing heterocycles are
invaluable building blocks in organic chemistry and are
considered to be “privileged” structure in medicinal chemistry.8

In this context, the construction of N-heterocycles has been
a major research topic in synthetic chemistry.9 Among these
Industrial Technology, West China School

610041, China. E-mail: xiaoliguo1987@

esis for Chiral Molecules, Department of

433, China. E-mail: rfchen@fudan.edu.cn

Asymmetric Catalysis for Chiral Drugs,

ESI) available: 1H and 13C NMR spectra.

f Chemistry 2020
reports, isocyanides have emerged as C1 synthons for the
synthesis of various N-heterocycles via isocyanide insertion
reactions10 (similar to carbon monoxide11). For example,
Scheme 1 Strategies for isocyanide activation.
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bisnucleophile agents A could be applied to the synthesis of N-
heterocycles B through isocyanide insertion-cyclizations by the
use of transition metals (such as Pd, Co, Ni, etc.)12 or I2/TBHP
catalytic system13 (Scheme 1c). However, these reports suffer
from the use of expensive transition metals or peroxide
reagents. Meanwhile, in light of the success of Lewis acid
promoted nucleophilic additions to isocyanides. We envisaged
that the use of Lewis acid might catalyse the nucleophilic
addition of A to isocynide,14 and subsequent cyclization of the
formamidine intermediate could deliver the corresponding N-
heterocycles C (Scheme 1d). Thus, an unprecedented
transition-metal and oxidant-free approach to access various N-
heterocycles using isocynide as C1 source could be achieved.

Our study commenced with the reaction between 4-methyl-
aniline (1a) and tert-butyl isocyanide (2a) in acetonitrile at 70 �C.
A survey of reaction parameters was summarized in Table 1.
First, no desired product was observed in the absence of Lewis
acid catalyst (Table 1, entries 1). Then, 1.0 equivalent of CuCl
was selected as the Lewis acid based on the literature report,14

formamidine product 3a could be obtained in 50% yield aer
stirring for 24 h (entry 2). Then, a series of transition metal-
based Lewis acids such as AgCl, FeCl3 and ZnCl2 were also
evaluated in the same reaction condition, and the results were
still unsatisfactory (entries 3–5). Next, we chose Brønsted acids15

such as CF3COOH, and TfOH as the activation reagents for this
reaction (entries 5–7). Only a trace mount of formamidine 3a
was detected along with unreacted starting material. Fortu-
nately, in the presence of BF3$Et2O, the reaction could afford
Table 1 Optimization of the reaction conditionsb

Entry Catalyst (equiv.)
Temperature
(�C) Solvent Product Yieldb (%)

1 — 70 CH3CN 3a 0
2 CuCl (1.0) 70 CH3CN 3a 50
3 AgCl (1.0) 70 CH3CN 3a Trace
4 FeCl3 (1.0) 70 CH3CN 3a Trace
5 ZnCl2 (1.0) 70 CH3CN 3a 55
6 CF3COOH (1.0) 70 CH3CN 3a 0
7 TfOH (1.0) 70 CH3CN 3a 10
8 BF3$Et2O (1.0) 70 CH3CN 3a 55
9 TMSCl (1.0) 70 CH3CN 3a 85
10 TMSCl (1.5) 70 CH3CN 3a 90
11 TMSCl (0.5) 70 CH3CN 3a 71
12 TMSCl (1.5) 70 DCE 3a 79
13 TMSCl (1.5) 70 THF 3a 59
14 TMSCl (1.5) 70 Toluene 3a 80
15 TMSCl (1.5) rt CH3CN 3a 52
16 TMSCl (1.5) 70 CH3CN 3b 92

a Reaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), catalyst (0.5–1.5
equiv.), solvent (2 mL), 24 h. b Isolated yields.

29258 | RSC Adv., 2020, 10, 29257–29262
the corresponding product 3a in 55% yield (entry 8). Surpris-
ingly, further optimization of the reaction conditions revealed
silicon-based Lewis acid TMSCl could catalyse the reaction with
85% yield (entry 9).16 To the best of our knowledge, the nucle-
ophilic activation of isocyanides using silicon-based Lewis acid
has not yet been reported.17 Meanwhile, catalyst loading had
obvious effects on the reaction yields. A slightly increased yield
was observed with 1.5 equiv. of TMSCl, while decreasing the
amount of TMSCl to 0.5 equiv. resulted in a lower yield of 3a
(entries 10 and 11). A survey of other reaction media revealed
that the overall results could not be improved (entries 12–14). In
addition, a lower yield was obtained when the reaction was
performed at room temperature (entry 15). Finally, for-
mamidine 3b could also be obtained in high yield using 4-
chloroaniline 1b as nucleophile (entry 16).

With the optimal conditions in hand, we applied this
strategy to the synthesis of various quinazolinones18 by
employing 2-aminobenzamides 4 as bisnucleophile agents
(Table 2). In general, the reaction works well when R1 was an
aromatic group. Substituents at para-positions bearing either
electron-donating or electron-withdrawing groups can afford
the desired products in good to excellent yields (5a–5f). The
cyclization products with substituents at meta-positions were
also obtained in good yields (5g, 5h), while lower yield was
observed with substituent at ortho-position (5i). Then,
substrates with aliphatic groups, such as methyl, n-propyl,
benzyl, propargyl, etc., were also employed in this reaction to
give the corresponding products in 84–90% yields (5j–5o). Next,
2-aminobenzamides with various R2 groups were evaluated in
Table 2 Substrate scope for the synthesis of various quinazolinonesa

a Reaction conditions: 4 (0.2 mmol), 2a (0.3 mmol), TMSCl (1.5 equiv.),
CH3CN (2 mL), 70 �C, 24 h. Isolated yields.

This journal is © The Royal Society of Chemistry 2020
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Scheme 2 Control experiments. (a) Radical inhibiton studies. (b)
Standard conditon under N2 conditions.

Scheme 3 Plausible reaction mechanism.
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the standard condition, and functionalized quinazolinones
were generated in 88–93% yields (5p–5u). It is worth noting that
2-aminobenzene sulfonamide could also be tolerated in this
reaction, affording the cyclization products 5v in 87% yield.

The scope of this methodology has been also extended to the
synthesis of other N-heterocycles by simply changing the amino-
based binucleophiles (Table 3). First, diverse o-phenylene-
diamines were subjected to the same reaction conditions. To
our delight, the reaction proceed smoothly in all cases regardless
of the electronic and steric properties of the substituents, giving
the corresponding 1H-benzo[d]imidazole derivatives19 in
moderate to good yields (7a–7m). Furthermore, N-methyl and N-
phenyl-o-phenylenediamine were also tolerated in this reaction,
delivering 2-aminobenzimidazole 7n and 7o in 84% and 80%
yields respectively. It is worth noting 2-amino-benzenethiol could
undergo the same transformation to furnish benzo[d]thiazole
product 7p in 92% yield. However, the reaction failed to generate
benzo[d]oxazole 7q with o-aminophenol under identical condi-
tion. Finally, diversied facile synthesis of benzimidazo[1,2-c]
quinazolines 7r and 7s could be achieved in reasonable yields.

To gain an insight into the reaction mechanism, several control
experiments were performed as presented in Scheme 2. Initial
radical inhibition studies using TEMPO and BHT indicated that the
reaction does not proceed through a radical pathway (Scheme 2a).
The reaction of 2-aminobenzamides 4a with 2a by the standard
condition under N2 provided 5a in 86% yield, revealing that oxygen
is not participated in this reaction (Scheme 2b). In the meantime,
the generation of tBuNH2 as byproduct was conrmed by GC-MS.20

The following reaction mechanism is proposed based on our
experimental observations and previous literature reports.20

First, nucleophilic addition of bisnucleophile agents A to tert-
butyl isocyanide 2a via TMSCl activation could generate
Table 3 Substrate scope for the synthesis of other N-heterocyclesa

a Reaction conditions: 6 (0.2 mmol), 2a (0.3 mmol), TMSCl (1.5 equiv.),
CH3CN (2 mL), 70 �C, 24 h. Isolated yield. b 2.0 equiv. of TMSBr in 2 mL
C2H5OH was used.

Scheme 4 Synthesis of biologically active compounds.

This journal is © The Royal Society of Chemistry 2020
formamidine intermediateD. Then intramolecular nucleophilic
addition of formamidine D could deliver the cylization inter-
mediate E. Finally, b-elimination of intermediate E could afford
the desired product C along with byproduct tBuNH2 (Scheme 3).

The present activating strategy was also applied to the
synthesis of a biologically active molecule Erlotinib (FDA-
approved tyrosine kinase inhibitor).21 The reaction of starting
material 8 with isocyanide 2a was performed under the stan-
dard condition, affording the key intermediate 9 in 92% yield.
Subsequent chlorination and amination reactions could afford
Erlotinib in 74% yield over two steps (Scheme 4).
Conclusions

In conclusion, we have developed an efficient silicon-based
Lewis acid system for the activation of isocyanides. Based on
RSC Adv., 2020, 10, 29257–29262 | 29259
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this strategy, a new robust transition-metal and oxidant free
method for the construction of various N-heterocycles could be
realized using isocyanide as methine source. Quinazolinone,
benzoimidazole, and benzothiazole derivatives could be ob-
tained in good to excellent yields under mild conditions. The
present strategy opens a powerful pathway for the activation of
isocyanides, and further studies on the application of this
methodology are currently underway.
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