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itz topological transitions in the
thermodynamic properties of graphene

V. N. Davydov

The origin of the Lifshitz topological transition (LTT) and the 2D nature of the LTT in graphene has been

established. The peculiarities of the Lifshitz topological transitions in graphene are described at the

Brillouin zone centre G, the zone corners K in the vicinity of the Dirac points, and at the saddle point M.

A general formulation of the thermodynamics at the LTT in graphene is given. The thermodynamic

characteristics of graphene are investigated at the Lifshitz topological transitions. Anomalies are found in

the electron specific heat Ce, the electron thermal coefficient of pressure, and the coefficients of

electron compressibility and thermal expansion in graphene at the LTT. All the thermodynamic

parameters possess the strongest singularities in graphene at the LTT near the saddle points. This opens

exciting opportunities for inducing and exploring the Lifshitz topological transitions in graphene.
1 Introduction

Anomalies in the thermodynamic quantities of metals due to
a change in the topology of the Fermi surface 3(p) ¼ 3F are
customarily called the Lifshitz topological transition (LTT) (I. M.
Lifshitz;1 see also ref. 2, 3 and 4). It is understood that a change
in the topology of the Fermi boundary surface is due to the
continuous variation of some parameter (e.g., pressure), as
a result of which the difference z¼ 3F � 3c (where 3F is the Fermi
energy and 3c is the critical energy at which the topology of the
constant energy surface changes) passes through zero contin-
uously. This leads to a change in the connectivity of the Fermi
surface (the appearance of a new cavity, the rupture of a con-
necting neck, etc.), and at absolute zero temperature T¼ 0 K, the
grand thermodynamic potential U (oen called the Landau free
energy or Landau potential5) acquires an irregular correction:

dU ¼ �a|z|5/2. (1.1)

It can be seen that the third derivatives of the thermody-
namic potential become innite at the point z ¼ m � 3c ¼ 0 (the
chemical potential m is equal to the Fermi energy 3F at T ¼ 0);
therefore, this change in the topology of the Fermi surface is
also called the 212-order phase transition (FT212) according to the
Ehrenfest terminology.6,7

The anomalies arising in the LTT manifest themselves at
T � 3F not only in the thermodynamic characteristics of metals
but also in other characteristics (e.g., magnetic-eld depen-
dence of the electrical resistance,8 sound absorption9–15). It has
been shown in ref. 16 that the thermoelectric power has the
eninsky pr. 71, app. 121, 117296 Moscow,

f Chemistry 2020
square root divergency at the LTT. The discovery of graphene17

gave new inspiration to investigations of the Lifshitz transition
properties. To date, numerous papers have been devoted to the
Lifshitz transitions in bilayer (BLG) and multilayer (MLG) gra-
phene.18–30 The results of these studies indicate that the effects
of the LTT are appreciable and can be used to observe the 212-
order transitions as well as to investigate the degree of smearing
of the Fermi surface in metals. In ref. 31, experimental evidence
was obtained of the Lifshitz transition in the thermoelectric
power of ultrahigh mobility bilayer graphene. Resolving low-
energy features in the density of states (DOS) holds the key to
understanding a wide variety of rich and novel phenomena in
graphene based on 2D heterostructures. The Lifshitz transition
in bilayer graphene (BLG) arising from trigonal warping has
been established in31 theoretically and experimentally.

The 21st century has brought many new results related to
graphene thermodynamics.32–45 Apparently, the thermody-
namics of graphene has been characterized from many points
of view; however, the role of the Lifshitz topological transitions
in the thermodynamic properties of graphene has not been
studied. This paper aims to close this gap. Because graphene is
the rst real two-dimensional solid, a general formulation of the
thermodynamics at the LTT in graphene is given. The unusual
thermodynamic properties of graphene stem from its 2D
nature, forming a rich playground for new discoveries of heat
ow physics and potentially leading to novel thermal manage-
ment applications.

This paper is arranged as follows. In section 2, the origin of
the Lifshitz topological transition and the 2D nature of the LTT
in graphene are considered. Peculiarities of the Lifshitz topo-
logical transitions in graphene are then investigated in section
3. The thermodynamics of graphene at the Lifshitz topological
RSC Adv., 2020, 10, 27387–27400 | 27387
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transitions is proposed in section 4. Finally, conclusions are
drawn in section 5.
Fig. 1 The cone point at p ¼ pc (a), the saddle point (c), and the van
Hove singularities of the state density dD(3) (b). S, S1, and S2 are the
saddle points.
2 Origin of the Lifshitz topological
transitions and connection of the two-
dimensional nature of graphene with
the van Hove singularities

It is known [see ref. 1, 2, and 3] that at the LTT, a new cavity of
the electronic isoenergetic surface appears (or disappears) at
the critical energy 3c in the critical point of the momentum
space p ¼ pc, where the electron energy as a function of qua-
simomentum 3¼ 3(p) has a minimum 3min or maximum 3max. In
this case, the isoenergetic surfaces in the vicinity of p ¼ pc are
well described by the ellipsoid equations:

px
2

2mx

þ py
2

2my

þ pz
2

2mz

¼ 3� 3min; 3T3min (2.1)

px
2

2m0
x

þ py
2

2m0
y

þ pz
2

2m0
z

¼ 3max � 3; 3(3max (2.2)

where mx, my, and mz are the main values of the effective mass
tensor in the vicinity of 3min (see ref. 46 and 47);m

0
x,m

0
y, and m

0
z

are the main values of the effective mass tensor in the vicinity of
3max.45

At the neck rupture, the boundary isoenergetic surface 3(p)¼
3c contains the peculiar point of another type, named the cone
point, at p ¼ pc. In this case, the isoenergetic surface in the
vicinity of the cone point p ¼ pc is described by the hyperboloid
of two sheets at energy 3 < 3c and the hyperboloid of one sheet at
energy 3 > 3c (Fig. 1a):

p1
2

2m1

þ p2
2

2m2

� p3
2

2m3

¼ 3� 3c; 3\3c; m1; m2; m3 . 0 (2.3)

p1
2

2m1

þ p2
2

2m2

� p3
2

2m3

¼ 3� 3c; 3. 3c; m1; m2; m3 . 0 (2.4)

At energies close to 3c, one can express the electron density of
states (DOS) as

D(3) ¼ D0(3) + dD(3) (2.5)

where D0(3) is the regular smooth function of the energy, and
dD(3) depends on the type of LTT. The latter is computed by the
relation (per spin direction and per unit volume in 3D-space, or
per unit area in 2D-space):

dDð3Þ¼ ð1=2pħÞ3 d

d3
Dð3Þ (2.6)

where ħ is the reduced Planck–Dirac constant, and D(3) is
volume of the ellipsoid (2.1) or (2.2). At the neck rupture
(Fig. 1a), D(3) is the change of the volume enclosed by the plane
p3 ¼ p0 and the hyperboloid of one (2.3) or two (2.4) sheets
(Fig. 1a) in the disruption of the isoenergetic surface neck in the
vicinity of the cone point p ¼ pc.
27388 | RSC Adv., 2020, 10, 27387–27400
One can join eqn (2.1)–(2.4) into a single equation:

3 ¼ 3c þ ax
px

2

2mx

þ ay
py

2

2my

þ az
pz

2

2mz

(2.7)

where mi (i ¼ x, y, z) are the positive values of the effective mass
tensor, mi s0, and integers aj (j ¼ x, y, z) are equal to �1.

Four types of singularities exist of the density of the electron
states in three-dimensional space, and the singularity type
depends on the signs of the coefficients aj.

The point M0 (min) corresponds to the case where all three
coefficients aj ¼ +1. This point corresponds to the minimum in
the energy spectrum.

The point M1 (saddle) corresponds to the case where two
coefficients aj are positive and the third one is negative. This is
the saddle point (Fig. 1c).

The point M2 (saddle) is the case where two coefficients aj are
negative and a third one is positive. This is the second saddle
point (Fig. 1b).

The point M3 (max) corresponds to the case where all three
coefficients aj ¼ �1. This point corresponds to the maximum in
the energy spectrum.

There are three types of singularities of the density of the
electron states in two-dimensional space, and the singularity
type depends on the signs of the coefficients aj (j ¼ x, y).

The point P0 (min) corresponds to the case where both
coefficients aj ¼ +1. This point corresponds to the minimum in
the energy spectrum.

The point P1 (saddle) corresponds to the case where one
coefficient aj is positive and another one is negative. This is the
saddle point.
This journal is © The Royal Society of Chemistry 2020
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Table 1 The analytical behavior of the density of the electron states at the Lifshitz topological transitions

Dimensionality Type of singularity

Density of the electron states at 3c

3 < 3c 3 > 3c Coefficients Ci

3D M0 (min) 0 C1 (3 � 3c)
1/2

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxmymz

p
=ðp2ħ3Þ

M1 (saddle) C2 � C3(3c � 3)1/2 C2 C2 ¼ 4p
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
r0=ð2pħÞ3

M2 (saddle) �C2 C2 � C3(3 � 3c)
1/2

C3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m2

p
=ð3p2ħ3Þ

M3 (max) C4(3c � 3)1/2 0 C4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

0
xm

0
ym

0
z

q
=ðp2ħ3Þ

2D P0 (min) 0 C5 C5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin

x mmin
y

q
=ð2pħ2Þ

P1 (saddle) �C6 ln|1 � 3/3c| C6 ln| 3/3c � 1| C6 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ms

xm
s
y

p
=ð2pħÞ2

P2 (max) C7 0 C7 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmax

x mmax
y

p
=ð2pħ2Þ

1D Q0 (min) 0 C8 (3 � 3c)
�1/2

C8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mmin

1

p
=ð2pħÞ

Q1 (max) �C9(3c � 3)�1/2 0 C9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mmax

1

p
=ð2pħÞ

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 3
:5

1:
50

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The point P2 (max) corresponds to the case where both
coefficients aj ¼ �1. This point corresponds to the maximum in
the energy spectrum.

There are two types of singularities of the density of the
electron states in one-dimensional space:

� The point Q0 (min) corresponds to the case where coeffi-
cient a ¼ +1. This point corresponds to the minimum in the
energy spectrum.

� The point Q1 (max) corresponds to the case where coeffi-
cient a ¼ �1. This point corresponds to the maximum in the
energy spectrum.

The analytical behavior of the density of the electron states at
LTT is given in Table 1. The results are computed from formulae
(2.1)–(2.7); see also ref. 1, 2, and 4.

We can conclude based on the square root peculiarities of
the density of the electron states in three dimensions (Table 1)
at 3c that nature of the Lifshitz topological transition stems from
the van Hove singularities (VHS) of the state density dD(3).48–52 In
this connection, the van Hove topological theorem48 states that
the spectrum must contain at least one of the saddle-points S1
and S2 (Fig. 1b), and the slope of D(3) must tend to �N on the
upper end.

The two-dimensional nature of graphene should exhibit
special types of van Hove singularities and LTTs. This statement
is illustrated by the general argument that in two dimensions,
the saddle-points produce logarithmic singularities (Table 1),
and the spectrum extrema produce nite discontinuities of the
electron density of states [also see ref. 49, 53, and 54]. This is
valid for the elementary excitations of the quasiparticles with
values mi s 0 of the effective mass tensor; however, it is not
applied to the massless Dirac fermions in graphene. If the
logarithmic singularity is a general property of 2D electronic
systems in the saddle points, this statement should be valid for
2D graphene. However, the latter is in contradiction with

C6 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ms

xms
y

p
=ð2pħÞ2 because the value of C6 must be zero for

themassless fermions in graphene. Here, the discrepancy arises
because the logarithmic singularity vanishes. We will resolve
this contradiction in section 3.
This journal is © The Royal Society of Chemistry 2020
Therefore, the Lifshitz topological transitions in graphene
require special investigation. The latter was also conrmed by
recent work.55 It has been demonstrated in55 theoretically that
the characteristic feature of a 2D system undergoing N conse-
quent Lifshitz topological transitions is the occurrence of spikes
of entropy per particle s of a magnitude� ln 2/(J� 1/2) with 2#
J # N at low temperatures.
3 Peculiarities of the Lifshitz
topological transitions in graphene

A single layer of graphene consists of carbon atoms in the form
of a honeycomb lattice (Fig. 2). The primitive translation vectors
e1 and e2 form the rhombic unit cell. The hexagonal lattice
consists of two trigonal sublattices AAA and BBB.56 There are
four valence electrons (two 2s and two 2p electrons). Three of
those participate in the chemical bonding and thus are in bands
well below the Fermi energy. We therefore consider the bands
formed by the one remaining electron. We assume a tight-
binding model in which the electron hops between neigh-
boring atoms. We denote the spacing between neighbouring
atoms by a.

From Fig. 2a, we see that two basis vectors of the Bravais
lattice are

e1 ¼ a
� ffiffiffi

3
p .

2; 3=2
�
; e2 ¼

ffiffiffi
3

p
að1; 0Þ (3.1)

The reciprocal Bravais lattices, b1 and b2, are dened such
that

bi$ej ¼ 2pdij (3.2)

The result is

b1 ¼ 4p

3a
ð0; 1Þ (3.3)

b2 ¼ 2p

3a

� ffiffiffi
3

p
; � 1

�
(3.4)
RSC Adv., 2020, 10, 27387–27400 | 27389
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Fig. 2 (Reproduced and adapted with permission from ref. 56). The crystal structure of the single graphite layer (a). The primitive translation
vectors e1 and e2 form the rhombic unit cell, and the basis consists of twoC atoms, shown as A and B. The Bravais lattice (consider, e.g., the lattice
formed by the A atoms) is triangular with a Bravais lattice spacing of 2� sin 60+ � a ¼ ffiffiffi

3
p

a; where a is the spacing between neighboring atoms.
The graphene reciprocal lattice and the first Brillouin zone (b).
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These basis vectors are of equal length and at 120�; therefore,
the reciprocal lattice is a hexagonal lattice (Fig. 2b). The rst
Brillouin zone is shown in Fig. 2b. The rst Brillouin zone is
a regular hexagon, whose most characteristic points are its
centre G, the inequivalent corners K and K0, and the centres of

the lateral edges M and M'. The distance GM is ð1=2Þb1 ¼ 2p
3a

:

The distance GΚ is GM=sin 60+ ¼ 4p

3
ffiffiffi
3

p
a
:

Consider a state with amplitude JR for the electron to be at
the site labeled by R. We look for the wave functions with
amplitudes which vary, such as eik$r. There will be different
amplitudes JA and JB on sublattices A and B, so JR ¼ JAe

ik$r

(R ˛ A), and JR ¼ JBe
ik$r (R ˛ B). An electron at site R can hop

to any of the neighboring sites. An atom on sublattice AAA has
neighboring atoms (Fig. 2a), all on sublattice BBB, at displace-

ments (0, a), ða ffiffiffi
3

p
=2; � a=2Þ; and ð�a ffiffiffi

3
p

=2; � a=2Þ: An atom
on sublattice BBB has three neighbors on sublattice AAA at

displacements (0, �a), ð ffiffiffi
3

p
a=2; a=2Þ; and ð� ffiffiffi

3
p

a=2; a=2Þ: In
the nearest-neighbour approximation, there are no hopping
processes within the sublattices AAA and BBB; hopping only
occurs between them. Hence, the eigenvalue 3 and the ampli-
tudesJA andJB are determined for each wavevector k from two
equations:

�g0

 
eikya þ 2e�ikya=2 cos

 ffiffiffi
3

p

2
kxa

!!
JB ¼ 3JA (3.5)

�g0

 
e�ikya þ 2eikya=2 cos

 ffiffiffi
3

p

2
kxa

!!
JA ¼ 3JB (3.6)

where g0 is the hopping parameter between nearest
neighbors.
27390 | RSC Adv., 2020, 10, 27387–27400
We write the Hamiltonian in the tight-binding approxima-
tion for the wave vector k ¼ p/ħ (where p is the electron quasi-
momentum), taking into account eqn (3.5) and (3.6), as

HðkÞ
�

0 f ðg0; kx; ky
�

f *ðg0; kx; ky
�

0

�
(3.7)

where

f ðg0; kx; kyÞ ¼ g0

 
eikya þ 2e�ikya=2 cos

 ffiffiffi
3

p

2
kxa

!!
(3.8)

The electron energy eigenvalues of the Hamiltonian (3.7) are
given by

3¼�g0

 
1þ 4 cos

�
3

2
kya

�
� cos

 ffiffiffi
3

p

2
kxa

!
þ 4 cos2

 ffiffiffi
3

p

2
kxa

!!1=2

(3.9)

In expression (3.9), the plus and minus signs correspond to
the conduction and valence bands, respectively.

To explore the possible Lifshitz topological transitions,
consider the structure of the isoenergetic lines in the (kx, ky)
plane for different positions of the wave vector k.

(i) The maximum and minimum energies are 3c ¼ �3g0, and
they occur at k ¼ 0, i.e. in the centre G (Fig. 2b) of the rst
Brillouin zone. The value of 3c ¼ 3g0 corresponds to the
maximum of energy in the conduction band (the point P2 (max)
in Table 1). The value of 3c¼�3g0 corresponds to the minimum
of energy in the valence band (the point Po (min) in Table 1).
Taking into account |kya|, |kxa| � 1, from (3.9), we have accu-
racy of order (kya)

2, (kxa)
2:
This journal is © The Royal Society of Chemistry 2020
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9g0
2 � 32

g0
2

¼ 9

2
kx

2a2 þ 9

2
ky

2a2 (3.10)

Thus, the isoenergetic lines are circles in the vicinity of the
extrema of energy at k ¼ 0. It follows from (3.10) that these
circles are described by the following equation in p-space:

px
2 þ py

2 ¼
��9g0

2 � 32
��

2VF
2

(3.11)

where

VF ¼ 3ag0

2

	
ħ (3.12)

Consequently, there exist LTT at critical values of energy
3c ¼ �3g0, where the cavity (3.11) of the isoenergetic lines
disappears (Fig. 3a) at 3c ¼ +3g0 in the conduction band or
appears at 3c ¼ �3g0 in the valence band.

The number of the electron states inside the two-dimensional
cavity (per spin direction and per unit area) is equal to

dN(3) ¼ (1/2pħ)2D(3) (3.13)

where D(3) is the area of the cavity in the momentum space.
We obtain from (3.11) and (3.13)

dNð3Þ ¼
8<
:

p
��3c2 � 32

��
2

	�
VF

2ð2pħÞ2
�
; j3j(3c;

0; j3j. 3c:

(3.14)

where 3c ¼ 3g0.
One can represent the change of the density of states dD(3)

due to LTT as

dDð3Þ ¼ ddNð3Þ
d3

¼
8<
:

j3j
�4pVF
2ħ2
�
; j3j(3g0

3g0


�
4pVF

2ħ2
�
; j3j ¼ 3g0

0; j3j. 3g0

(3.15)
Fig. 3 (a) Disappearance of the cavity of the isoenergetic lines in the
Brillouin zone centre G at the critical value of energy 3c ¼ 3g0 in the
conduction band. Appearance of the cavity of the isoenergetic lines in
the Brillouin zone centre G at the critical value of energy 3c ¼ �3g0 in
the valence band. (b) Appearance of new cavities in the conduction
band in the corners K of the Brillouin zone at the critical value of
energy 3c ¼ 0 in the extended zones scheme. Disappearance of new
cavities in the valence band in the corners K of the Brillouin zone at the
critical value of energy 3c ¼ 0 in the extended zones scheme.

This journal is © The Royal Society of Chemistry 2020
The discontinuity at the end points 3 ¼ �3g0 comes from
a maximum or minimum of the dispersion relation in two
dimensions. The analytic expression without derivation for the
total DOS in graphene for model (3.7) was provided by Hobson
and Nierenberg in 1953.53 In a recent paper,54 the expression for
this model was derived for the total DOS (per unit hexagonal cell

of area Acell ¼ 3
ffiffiffi
3

p
a2=2 (Fig. 2a) and one spin component), valid

for region 0 < |3| < 3g0:

Dð3Þ ¼ 4j3=g0j
g0p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj3=g0j þ 1Þ3ð3� j3=g0jÞ

q ReK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16j3=g0j

ðj3=g0j þ 1Þ3ð3� j3=g0jÞ

s !
; 0\j3j\3g0 (3.16)

where K(x) is the complete elliptic integral of the rst kind, i.e.

KðkÞ ¼ 1

1þ x

ðp=2
0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2

a
p (3.17)

and Re KðxÞ ¼ 1

1þ x
K

�
2
ffiffiffi
x

p
xþ 1

�
; 0\x\N (3.18)

Expanding of (3.16) near the point G in the small region |3|
( 3g0 in the vicinity of the LTT points |3c| ¼ 3g0, one obtains
(per spin direction and per unit area):

Dð3Þ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffi
3g0j3j

p .�
4pVF

2ħ2
�
; j3j(3g0

3g0


�
4pVF

2ħ2
�
; j3j ¼ 3g0

0; j3j. 3g0

(3.19)

The result (3.15) for dD (3) coincides with the total D(3) given
by (3.19) in the region |3|( 3g0 in the vicinity of the LTT points
|3c| ¼ 3g0, where j3jz ffiffiffiffiffiffiffiffiffiffiffiffi

3g0j3j
p

at |3| ( 3g0.
As follows from (3.19), for graphene in the vicinity of the

point G, the coefficients C5 and C7 in Table 1 should be changed
as

CG
5 ¼ CG

7 ¼ g0

VF
2

	�
4pħ2

�
(3.20)

Hence, in 2D graphene, the mass-factors of coefficients C5

and C7 in Table 1 acquire the substitutions of g0/VF
2 instead offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmin
x mmin

y

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmax

x mmax
y

p
; respectively, and this substitu-

tion can be treated as the fermion effective mass in the vicinity
of the point G:

mG
eff ¼

g0

VF
2

(3.21)

(ii) Now, we compute the dispersion relation in the vicinity of
the zone corners K(K0), where the energy tends to zero. We write

k ¼ K + k (3.22)

where K is the wavevector at the zone corner,
K ¼ ð4p=ð3 ffiffiffi

3
p

aÞ; 0Þ for example, and we will assume that k is
small.
RSC Adv., 2020, 10, 27387–27400 | 27391
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Fig. 4 The topology changes of the isoenergetic lines in the vicinity of
the saddle points M in the extended zones scheme: (a) at the critical
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To the lowest order in k we have, from (3.8) and (3.22),

f ðg0; kx; kyÞ ¼
3ag0

2

�
kx þ iky

�
(3.23)

Substitution of (3.23) into Hamiltonian (3.7) gives the
following equation for the isoenergetic lines in vicinity of the
point K (the corner of the rst Brillouin zone):

432

9a02g0
2
¼ kx

2 þ ky
2 (3.24)

Consequently, the isoenergetic lines are circles in the vicinity
of the minimum of energy 3c ¼ 0 (for the conduction band) or in
the vicinity of the maximum of energy 3c ¼ 0 (for the valence
band) at the corner of the zone. It follows from (3.24) that these
circles are described by the following equation in p-space
(Fig. 3b):

px
2 þ py

2 ¼ 32

VF
2

(3.25)

The value of 3c ¼ 0 corresponds to the minimum of energy in
the conduction band (the point P0 (min) in Table 1). The value
of 3c ¼ 0 corresponds to the maximum of energy in the valence
band (the point P2 (max) in Table 1). Eqn (3.25) describes the
linear dispersion of the massless Dirac fermions in the vicinity
of the corners K(K0) of the rst Brillouin zone:

3 ¼ �VFp (3.26)

Thus, the LTT exists at the critical value of energy 3c ¼ 0,
where the new cavity (3.25) appears (Fig. 3b) in the conduction
band or disappears in the valence band (Fig. 3b). Hence, there
are six pockets of low energy excitations (Fig. 3b), one for each of
the two inequivalent points K and K0 on the Brillouin zone
boundary.

The area of the cavity inside the circle (3.25) is equal to.

Dð3Þ ¼

8><
>:

p32

VF
2
; j3j. 0

0; 3 ¼ 0

(3.27)

Using (3.13) and (3.27) to calculate the number of the elec-
tron states inside the two-dimensional cavity (3.25), one obtains
(per spin direction and per unit area):

dN(3) ¼p32/[VF
2(2pħ)2] (3.28)

Computing DOS from (3.28), one has

dD ¼ ddNð3Þ
d3

¼ j3j
�2pħ2VF
2
�

(3.29)

Expanding the expression (3.16) at 3 ¼ 3c ¼ 0, we obtain the
same result for the total DOS (per spin direction and per unit
area) in the vicinity of the zone corners K(K0):
27392 | RSC Adv., 2020, 10, 27387–27400
D(3) ¼|3|/(2pħ2VF
2) (3.30)

Therefore, in the points K(K0), we must make the following
substitutions for the coefficients C6 and C7 for graphene in
Table 1:

C5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin

x mmin
y

q .�
2pħ2

�
/CK

5 ¼ 1


2pħ2VF

2; 3. 3c ¼ 0

(3.31)

C7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmax

x mmax
y

p .�
2pħ2

�
/CK

7 ¼ 1


2pħ2VF

2; 3\3c ¼ 0

(3.32)

(iii) Let us compute the dispersion relation in the vicinity of the
zone edges, e.g. near the middle M of the boundary of the rst
Brillouin zone. We write

k ¼ K + q (3.33)

where K is the wavevector at point M of the zone boundary
(Fig. 2b). The distance GM to the center of the edge of the zone

is
2p
3a

. Therefore:

K ¼
�
0;

2p

3a

�
(3.34)

and we will assume that q is small.
Taking into account |qya|, |qxa| � 1, we have from (3.9),

(3.33) and (3.34) to accuracy of order (qya), (qxa)

32 � g0
2

g0
2

¼ 9

8
qy

2a2 � 3

8
qx

2a2 (3.35)

Therefore, the isoenergetic lines are hyperboles in the vicinity
of pointM (themiddle of the edge of the rst Brillouin zone). One
can say that middles of the edges of the rst Brillouin zone are
saddle points. We can consider the corresponding points similar
toM (themiddles of the edges of the rst Brillouin zone) (Fig. 2b)
as the saddle points or the “cone points” in two dimensions
(points P1 (saddle) in Table 1). It follows from (3.35) that the
isoenergetic lines are described by the following equations in p-
space in the vicinity of these saddle points (Fig. 4):

px
2

A2
� py

2

B2
¼ 1 j3j\g0 (3.36)
value of energy |3| < g0; (b) at the critical value of energy |3| > g0.

This journal is © The Royal Society of Chemistry 2020
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px
2

A2
� py

2

B2
¼ �1 j3j.g0 (3.37)

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
��g0

2 � 32
��q

VF

;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
��g0

2 � 32
��q

VF

(3.38)

The Lifshitz topological transition is realized in the saddle
point M by the variation of energy from 3 < 3c to 3 > 3c, and
3c ¼ g0. In this transition, the isoenergetic lines in the vicinity of
point M change from hyperbole (3.36) to hyperbole (3.37).
Calculating the area D(3) enclosed by hyperbole (3.36) or (3.37)
and the corresponding boundary of the rst Brillouin zone
py ¼ ħ/a, or px ¼ ħ/a, one obtains:

dNð3Þ ¼
ffiffiffi
3

p

VF
2
ð1=2pħÞ2��3c2 � 32

�� ln
��3c2 � 32

��
3c2

(3.39)

where 3c ¼ g0.
Now, we are able to resolve the contradiction with the coef-

cient C6 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ms

xms
y

p
=ð2pħÞ2 used in Table 1. As follows from

(3.39) and (3.13), the DOS change due to the LTT in the saddle
point M (at energies close to 3c) is equal to

dD ¼ ddNð3Þ
d3

¼

8>><
>>:

2
ffiffiffi
3

p
ð1=2pħÞ2 g0

VF
2
ln

���� 33c � 1

����; 3. 3c

�2
ffiffiffi
3

p
ð1=2pħÞ2 g0

VF
2
ln

����1� 3

3c

����; 3\3c

(3.40)

Also, the expansion of (3.16) yields the same VHS for the total
DOS (per spin direction and per unit area) in the vicinity of the
saddle point M, if |3| / 3c ¼ g0:

D ¼

8>><
>>:

2
ffiffiffi
3

p
ð1=2pħÞ2 g0

VF
2
ln

���� 33c � 1

����; 3. 3c

�2
ffiffiffi
3

p
ð1=2pħÞ2 g0

VF
2
ln

����1� 3

3c

����; 3\3c

(3.41)

Therefore, in the saddle point M, the coefficient C6 for gra-
phene in Table 1 should be changed to

CM
6 ¼ 2

ffiffiffi
3

p
ð1=2pħÞ2 g0

VF
2

(3.42)

Thereby, in 2D graphene, the mass-factor C6 in Table 1
acquires the substitution of g0/VF

2 instead of
ffiffiffiffiffiffiffiffiffiffiffiffi
ms

xm
s
y

p
, and this

substitution can be treated as the graphene effective mass in the
vicinity of the saddle point M:

mM
eff ¼

g0

VF
2

(3.43)

It follows from (3.21) and (3.43) that the fermions are
slowing down in the vicinities of the G and M points,
becoming not massless but massive. A similar phenomenon
This journal is © The Royal Society of Chemistry 2020
was found in observations of Dirac node formation and mass
acquisition in a topological crystalline insulator.57 Estima-
tion of the values of mG

effand mM
effyields (at g0 ¼ 4 eV, and VF¼

108 cm s�1 (ref. 56)):

mG
eff z 0.1me (3.44)

mM
eff z 0.1me (3.45)

where me is the free electron rest mass.
4 Contribution of the Lifshitz
topological transitions to the
thermodynamic properties of
graphene
4.1. The thermodynamic potentials of graphene near the
Lifshitz topological transition

Consider the thermodynamic properties of graphene near the
electronic transition caused by the topology change of the Fermi
lines in graphene. If the chemical potential m is close to a value
of the critical energy 3c, the grand thermodynamic potential U
(ref. 5) has the following expression:2

U(m, T) ¼ U0 + dU (4.1)

where

dU ¼ �
ðN
0

dNð3Þ
1þ eð3�mÞ=T d3 (4.2)

and the temperature T is measured in ergs.
Introducing the Lifshitz parameter z ¼ m � 3c in the case of

the hyperbolic changes of the Fermi lines at the saddle point M,
we obtain from (3.39) and (4.2), if T / 0:

dU ¼

8>>><
>>>:

�aT2

�
63c ln

T

3c
� 3ðT þ 23cÞC



exp

�
�jzj
T

�
ðIÞ

�a3c
�
jzj2 ln jzj

3c
þ 1

4
jzj2 þ p2T 2

3
ln

jzj
3c



ðIIÞ

(4.3)

where a ¼ ffiffiffi
3

p ð1=2pħVFÞ2; z ¼ m � 3c, 3c ¼ g0, and C is the Euler
constant.

Transition from region I into region II corresponds to the
appearance of a new cavity of the isoenergetic line 3(p)¼ m, or to
a decrease of the line connectivity.

Both formulae (4.3) are valid at T � |z|. At absolute zero
temperature, one has

dU ¼

8><
>:

0; ðIÞ

�a3c
�
jzj2 ln jzj

3c
þ 1

4
jzj2
�

ðIIÞ (4.4)

From comparison of (4.4) and (1.1), one can see the
essential difference of dU given by (4.4) for the LTT in gra-
phene and the LTT in three dimensions (1.1). The second
derivative of dU diverges at the point z ¼ 0 as ln(|z|/3c)in
graphene, while only the third derivative of dU diverges at
RSC Adv., 2020, 10, 27387–27400 | 27393
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the point z ¼ 0 as z�1/2 in three dimensions. As a result,
completely different anomalies will be obtained for the
thermodynamic parameters at the Lifshitz topological tran-
sitions in graphene.

When the electronic cavity disappears in the Brillouin zone
centre G, one computes from (3.14) and (4.2) at T / 0:

dU ¼

8>><
>>:

�a 4pffiffiffi
3

p T2ðT þ 3cÞ exp
�
�jzj
T

�
ðIÞ

�a p

3
ffiffiffi
3

p �
z2ð23c þ mÞ þ p2T2jzj� ðIIÞ

(4.5)

where z ¼ 3c � m, 3c¼ 3g0.
Considering the appearance of new cavities in the Brillouin

zone corners K, we obtain from (3.28) and (4.2), if T / 0:

dU ¼

8>><
>>:

�a 2pffiffiffi
3

p T3 exp

�
�jzj
T

�
ðIÞ

�a p

3
ffiffiffi
3

p
�
jzj3 þ p2T2jzj

�
ðIIÞ

(4.6)

where z ¼ m � 3c, 3c¼ 0.
Because the number of electrons in the conduction band is

permanent (at least in vicinity of the point m ¼ 3c), it is conve-
nient to use the Helmholtz free energy potential F (T, S, N)2

instead of the grand thermodynamic potential U (T, S, m). We
assume that area S is the parameter connected with applied
pressure, tensile stress, or other mechanical action. The critical
energy is the function of the area, i.e. 3c ¼ 3c(S), and the
chemical potential m is also a function of S because of constancy
of the carriers:

N(m, S) ¼ N (4.7)

If Sc is the area at which the topology of the Fermi lines
changes:

m(Sc) ¼ 3c(Sc) (4.8)

According to (4.7) and (4.8), the value of |z| ¼ |m � 3c| can be
expressed via |S � Sc|:

|z| ¼ h|S � Sc| (4.9)

where h is independent of S, and h ¼ h(m).
The Helmholtz free energy potential F can be written in the

form

F ¼ F0 + dF (4.10)

where F0 is the smooth part of the free energy.
One can readily be convinced that dF is quantitatively equal

to the irregular contribution dU expressed in the variables S and
T according to the Landau theorem5 about the small variations
of the thermodynamic potentials due to small changes of some
parameters of the solid state:

(dU)T,S,m ¼ (dF)T,S,N (4.11)
27394 | RSC Adv., 2020, 10, 27387–27400
One can see that variations of dU given by the relations (4.3),
(4.5), and (4.6) are small at T � z in the vicinity of the Lifshitz
electronic transition, where z / 0.

Thus, dF is given by eqn (4.3), (4.5), and (4.7), where onemust
set |z| ¼ h|S � Sc|.

In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain from (4.3) and (4.9), if T / 0:

dF ¼

8>>><
>>>:

�aT2

�
63c ln

T

3c
� 3ðT þ 23cÞC



exp

�
�jzj
T

�
ðIÞ

�a3c
�
jzj2 ln jzj

3c
þ 1

4
jzj2 þ p2T2

3
ln

jzj
3c



ðIIÞ

(4.12)

where |z| ¼ hg0
|S � Sc|, hg0

¼ h(m/g0).
When the electronic cavity disappears in the Brillouin zone

centre, one obtains from (4.5) and (4.9) at T / 0:

dF ¼

8>><
>>:

�a 4pffiffiffi
3

p T2ðT þ 3cÞ exp
�
�jzj
T

�
ðIÞ

�a p

3
ffiffiffi
3

p �
z2ð23c þ mÞ þ p2T2jzj� ðIIÞ

(4.13)

where |z| ¼ h3g0
|S � Sc|, h3g0

¼ h(m/3g0).
Considering the appearance of new cavities in the Brillouin

zone corners, one obtains from (4.6) and (4.9), if T / 0:

dF ¼

8>><
>>:

�a 2pffiffiffi
3

p T3 exp

�
�jzj
T

�
ðIÞ

�a p

3
ffiffiffi
3

p
�
jzj3 þ p2T2jzj

�
ðIIÞ

(4.14)

where |z| ¼ h0|S � Sc|, h0 ¼ h(m/0).

4.2. The specic heat of the graphene monolayer at the
Lifshitz topological transition

The specic heat of graphene is stored in the lattice vibrations
(phonons) and the free conduction electrons of graphene, C ¼
Cph + Ce. However, phonons dominate the specic heat of gra-
phene58 at all practical temperatures (>1 K),59,60,and61,62 and the
phonon specic heat increases with temperature.62 The electron
specic heat Ce of monolayer graphene (MG) is given by the
following relations:62

CMG
e z

8>><
>>:

4p

3
SkB

2
mT

	�
VF

2ħ2
�
; kBT � m

p3

3 ln 2
SkB; kBT[m

(4.15)

where S is the sample area and kB is the Boltzmann constant.
We can explore the electron-specic heat peculiarities of

monolayer graphene at the LTT based on expressions of the
change of the Helmholtz free energy by eqn (4.12), (4.13), and
(4.14).

In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, one obtains from (4.12), if T / 0:

d
Ce

T
¼ �d v

2F

vT2
¼

8><
>:

0 ðIÞ

a3c
2p2

3
ln

jzj
3c

ðIIÞ
(4.16)

where z ¼ hg0
|S � Sc|.
This journal is © The Royal Society of Chemistry 2020
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When the electronic cavity disappears in the Brillouin zone
centre G, one computes from (4.13) at T / 0:

d
Ce

T
¼ �d v

2F

vT2
¼

8><
>:

0 ðIÞ

a
4p3

3
ffiffiffi
3

p jzj ðIIÞ
(4.17)

Considering the appearance of new cavities in the Brillouin
zone corners K, we obtain from (4.14), if T / 0:

d
Ce

T
¼ �d v

2F

vT2
¼

8><
>:

0 ðIÞ

a
2p3

3
ffiffiffi
3

p jzj ðIIÞ
(4.18)

where |z| ¼ h0|S � Sc|, h0¼ h(m / 0).
Thus, the formulae (4.16), (4.17) and (4.18) describe peculiari-

ties of the specic heat in graphene at the LTT at the points M, G,
and K of the rst Brillouin zone, correspondingly (Fig. 5a).

The results for the specic heat (4.17) and (4.18) coincide
with result (4.15) of the electron specic heat CMG

e of the
monolayer graphene (MG) obtained in paper.61 Indeed,
substituting a ¼ ffiffiffi

3
p ð1=2pħVFÞ2, and expressing T in Kelvins,

one obtains from (4.17) and (4.18):

Ce z SkB
2mT/(VF

2ħ2), kBT � |z| � m (4.19)

Note that experimental observation of singularities (4.16)
and (4.17) is possible under special conditions. The experi-
mental value of the chemical potential m of graphene does not
exceed 1 eV,63 and the estimated value of the overlap integral
g0 is between 2 and 4 eV.64–66 Tuning of the chemical activity of
graphene in a wide range could be achieved by the formation
Fig. 5 Peculiarities of the electronic thermodynamic parameters of
graphene at the Lifshitz topological transitions at the points M
(chemical potential m ¼ g0), G (chemical potential m ¼ 3g0), and K
(chemical potential m ¼ 0) of the first Brillouin zone: (a) the electronic

specific heat d
Ce

T
; (b) the electronic compressibility d

v2Pe
vS

; (c) the

electronic thermal coefficient of pressure d

�
v2Pe
vT

=T
�
; and (d) the

electronic thermal expansion coefficient d

�
v2Se
vT

�
P
:

This journal is © The Royal Society of Chemistry 2020
of a Moiré superstructure between the graphene and transi-
tion metal substrate.67 Thus, to observe the LTT at the gra-
phene saddle point (where |z| ¼ |m � g0| / 0), we must
increase the chemical potential m or decrease the overlap
integral g0 due to strain. Increasing m can be realized by
electron doping due to renormalization of the electron spec-
trum.68 It has been demonstrated in ref. 68 that the Coulomb
interaction produces noticeable effects in increasing the
graphene chemical potential m at low temperature T � m,
especially for high carrier concentrations of n0 > 1011 cm�2.
The band structure of graphene has been determined under
strain using density functional calculations.69 The ab initio
band structure was then used to extract the best t to the
tight-binding hopping parameters used in a microscopic
model of strained graphene.70 It was found that the hopping
parameters may increase or decrease with increasing strain
depending on the orientation of the applied stress. The tted
values were compared with an available parameterization for
the dependence of the orbital overlap on the distance sepa-
rating the two carbon atoms.
4.3. The compressibility of the graphene monolayer at the
Lifshitz topological transition

The compressibility of graphene is an important object of study
in condensed matter physics because it gives information about
the intrinsic nature of the electron structure of graphene and its
interactions with external elds.71,72

In case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain from (4.12) for the electron
compressibility, if T / 0:

d
vPe

vS
¼ �d v

2F

vS2
¼

8><
>:

0 ðIÞ

�2ahg0

23c ln
jzj
3c

ðIIÞ
(4.20)

where z ¼ hg0
|S � Sc|.

When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.13) for the electron compressibility
at T / 0:

d
vPe

vS
¼ �d v

2F

vS2
¼

8><
>:

0 ðIÞ

�a 4p

3
ffiffiffi
3

p ð23c þ mÞh3g0

2 ðIIÞ (4.21)

where h3g0
¼ h (m / 3g0).

Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.14) for the electron
compressibility, if T / 0:

d
vPe

vS
¼ �d v

2F

vS2
¼

8><
>:

0 ðIÞ

�a 2pffiffiffi
3

p jzj ðIIÞ (4.22)

where |z| ¼ h0|S � Sc|, h0¼ h(m / 0).
As a result, the formulae (4.20), (4.21) and (4.22) describe

peculiarities of the compressibility of graphene at the LTT at the
points M, G, and K of the rst Brillouin zone, correspondingly
(Fig. 5b).
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4.4. The electron thermal coefficient of pressure of the
graphene monolayer at the Lifshitz topological transition

In case of the hyperbolic changes of the Fermi lines at the
saddle point A, we obtain the change of the electron thermal
coefficient of pressure from (4.12), if T / 0:

d

�
vPe

vT

	
T

�
¼ � 1

T
d

v2F

vTvS
¼

8><
>:

0 ðIÞ

�ahg0
3c
2p2

3jzj ðIIÞ
(4.23)

where z ¼ hg0
|S � Sc|.

When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.13) for the electron thermal coeffi-
cient of pressure at T / 0:

d

�
v2Pe

vT

	
T

�
¼ � 1

T
d

v2F

vTvS
¼

8><
>:

0 ðIÞ

�ah3g0

4p3

3
ffiffiffi
3

p ðIIÞ
(4.24)

where h3g0
¼ h(m / 3g0).

Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.14) for the electron thermal
coefficient of pressure, if T / 0:

d

�
v2Pe

vT

	
T

�
¼ � 1

T
d

v2F

vTvS
¼

8><
>:

0 ðIÞ

�ah0

2p3

3
ffiffiffi
3

p ðIIÞ
(4.25)

where h0 ¼ h(m / 0).
The formulae (4.23), (4.24) and (4.25) describe peculiarities

of the electron thermal coefficient of pressure in graphene at
the LTT at the points M, G, and K of the rst Brillouin zone,
correspondingly (Fig. 5c).

4.5. The electron thermal expansion coefficient of the
graphene monolayer at the Lifshitz topological transition

The thermal properties of graphene have been investigated in
recent years; in particular, its thermal expansion and heat
conduction have been studied by various theoretical and
experimental techniques in ref. 73 and 74. Some theoretical
studies that have been carried out to study the thermodynamic
properties of graphene (e.g., specic heat and thermal expan-
sion) are based on density-functional theory (DFT) calculations
combined with a quantum quasi-harmonic approximation
(QHA) for the vibrational modes.73,74 This is expected to yield
reliable results at low temperature for the graphene lattice
contribution to the thermal properties; however, it may be
questioned with respect to the graphene electron part. The
answer to the latter can give the Lifshitz topological transitions.

In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain the change of the electron thermal
expansion coefficient from (4.23) and (4.20), if T / 0:

d

�
vSe

vT

�
P

¼ �d
�
vPe

vT

�
S

,�
vPe

vS

�
T

¼

8><
>:

0 ðIÞ

� p2

3hg0
jzj lnðjzj=3cÞ ðIIÞ

(4.26)

where z ¼ hg0
|S � Sc|.
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When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.24) and (4.21) for the electron
thermal expansion coefficient, at T / 0:

d

�
vSe

vT

�
P

¼ �d
�
vPe

vT

�
S

,�
vPe

vS

�
T

¼

8><
>:

0 ðIÞ

� p2

h3g0
ð23c þ mÞ ðIIÞ

(4.27)

where h3g0
¼ h(m / 3g0).

Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.25) and (4.22) for the electron
thermal expansion coefficient, if T / 0:

d

�
vSe

vT

�
P

¼ �d
�
vPe

vT

�
S

,�
vPe

vS

�
T

¼

8><
>:

0 ðIÞ

� p2

3h0jzj
T ðIIÞ

(4.28)

where z ¼ h0|S � Sc|.
It is interesting that the electron thermal expansion coeffi-

cient has a negative sign at T � |z|, like the lattice thermal
expansion coefficient of graphene (see ref. 72, 73, and 75).

The formulae (4.26), (4.27) and (4.28) describe the peculiar-
ities of the electron thermal expansion coefficient in graphene
at LTT at the points M, G, and K of the rst Brillouin zone,
correspondingly (Fig. 5d).
5 Conclusion and outlook

To summarize the results of the present paper, one can
emphasize the following.

(i) Connection of the Lifshitz topological transition has been
established with the van Hove singularities of the electron state
density in graphene. There are three types of singularities of the
density of the electron states in two dimensions. The point P0
(min) corresponds to the minimum in the energy spectrum. The
point P1 (saddle) corresponds to the case where the Lifshitz
topological transitions are realized by variation of the energy
from 3 < 3c to 3 >3c. The point P2 (max) corresponds to the
maximum in the energy spectrum.

(ii) Peculiarities of the Lifshitz topological transitions in
graphene are described at the Brillouin zone centre G, at the
zone corners K, in the vicinity of the Dirac points, and at the
saddle point M. It is found that LTT can be realized in the centre
G at the critical energy value 3c ¼ 3g0, where the cavity of the
isoenergetic lines disappears. The existence of the LTT is shown
at the critical energy value of 3c ¼ 0, where six pockets of low
energy excitations appear, one for each of the two inequivalent
Dirac points K and K0.

The Lifshitz topological transition is realized in the saddle
point M by variation of the energy from 3 < 3c to 3 > 3c and at the
critical value of energy 3c ¼ g0. It is shown that the Dirac
fermion slows down in the vicinities of the points G and M,
becoming not massless but massive, and the values of the
fermion effective mass in the vicinity of these points are mG

eff z
0.1me, and mM

eff z 0.1me (where me is the free electron mass).
(iii) The thermodynamic characteristics of graphene were

investigated at the Lifshitz topological transitions. A general
This journal is © The Royal Society of Chemistry 2020
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formulation of the thermodynamics at the LTT in graphene is
given. The anomalies are found at the LTT of the electron

specic heat Ce, the electron compressibility d
vPe
vS

, the elec-

tron thermal coefficient of pressure d
�
vPe
vT

=T
�
, and the electron

thermal expansion coefficient d

�
vSe
vT

�
P
. The anomalies are

described in terms of the Lifshitz parameter z ¼ m � 3c. The
electron specic heat Ce diverges at the saddle point M as ln|z|
and is proportional to |z| at points K and G of the rst Brillouin

zone. The electron compressibility d
vPe
vS

diverges at the saddle

point M as ln|z|, is proportional to |z| at points K, and takes
a constant value at point G of the rst Brillouin zone. The

electron thermal coefficient of pressure d

�
vPe
vT

=T
�

diverges at

the saddle point M as 1/|z|, and it becomes negative in the
vicinities of points K and G of the rst Brillouin zone. The

electron thermal expansion coefficient d
�
vSe
vT

�
P
diverges at the

saddle point M as 1/(|z| ln |z|) becoming negative in the vicinity of
pointG, and it diverges as 1/|z| at point K of the rst Brillouin zone.

One can conclude that all the thermodynamic parameters
possess the strongest singularities in graphene at the LTT near
the saddle points M. In 2D graphene, a saddle point M in the
electronic band structure leads to a divergence in the density of
states of the logarithmic-type van Hove singularities (VHS). This
implies the possibility of experimental observation of the LTT by
bringing the chemical potential m and the VHS together.
However, one cannot change the position of the VHS in the band
structure. It is pointed out in section 4.2 that the accessible
experimental value of the graphene chemical potential m does
not exceed 1 eV.63 Therefore, it is essential to tune m through the
VHS by chemical doping76,77 or by gating.17,57,78–81 In recent
work,82 a simple technique of doping graphene by manipulating
adsorbed impurities was reported, and a change in the electron
mobility of 650% was observed. Also, it is worth paying experi-
mental attention to the tuning of m through the VHS by the
following two methods. The rst method is connected with
deformation of the graphene monolayer to mimic twisted gra-
phene. Rotation between two stacked graphene monolayers in
twisted graphene83 can generate van Hove singularities, which
can be brought arbitrarily close to the chemical potential m by
varying the angle of rotation.84 The second method consists of
investigating the LTT in graphene under 3D high pressure.84

This opens exciting opportunities for inducing and exploring the
Lifshitz topological transitions in graphene.
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