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The origin of the Lifshitz topological transition (LTT) and the 2D nature of the LTT in graphene has been
established. The peculiarities of the Lifshitz topological transitions in graphene are described at the
Brillouin zone centre T, the zone corners K in the vicinity of the Dirac points, and at the saddle point M.
A general formulation of the thermodynamics at the LTT in graphene is given. The thermodynamic

characteristics of graphene are investigated at the Lifshitz topological transitions. Anomalies are found in
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electron compressibility and thermal expansion in graphene at the LTT. All the thermodynamic
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1 Introduction

Anomalies in the thermodynamic quantities of metals due to
a change in the topology of the Fermi surface ¢(p) = ¢ are
customarily called the Lifshitz topological transition (LTT) (I. M.
Lifshitz;" see also ref. 2, 3 and 4). It is understood that a change
in the topology of the Fermi boundary surface is due to the
continuous variation of some parameter (e.g., pressure), as
a result of which the difference z = ¢ — ¢, (Where ¢ is the Fermi
energy and ¢, is the critical energy at which the topology of the
constant energy surface changes) passes through zero contin-
uously. This leads to a change in the connectivity of the Fermi
surface (the appearance of a new cavity, the rupture of a con-
necting neck, etc.), and at absolute zero temperature 7= 0 K, the
grand thermodynamic potential Q (often called the Landau free
energy or Landau potential®) acquires an irregular correction:

(1.1)

0Q = fa|z|5/2.

It can be seen that the third derivatives of the thermody-
namic potential become infinite at the point z = u — &, = 0 (the
chemical potential u is equal to the Fermi energy ¢ at T = 0);
therefore, this change in the topology of the Fermi surface is
also called the 21-order phase transition (FT23) according to the
Ehrenfest terminology.®”

The anomalies arising in the LTT manifest themselves at
T < ¢p not only in the thermodynamic characteristics of metals
but also in other characteristics (e.g., magnetic-field depen-
dence of the electrical resistance,® sound absorption®*?). It has
been shown in ref. 16 that the thermoelectric power has the
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exciting opportunities for inducing and exploring the Lifshitz topological transitions in graphene.

square root divergency at the LTT. The discovery of graphene”
gave new inspiration to investigations of the Lifshitz transition
properties. To date, numerous papers have been devoted to the
Lifshitz transitions in bilayer (BLG) and multilayer (MLG) gra-
phene.'*?° The results of these studies indicate that the effects
of the LTT are appreciable and can be used to observe the 23
order transitions as well as to investigate the degree of smearing
of the Fermi surface in metals. In ref. 31, experimental evidence
was obtained of the Lifshitz transition in the thermoelectric
power of ultrahigh mobility bilayer graphene. Resolving low-
energy features in the density of states (DOS) holds the key to
understanding a wide variety of rich and novel phenomena in
graphene based on 2D heterostructures. The Lifshitz transition
in bilayer graphene (BLG) arising from trigonal warping has
been established in*' theoretically and experimentally.

The 21st century has brought many new results related to
graphene thermodynamics.®** Apparently, the thermody-
namics of graphene has been characterized from many points
of view; however, the role of the Lifshitz topological transitions
in the thermodynamic properties of graphene has not been
studied. This paper aims to close this gap. Because graphene is
the first real two-dimensional solid, a general formulation of the
thermodynamics at the LTT in graphene is given. The unusual
thermodynamic properties of graphene stem from its 2D
nature, forming a rich playground for new discoveries of heat
flow physics and potentially leading to novel thermal manage-
ment applications.

This paper is arranged as follows. In section 2, the origin of
the Lifshitz topological transition and the 2D nature of the LTT
in graphene are considered. Peculiarities of the Lifshitz topo-
logical transitions in graphene are then investigated in section
3. The thermodynamics of graphene at the Lifshitz topological
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transitions is proposed in section 4. Finally, conclusions are
drawn in section 5.

2 Origin of the Lifshitz topological
transitions and connection of the two-
dimensional nature of graphene with
the van Hove singularities

It is known [see ref. 1, 2, and 3] that at the LTT, a new cavity of
the electronic isoenergetic surface appears (or disappears) at
the critical energy ¢. in the critical point of the momentum
space p = p., where the electron energy as a function of qua-
simomentum ¢ = ¢(p) has a minimum é,;, Or maximum éyax. In
this case, the isoenergetic surfaces in the vicinity of p = p. are
well described by the ellipsoid equations:

2 2 2

Dx Py P:

m 2;}1 m = &€ — Emin, Szé‘min (21)
X y 1
2 2 2

Px Py P:

ol 2:}/11 ol = €max — &, sgemax (2-2)

X y z

where m,, m,, and m, are the main values of the effective mass
tensor in the vicinity of emin (see ref. 46 and 47);m,,m,, and m,
are the main values of the effective mass tensor in the vicinity of

15
Emax-

At the neck rupture, the boundary isoenergetic surface ¢(p) =
& contains the peculiar point of another type, named the cone
point, at p = p.. In this case, the isoenergetic surface in the
vicinity of the cone point p = p, is described by the hyperboloid
of two sheets at energy ¢ < ¢. and the hyperboloid of one sheet at
energy ¢ > ¢. (Fig. 1a):

2 2 2
Pi P2 D3

£ 422 B e ee<e,, my, My, M3 > 0 2.3

2 : 2m2 2 R cy cy 1y 25 3 ( )
2 2 2
)4 D2 D3

ZE 2 —e—g,, e>e,, My, My, M3 > 0 2.4

2m1 5 ) 3 R cy ) 1y 2 3 ( )

At energies close to ¢, one can express the electron density of
states (DOS) as
D(e) = Do(e) + 6D(¢) (2.5)
where Dy(e) is the regular smooth function of the energy, and
0D(¢) depends on the type of LTT. The latter is computed by the
relation (per spin direction and per unit volume in 3D-space, or
per unit area in 2D-space):

d

o6D(e)= &

(1/2mh)” — A(e) (2.6)
where 7 is the reduced Planck-Dirac constant, and 4(e) is
volume of the ellipsoid (2.1) or (2.2). At the neck rupture
(Fig. 1a), 4(¢) is the change of the volume enclosed by the plane
Ps = po and the hyperboloid of one (2.3) or two (2.4) sheets
(Fig. 1a) in the disruption of the isoenergetic surface neck in the

vicinity of the cone point p = p..
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Fig. 1 The cone point at p = pc (a), the saddle point (c), and the van
Hove singularities of the state density 6D(e) (b). S, S3, and S, are the
saddle points.

One can join eqn (2.1)-(2.4) into a single equation:

128

2 2
Py P:
. +ay—+a:

2m, “2m.

e =¢& +ay (2.7)
where m; (i = x, y, z) are the positive values of the effective mass
tensor, m; #0, and integers a; (j = x, y, z) are equal to £1.

Four types of singularities exist of the density of the electron
states in three-dimensional space, and the singularity type
depends on the signs of the coefficients a;.

The point M, (min) corresponds to the case where all three
coefficients a; = +1. This point corresponds to the minimum in
the energy spectrum.

The point M, (saddle) corresponds to the case where two
coefficients g; are positive and the third one is negative. This is
the saddle point (Fig. 1c).

The point M, (saddle) is the case where two coefficients a; are
negative and a third one is positive. This is the second saddle
point (Fig. 1b).

The point M; (max) corresponds to the case where all three
coefficients a; = —1. This point corresponds to the maximum in
the energy spectrum.

There are three types of singularities of the density of the
electron states in two-dimensional space, and the singularity
type depends on the signs of the coefficients a; (j = x, ).

The point P, (min) corresponds to the case where both
coefficients a; = +1. This point corresponds to the minimum in
the energy spectrum.

The point P; (saddle) corresponds to the case where one
coefficient a; is positive and another one is negative. This is the
saddle point.

This journal is © The Royal Society of Chemistry 2020
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Table 1 The analytical behavior of the density of the electron states at the Lifshitz topological transitions

Density of the electron states at &,

Dimensionality Type of singularity e<e e>ec Coefficients C;
3D M, (min) 0 Cr (e —ed"? C) = \/2momym. /(7h?)
M; (saddle) Cy — Cslec — &) Ca Cy = 4w /mymap,/ (2mh)?
M, (saddle) —-C, Cy — Cs(e — &) Cs = Jmymznt | (3T
1/2
M; (max) Cafec — &) 0 Cy= Zm;m"‘,m;/(fczh’%)
2D Py (l’l’lln) 0 Cs CS — mi‘?i“mg‘i“/@nhz)
P, (saddle) —Ce In|1 — e/e| Ce In| e/e. — 1] Cs = \/W/(}rch)z
P, (max) c, 0 Cy = \/mTmi™ | (2mh?)
1D Qo (min) 0 Cs (e —e) Cs = \/2m™ / (2mh)
Q; (max) —Colee — &) M2 0 Co = /2m"™ /(21ch)

The point P, (max) corresponds to the case where both
coefficients a¢; = —1. This point corresponds to the maximum in
the energy spectrum.

There are two types of singularities of the density of the
electron states in one-dimensional space:

e The point Q, (min) corresponds to the case where coeffi-
cient a = +1. This point corresponds to the minimum in the
energy spectrum.

e The point Q; (max) corresponds to the case where coeffi-
cient a = —1. This point corresponds to the maximum in the
energy spectrum.

The analytical behavior of the density of the electron states at
LTT is given in Table 1. The results are computed from formulae
(2.1)-(2.7); see also ref. 1, 2, and 4.

We can conclude based on the square root peculiarities of
the density of the electron states in three dimensions (Table 1)
at ¢, that nature of the Lifshitz topological transition stems from
the van Hove singularities (VHS) of the state density 6D(e).**>> In
this connection, the van Hove topological theorem*® states that
the spectrum must contain at least one of the saddle-points S,
and S, (Fig. 1b), and the slope of D(¢) must tend to — o on the
upper end.

The two-dimensional nature of graphene should exhibit
special types of van Hove singularities and LTTs. This statement
is illustrated by the general argument that in two dimensions,
the saddle-points produce logarithmic singularities (Table 1),
and the spectrum extrema produce finite discontinuities of the
electron density of states [also see ref. 49, 53, and 54]. This is
valid for the elementary excitations of the quasiparticles with
values m; # 0 of the effective mass tensor; however, it is not
applied to the massless Dirac fermions in graphene. If the
logarithmic singularity is a general property of 2D electronic
systems in the saddle points, this statement should be valid for
2D graphene. However, the latter is in contradiction with
Ce = m/(ZWh)Z because the value of C¢ must be zero for

the massless fermions in graphene. Here, the discrepancy arises
because the logarithmic singularity vanishes. We will resolve
this contradiction in section 3.

This journal is © The Royal Society of Chemistry 2020

Therefore, the Lifshitz topological transitions in graphene
require special investigation. The latter was also confirmed by
recent work.”® It has been demonstrated in* theoretically that
the characteristic feature of a 2D system undergoing N conse-
quent Lifshitz topological transitions is the occurrence of spikes
of entropy per particle s of a magnitude + In 2/(J — 1/2) with 2 <
J = N at low temperatures.

3 Peculiarities of the Lifshitz
topological transitions in graphene

A single layer of graphene consists of carbon atoms in the form
of a honeycomb lattice (Fig. 2). The primitive translation vectors
e, and e, form the rhombic unit cell. The hexagonal lattice
consists of two trigonal sublattices AAA and BBB.*® There are
four valence electrons (two 2s and two 2p electrons). Three of
those participate in the chemical bonding and thus are in bands
well below the Fermi energy. We therefore consider the bands
formed by the one remaining electron. We assume a tight-
binding model in which the electron hops between neigh-
boring atoms. We denote the spacing between neighbouring
atoms by a.

From Fig. 2a, we see that two basis vectors of the Bravais
lattice are

e :a<\/§/2, 3;/2)7 e = \/ga(l, 0) (3.1)

The reciprocal Bravais lattices, b; and b,, are defined such
that

b,--ej = 27'5(5,] (3.2)
The result is
41t
b= —(0, 1 3.3
= (0, 1) (33)
b—ﬁxﬁ'—o (3.4)
2 — 3a ) .

RSC Adv, 2020, 10, 27387-27400 | 27389
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Fig. 2
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(Reproduced and adapted with permission from ref. 56). The crystal structure of the single graphite layer (a). The primitive translation

vectors e; and e, form the rhombic unit cell, and the basis consists of two C atoms, shown as A and B. The Bravais lattice (consider, e.g., the lattice
formed by the A atoms) is triangular with a Bravais lattice spacing of 2 x sin 60° x a = v/3a, where a is the spacing between neighboring atoms.

The graphene reciprocal lattice and the first Brillouin zone (b).

These basis vectors are of equal length and at 120°; therefore,
the reciprocal lattice is a hexagonal lattice (Fig. 2b). The first
Brillouin zone is shown in Fig. 2b. The first Brillouin zone is
a regular hexagon, whose most characteristic points are its
centre I, the inequivalent corners K and K/, and the centres of

27T

the lateral edges M and M'. The distance I'M is (1/2)b; = 33

The distance I'K is I'M/sin 60° = 4—TC
3v/3a

Consider a state with amplitude ¥y for the electron to be at
the site labeled by R. We look for the wave functions with
amplitudes which vary, such as e'**. There will be different
amplitudes ¥, and ¥ on sublattices A and B, so ¥i =  elkr
(Re A),and Wy = We'™ " (R € B). An electron at site R can hop
to any of the neighboring sites. An atom on sublattice AAA has
neighboring atoms (Fig. 2a), all on sublattice BBB, at displace-
ments (0, a), (av/3/2, —a/2), and (—a/3/2, — a/2). An atom
on sublattice BBB has three neighbors on sublattice AAA at
displacements (0, —a), (v/3a/2, a/2), and (—/3a/2, a/2). In
the nearest-neighbour approximation, there are no hopping
processes within the sublattices AAA and BBB; hopping only
occurs between them. Hence, the eigenvalue ¢ and the ampli-
tudes ¥, and ¥ are determined for each wavevector k from two
equations:

) . 3
—¥, (e’kf“ +2e709/2 ¢os (%kxa) > Wy =Wy (3.5)

o <eﬂqu + 2eik.<a/2 cos (?kxa) ) Uy =cWy (3.6)

where vy, is the between nearest

neighbors.

hopping parameter

27390 | RSC Adv, 2020, 10, 27387-27400

We write the Hamiltonian in the tight-binding approxima-
tion for the wave vector k = p/i (where p is the electron quasi-
momentum), taking into account eqn (3.5) and (3.6), as

0 S (vo. ki, k) )

) (f*(vo, ke ky) 0 (3.7)

where

S (vo, ke, ky) =7 <e[k)“ 1 2¢79/2 cog (?kﬂ)) (3.8)

The electron energy eigenvalues of the Hamiltonian (3.7) are
given by

1/2
e==ry, <1 +4 cos (%kya) X COS (?kw) + 4 cos? (?kﬂ))

(3.9)

In expression (3.9), the plus and minus signs correspond to
the conduction and valence bands, respectively.

To explore the possible Lifshitz topological transitions,
consider the structure of the isoenergetic lines in the (k, k)
plane for different positions of the wave vector k.

(i) The maximum and minimum energies are ¢, = £3v,, and
they occur at k = 0, ie. in the centre I' (Fig. 2b) of the first
Brillouin zone. The value of ¢ = 3y, corresponds to the
maximum of energy in the conduction band (the point P, (max)
in Table 1). The value of ¢. = —3, corresponds to the minimum
of energy in the valence band (the point P, (min) in Table 1).
Taking into account |ka|, |ka| < 1, from (3.9), we have accu-
racy of order (k,a), (k.a)*:

This journal is © The Royal Society of Chemistry 2020
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M _ 9kx2£l2 + %kyZaZ

P (3.10)

Thus, the isoenergetic lines are circles in the vicinity of the
extrema of energy at k = 0. It follows from (3.10) that these
circles are described by the following equation in p-space:

2 2
2 2 |970 — & |
. S et O | 3.11
Pty W (3.11)
where
3
Ve = "270/;& (3.12)

Consequently, there exist LTT at critical values of energy
& = 37, where the cavity (3.11) of the isoenergetic lines
disappears (Fig. 3a) at ¢. = +37, in the conduction band or
appears at ¢, = —3%, in the valence band.

The number of the electron states inside the two-dimensional
cavity (per spin direction and per unit area) is equal to

ON(e) = (1/2ch)* A(e) (3.13)

where 4(¢) is the area of the cavity in the momentum space.

We obtain from (3.11) and (3.13)

22
EB711/0¥OMV) o] See.

0, le|>e..

ON(e) = (3.14)

where ¢, = 37,.
One can represent the change of the density of states 6D(¢)
due to LTT as

don(e) [ e/ (rVeli) el <3y,
0D(e) = —5-= = 3o/ (4nVE'l), Je| =3v,  (3.15)
0, |e| >3y,
Py
O Px
(a)
Fig. 3 (a) Disappearance of the cavity of the isoenergetic lines in the

Brillouin zone centre T" at the critical value of energy e. = 3v¢ in the
conduction band. Appearance of the cavity of the isoenergetic lines in
the Brillouin zone centre I" at the critical value of energy ec = —3y¢ in
the valence band. (b) Appearance of new cavities in the conduction
band in the corners K of the Brillouin zone at the critical value of
energy ¢ = 0 in the extended zones scheme. Disappearance of new
cavities in the valence band in the corners K of the Brillouin zone at the
critical value of energy ¢ = 0 in the extended zones scheme.

This journal is © The Royal Society of Chemistry 2020
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The discontinuity at the end points ¢ = 37y, comes from
a maximum or minimum of the dispersion relation in two
dimensions. The analytic expression without derivation for the
total DOS in graphene for model (3.7) was provided by Hobson
and Nierenberg in 1953.% In a recent paper,* the expression for
this model was derived for the total DOS (per unit hexagonal cell
of area A = 3v/3a?/2 (Fig. 2a) and one spin component), valid
for region 0 < |e| < 37,

4le/vol
vor2y/(e/v0l + 1)°G — le/7o)

(\/ 16]e/7y,l ) 0< el <37,
(le/vol + 1°G = le/val) )

where K(£) is the complete elliptic integral of the first kind, i.e.

D(e) = ReK

(3.16)

1 /2 da
K(k) = .
k) 1+§ Jo V1 — k2sin® & (47)
and Re K(£) = %ﬂK(%) 0<f<o (3.18)

Expanding of (3.16) near the point I" in the small region |¢|
< 37, in the vicinity of the LTT points |e.| = 37v,, one obtains
(per spin direction and per unit area):

s/3«/0|e\/(4nVF2h2), le] <3,
PO 3w/ (rrem), el =3m, (5.19)
0, |e|>3v,

The result (3.15) for 6D (¢) coincides with the total D(¢) given
by (3.19) in the region |¢| < 37, in the vicinity of the LTT points
lec] = 3o, where |¢| = /37y,leat ] < 3o.

As follows from (3.19), for graphene in the vicinity of the
point I', the coefficients C5 and C; in Table 1 should be changed
as

= = / (4

F

(3.20)

Hence, in 2D graphene, the mass-factors of coefficients Cs
and C, in Table 1 acquire the substitutions of yo/V¢” instead of

\/mEnmn and | /mPPmi, - respectively, and this substitu-

tion can be treated as the fermion effective mass in the vicinity
of the point I':

r Yo

My = —
ff
e VFZ

(3.21)
(ii) Now, we compute the dispersion relation in the vicinity of
the zone corners K(K'), where the energy tends to zero. We write

k=K+«k (3.22)

where K is the wavevector at the corner,
K = (47t/(3v/3a), 0) for example, and we will assume that k is

small.

zone

RSC Adv, 2020, 10, 27387-27400 | 27391
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To the lowest order in k we have, from (3.8) and (3.22),

3ay,

f(707k,\‘7k)’) = 2

(kx + iy) (3.23)

Substitution of (3.23) into Hamiltonian (3.7) gives the
following equation for the isoenergetic lines in vicinity of the
point K (the corner of the first Brillouin zone):

4¢?

2 2
Qgiya Ty
9ap*y,

(3.24)

Consequently, the isoenergetic lines are circles in the vicinity
of the minimum of energy ¢. = 0 (for the conduction band) or in
the vicinity of the maximum of energy ¢. = 0 (for the valence
band) at the corner of the zone. It follows from (3.24) that these
circles are described by the following equation in p-space
(Fig. 3b):

2 2
Px +py = F (325)

The value of ¢. = 0 corresponds to the minimum of energy in
the conduction band (the point P, (min) in Table 1). The value
of ¢. = 0 corresponds to the maximum of energy in the valence
band (the point P, (max) in Table 1). Eqn (3.25) describes the
linear dispersion of the massless Dirac fermions in the vicinity
of the corners K(K') of the first Brillouin zone:

e=+Vgp (3.26)

Thus, the LTT exists at the critical value of energy ¢. = 0,
where the new cavity (3.25) appears (Fig. 3b) in the conduction
band or disappears in the valence band (Fig. 3b). Hence, there
are six pockets of low energy excitations (Fig. 3b), one for each of
the two inequivalent points K and K’ on the Brillouin zone
boundary.

The area of the cavity inside the circle (3.25) is equal to.

e’
—, le|>0
A(e) =< Vg (3.27)
0, =0

Using (3.13) and (3.27) to calculate the number of the elec-
tron states inside the two-dimensional cavity (3.25), one obtains
(per spin direction and per unit area):

ON(e) =me [V (2h)’] (3.28)
Computing DOS from (3.28), one has
oD = d‘sév ) _ le|/ (2mi VE?) (3.29)
&

Expanding the expression (3.16) at ¢ = ¢. = 0, we obtain the
same result for the total DOS (per spin direction and per unit
area) in the vicinity of the zone corners K(K'):
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D(e) =|el/Qrh* V) (3.30)

Therefore, in the points K(K'), we must make the following
substitutions for the coefficients Cs and C, for graphene in
Table 1:

Cs = \Jmminmin [ (2m?) = C8 = 1 /20 Vi, e> e = 0

(3.31)

G = /mf;mm;{‘ﬂx/(Z'rthz) — C;( = 1/2'rth2 Vit e<e. =0
(3.32)
(iii) Let us compute the dispersion relation in the vicinity of the

zone edges, e.g. near the middle M of the boundary of the first
Brillouin zone. We write

k=K+q (3.33)

where K is the wavevector at point M of the zone boundary
(Fig. 2b). The distance I'M to the center of the edge of the zone

2T
k= 0. )

and we will assume that q is small.
Taking into account |gya|, |g.a| < 1, we have from (3.9),
(3.33) and (3.34) to accuracy of order (gya), (g«a)

. 2T
is—. Therefore:
3a

(3.34)

e-v’_9 5, 3 5,
IR

(3.35)

Therefore, the isoenergetic lines are hyperboles in the vicinity
of point M (the middle of the edge of the first Brillouin zone). One
can say that middles of the edges of the first Brillouin zone are
saddle points. We can consider the corresponding points similar
to M (the middles of the edges of the first Brillouin zone) (Fig. 2b)
as the saddle points or the “cone points” in two dimensions
(points P; (saddle) in Table 1). It follows from (3.35) that the
isoenergetic lines are described by the following equations in p-
space in the vicinity of these saddle points (Fig. 4):

sz pyz

br B

yER (3.36)

lel < 7o

(a) (b)

Fig.4 The topology changes of the isoenergetic lines in the vicinity of
the saddle points M in the extended zones scheme: (a) at the critical
value of energy |e| < yo; (b) at the critical value of energy |e| > yo.
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P op?

A*>  B?

6 2 __ 2 2 2 _ 2
A= [ 8|B=V [0~ | (3.38)

Ve Ve

=1 |e|>7, (3.37)

where

The Lifshitz topological transition is realized in the saddle
point M by the variation of energy from ¢ < ¢, to ¢ > &, and
€ = 7¥o. In this transition, the isoenergetic lines in the vicinity of
point M change from hyperbole (3.36) to hyperbole (3.37).
Calculating the area 4(¢) enclosed by hyperbole (3.36) or (3.37)
and the corresponding boundary of the first Brillouin zone
Py = hla, or p, = h/a, one obtains:

22
ON(e) = Vié(l/znhﬂeﬁ —&|ln ’€°8 5 | (3.39)

where ¢, = v,.

Now, we are able to resolve the contradiction with the coef-
ficient C¢ = , /mfcm;/(m'ch)2 used in Table 1. As follows from
(3.39) and (3.13), the DOS change due to the LTT in the saddle
point M (at energies close to ¢.) is equal to

2V/3(1/2mh)* 10 n
VE

€
—71‘, e> g,

&

_ doN(e)
T de

oD

2v3(1/27h)* -1 In ‘1 £
VF &

, &<g

(3.40)

Also, the expansion of (3.16) yields the same VHS for the total
DOS (per spin direction and per unit area) in the vicinity of the
saddle point M, if |¢| — & = vo:

£

e

2V3(1 /2nh)2% In . e>e
F

D= (3.41)
, e<é
&

~2/3(1/27h)* X In ’1 - £
Ve

Therefore, in the saddle point M, the coefficient C, for gra-
phene in Table 1 should be changed to

M = 2v3(1 /27:71)2% (3.42)
F

Thereby, in 2D graphene, the mass-factor Cs in Table 1
acquires the substitution of y,/Vs* instead ofm, and this
substitution can be treated as the graphene effective mass in the
vicinity of the saddle point M:

M Yo

My = V—F2 (343)

It follows from (3.21) and (3.43) that the fermions are
slowing down in the vicinities of the I and M points,
becoming not massless but massive. A similar phenomenon
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was found in observations of Dirac node formation and mass
acquisition in a topological crystalline insulator.’” Estima-
tion of the values of migand mygyields (at yo = 4 eV, and Vp=
10% cm s~ (ref. 56)):

migp = 0.1m, (3.44)

m = 0.1m, (3.45)

where m, is the free electron rest mass.

4 Contribution of the Lifshitz
topological transitions to the
thermodynamic properties of
graphene

4.1. The thermodynamic potentials of graphene near the
Lifshitz topological transition

Consider the thermodynamic properties of graphene near the
electronic transition caused by the topology change of the Fermi
lines in graphene. If the chemical potential u is close to a value
of the critical energy &, the grand thermodynamic potential Q
(ref. 5) has the following expression:?

Qu, T) = Qy + 6Q (4.1)
where
_[* 0N(e)
0Q = —L T e /T de (4.2)

and the temperature T is measured in ergs.

Introducing the Lifshitz parameter z = u — ¢ in the case of
the hyperbolic changes of the Fermi lines at the saddle point M,
we obtain from (3.39) and (4.2), if T — 0:

—T? {6& In T_ 3(T + 2£C)C} exp (,H) (I)

& T
0Q = | 2p2 (4.3)
—we, {|z\2 In ‘;C'Jr Z\Z|2 + WT In %} (I1)

where o = /3(1/27hV5)?, 2 = u — &, € = Yo, and C is the Euler
constant.

Transition from region I into region II corresponds to the
appearance of a new cavity of the isoenergetic line g(p) = y, or to
a decrease of the line connectivity.

Both formulae (4.3) are valid at T < |z|. At absolute zero
temperature, one has

0, (D)

6.9: Z| 1
| +Z\z|2) (11)

(4.4)

Ee

—we, (|Z\2 In

From comparison of (4.4) and (1.1), one can see the
essential difference of 6Q given by (4.4) for the LTT in gra-
phene and the LTT in three dimensions (1.1). The second
derivative of 6Q diverges at the point z = 0 as In(|z|/eq)in
graphene, while only the third derivative of 6Q diverges at
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the point z = 0 as z */? in three dimensions. As a result,
completely different anomalies will be obtained for the
thermodynamic parameters at the Lifshitz topological tran-
sitions in graphene.

When the electronic cavity disappears in the Brillouin zone
centre I, one computes from (3.14) and (4.2) at T — 0:

4z _, ||
—a—TXT +e)exp( —=) (I)
50 — T\C@ ( T) (4.5)
—aﬁ [22(280 + lu') + Tcz T2|ZH (II)

where z = ¢, — U, &= 37o.
Considering the appearance of new cavities in the Brillouin
zone corners K, we obtain from (3.28) and (4.2), if T — 0:

—oz\z/—T;T3 exp(—'—;‘) (1)
ﬂ%(mwwzmz\) (11)

50 = (4.6)

where z = u — &, &= 0.

Because the number of electrons in the conduction band is
permanent (at least in vicinity of the point u = ¢.), it is conve-
nient to use the Helmholtz free energy potential F (T, S, N)?
instead of the grand thermodynamic potential Q (7, S, u). We
assume that area S is the parameter connected with applied
pressure, tensile stress, or other mechanical action. The critical
energy is the function of the area, ie. e = &/(S), and the
chemical potential u is also a function of S because of constancy
of the carriers:

N, S)=N (4.7)

If S. is the area at which the topology of the Fermi lines
changes:

1(Se) = ec(Se) (4.8)

According to (4.7) and (4.8), the value of |z| = |u — & can be
expressed via |S — S.|:

IZ| = 7I|S - Sc| (4'9)
where 7 is independent of S, and 1 = n(u).

The Helmholtz free energy potential F can be written in the

form
F=Fy+ 6F (4.10)
where Fj is the smooth part of the free energy.

One can readily be convinced that ¢F is quantitatively equal
to the irregular contribution 0Q expressed in the variables S and
T according to the Landau theorem® about the small variations
of the thermodynamic potentials due to small changes of some
parameters of the solid state:

01,5, = OF) 15N (4.11)
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One can see that variations of 6Q given by the relations (4.3),
(4.5), and (4.6) are small at T < z in the vicinity of the Lifshitz
electronic transition, where z — 0.

Thus, 0F is given by eqn (4.3), (4.5), and (4.7), where one must
set |z| = n|S — S|.

In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain from (4.3) and (4.9), if T — 0:

—aT? {6& n L 3(T + 28C)C} exp (—%) (I

6c
OF = | o (4.12)
—oe, {\z|2 In Lic‘-i- Z\Z|2 + TCT In %} (II)

where |z| = 1,,|S — Sc|, 1y, = n(— 7o)
When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.5) and (4.9) at T — 0:

4w _, |z|
——=T"(T+e)expl—=] (I
OF = 7\17/5 ( T) (4.13)
—aﬁ(z (2ec + p) + T T72[)  (10)

where |z| = 13,,|S — Sc|, 13y, = 2t — 370)-
Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.6) and (4.9), if T — 0:

—a%W exp(—%) (I

OF = (4.14)
e (1= + n272|z\> (11)
3V3
where [z| = 10|S — Sc|, 1o = n(u—0).
4.2. The specific heat of the graphene monolayer at the

Lifshitz topological transition

The specific heat of graphene is stored in the lattice vibrations
(phonons) and the free conduction electrons of graphene, C =
Cpn * Ce. However, phonons dominate the specific heat of gra-
phene® at all practical temperatures (>1 K),*¢*%62 and the
phonon specific heat increases with temperature.® The electron
specific heat C. of monolayer graphene (MG) is given by the
following relations:*

4T’TtSk}gz,ll,]—‘/(I/Fz}}lz), kBT < um
CMO = . (4.15)
T
msk];, kB T>>,u

where S is the sample area and kg is the Boltzmann constant.
We can explore the electron-specific heat peculiarities of
monolayer graphene at the LTT based on expressions of the
change of the Helmholtz free energy by eqn (4.12), (4.13), and
(4.14).
In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, one obtains from (4.12), if T — 0:

0 (I
G OF _ 2 v (4.16)
T a1 Czilnﬁ (I1) '
&

where z = 7, |S — S|
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When the electronic cavity disappears in the Brillouin zone
centre I', one computes from (4.13) at T — 0:

C *F 0

6= 2 — 3 4.17

AT E [PRF) 17
3v3

Considering the appearance of new cavities in the Brillouin
zone corners K, we obtain from (4.14), if T — 0:

C &*F 0 M
de = b = 2703 (4.18)
T oT o lz| (1)
3v3

where |z| = no|S — Sc|, o= n(x — 0).

Thus, the formulae (4.16), (4.17) and (4.18) describe peculiari-
ties of the specific heat in graphene at the LTT at the points M, T,
and K of the first Brillouin zone, correspondingly (Fig. 5a).

The results for the specific heat (4.17) and (4.18) coincide
with result (4.15) of the electron specific heat CY'“of the
monolayer graphene (MG) obtained in paper.®* Indeed,
substituting o = /3(1/27/Vg)?, and expressing T in Kelvins,
one obtains from (4.17) and (4.18):

C. = SkguTI(VEH), kT < 2| < u (4.19)

Note that experimental observation of singularities (4.16)
and (4.17) is possible under special conditions. The experi-
mental value of the chemical potential u of graphene does not
exceed 1 eV,* and the estimated value of the overlap integral
Yo is between 2 and 4 eV.***¢ Tuning of the chemical activity of
graphene in a wide range could be achieved by the formation

o[ ®e /1-

SCC oT

5

(a)
: i : |
B 210 o 0 yo 2y0 30 M -310 2 3w
Be
s (%),

® | @

VY N O Y £ W08 3 W
™ \2o 3101 310 29/ \ B/ 10 \2no 310 u

|

310 21 J1 0

Fig. 5 Peculiarities of the electronic thermodynamic parameters of
graphene at the Lifshitz topological transitions at the points M
(chemical potential u = vg), T" (chemical potential u = 3yg), and K
(chemical potential u = 0) of the first Brillouin zone: (a) the electronic

C 0*P,
specific heat 6?6; (b) the electronic compressibility & ase

. (c) the
9*Pe
oT

electronic thermal coefficient of pressure 6( /T>; and (d) the

electronic thermal expansion coefficient 6(62%) .
P
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of a Moiré superstructure between the graphene and transi-
tion metal substrate.®” Thus, to observe the LTT at the gra-
phene saddle point (where |z| = |u — 7o| — 0), we must
increase the chemical potential u or decrease the overlap
integral v, due to strain. Increasing u can be realized by
electron doping due to renormalization of the electron spec-
trum.®® It has been demonstrated in ref. 68 that the Coulomb
interaction produces noticeable effects in increasing the
graphene chemical potential u at low temperature T < u,
especially for high carrier concentrations of n, > 10'* cm 2.
The band structure of graphene has been determined under
strain using density functional calculations.®® The ab initio
band structure was then used to extract the best fit to the
tight-binding hopping parameters used in a microscopic
model of strained graphene.” It was found that the hopping
parameters may increase or decrease with increasing strain
depending on the orientation of the applied stress. The fitted
values were compared with an available parameterization for
the dependence of the orbital overlap on the distance sepa-
rating the two carbon atoms.

4.3. The compressibility of the graphene monolayer at the
Lifshitz topological transition

The compressibility of graphene is an important object of study
in condensed matter physics because it gives information about
the intrinsic nature of the electron structure of graphene and its
interactions with external fields.”"

In case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain from (4.12) for the electron
compressibility, if 7 — 0:

0 (D)
4.20)
2 |2 (
—2am,,“ec In —  (II)

e

P, &’F
095 = P
where z = 7, |S — S[.

When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.13) for the electron compressibility
atT — 0:
0 (D
P, ’F

= =

055 = o5

4 , (4.21)
—o——=(2e. + u)n 11
3\/§( ) 3y ( )
where 7n3,,= 1 (& = 370).
Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.14) for the electron
compressibility, if T — 0:

D

aP. 5
ﬂx%IZI (In)

2
F
Pl

9S E (4.22)

where |z| = 10|S — Sc|, o= n(u — 0).

As a result, the formulae (4.20), (4.21) and (4.22) describe
peculiarities of the compressibility of graphene at the LTT at the
points M, I'; and K of the first Brillouin zone, correspondingly
(Fig. 5b).
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4.4. The electron thermal coefficient of pressure of the
graphene monolayer at the Lifshitz topological transition

In case of the hyperbolic changes of the Fermi lines at the
saddle point A, we obtain the change of the electron thermal
coefficient of pressure from (4.12), if T — 0:

P, 1 _0°F
6<8T/T) = 7% Tas

where z = 1, |S — S|

When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.13) for the electron thermal coeffi-
cient of pressure at T — 0:

@
o (4.23)
5 W

_anyoec

|
5(621)6/7*) __l(;az_F_ 4(3) (4.24)
aT T 9TdS —am, T :
*3V3

where 73, = n(st — 370).

Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.14) for the electron thermal
coefficient of pressure, if T — 0:

@)
8*P, 1 0*F
= 00— = 3
6(6T/T) %3705 ey 2 (4.25)
3V3

where 7o = n(u — 0).

The formulae (4.23), (4.24) and (4.25) describe peculiarities
of the electron thermal coefficient of pressure in graphene at
the LTT at the points M, TI', and K of the first Brillouin zone,
correspondingly (Fig. 5¢).

4.5. The electron thermal expansion coefficient of the
graphene monolayer at the Lifshitz topological transition

The thermal properties of graphene have been investigated in
recent years; in particular, its thermal expansion and heat
conduction have been studied by various theoretical and
experimental techniques in ref. 73 and 74. Some theoretical
studies that have been carried out to study the thermodynamic
properties of graphene (e.g., specific heat and thermal expan-
sion) are based on density-functional theory (DFT) calculations
combined with a quantum quasi-harmonic approximation
(QHA) for the vibrational modes.””* This is expected to yield
reliable results at low temperature for the graphene lattice
contribution to the thermal properties; however, it may be
questioned with respect to the graphene electron part. The
answer to the latter can give the Lifshitz topological transitions.
In the case of the hyperbolic changes of the Fermi lines at the
saddle point M, we obtain the change of the electron thermal
expansion coefficient from (4.23) and (4.20), if T — 0:

o05), %)),
aT ), aT )¢/ \aS ),

3, [z] In(jz]/<)

(1I)
(4.26)

where z = 1, |S — S|
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When the electronic cavity disappears in the Brillouin zone
centre, one obtains from (4.24) and (4.21) for the electron
thermal expansion coefficient, at T — 0:

6(356) _ ﬂj(ape> / <ape> _ :2 (I
T ), or)/ \os), | —— T

N3y (26 + 1)

(1)
(4.27)

where 13,,= n(u — 37vo).

Considering the appearance of new cavities in the Brillouin
zone corners, one obtains from (4.25) and (4.22) for the electron
thermal expansion coefficient, if 7 — 0:

5(ase> B 4(31)5) /(ape) - 0 6y
or ), \oT )¢/ \os), V- 7

310)z]

(4.28)

(1)

where z = 7o|S — Sc|.

It is interesting that the electron thermal expansion coeffi-
cient has a negative sign at T < |z|, like the lattice thermal
expansion coefficient of graphene (see ref. 72, 73, and 75).

The formulae (4.26), (4.27) and (4.28) describe the peculiar-
ities of the electron thermal expansion coefficient in graphene
at LTT at the points M, I, and K of the first Brillouin zone,
correspondingly (Fig. 5d).

5 Conclusion and outlook

To summarize the results of the present paper, one can
emphasize the following.

(i) Connection of the Lifshitz topological transition has been
established with the van Hove singularities of the electron state
density in graphene. There are three types of singularities of the
density of the electron states in two dimensions. The point P,
(min) corresponds to the minimum in the energy spectrum. The
point P; (saddle) corresponds to the case where the Lifshitz
topological transitions are realized by variation of the energy
from ¢ < ¢ to & >e.. The point P, (max) corresponds to the
maximum in the energy spectrum.

(ii) Peculiarities of the Lifshitz topological transitions in
graphene are described at the Brillouin zone centre I', at the
zone corners K, in the vicinity of the Dirac points, and at the
saddle point M. It is found that LTT can be realized in the centre
I" at the critical energy value &, = 3v,, where the cavity of the
isoenergetic lines disappears. The existence of the LTT is shown
at the critical energy value of ¢, = 0, where six pockets of low
energy excitations appear, one for each of the two inequivalent
Dirac points K and K'.

The Lifshitz topological transition is realized in the saddle
point M by variation of the energy from ¢ < ¢. to ¢ > ¢. and at the
critical value of energy ¢. = v,. It is shown that the Dirac
fermion slows down in the vicinities of the points I" and M,
becoming not massless but massive, and the values of the
fermion effective mass in the vicinity of these points are mLg =~
0.1m., and my = 0.1m. (where m, is the free electron mass).

(iii) The thermodynamic characteristics of graphene were
investigated at the Lifshitz topological transitions. A general
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formulation of the thermodynamics at the LTT in graphene is
given. The anomalies are found at the LTT of the electron

specific heat C,, the electron compressibility 6%, the elec-

dP,
tron thermal coefficient of pressure 6 (a—Te/ T) , and the electron

thermal expansion coefficient 6(%) . The anomalies are
P

described in terms of the Lifshitz parameter z = u — &.. The
electron specific heat C, diverges at the saddle point M as In|z|
and is proportional to |z| at points K and I" of the first Brillouin

P,
zone. The electron compressibility 6% diverges at the saddle

point M as In|z|, is proportional to |z| at points K, and takes
a constant value at point I' of the first Brillouin zone. The

P,
electron thermal coefficient of pressure 5(0—;/ T> diverges at

the saddle point M as 1/|z|, and it becomes negative in the
vicinities of points K and I' of the first Brillouin zone. The

electron thermal expansion coefficient 6(%) diverges at the
P

saddle point M as 1/(|z| In |z|) becoming negative in the vicinity of
point I, and it diverges as 1/|z| at point K of the first Brillouin zone.

One can conclude that all the thermodynamic parameters
possess the strongest singularities in graphene at the LTT near
the saddle points M. In 2D graphene, a saddle point M in the
electronic band structure leads to a divergence in the density of
states of the logarithmic-type van Hove singularities (VHS). This
implies the possibility of experimental observation of the LTT by
bringing the chemical potential p and the VHS together.
However, one cannot change the position of the VHS in the band
structure. It is pointed out in section 4.2 that the accessible
experimental value of the graphene chemical potential u does
not exceed 1 eV.* Therefore, it is essential to tune p through the
VHS by chemical doping’®”” or by gating.'”””7**' In recent
work,* a simple technique of doping graphene by manipulating
adsorbed impurities was reported, and a change in the electron
mobility of 650% was observed. Also, it is worth paying experi-
mental attention to the tuning of u through the VHS by the
following two methods. The first method is connected with
deformation of the graphene monolayer to mimic twisted gra-
phene. Rotation between two stacked graphene monolayers in
twisted graphene® can generate van Hove singularities, which
can be brought arbitrarily close to the chemical potential u by
varying the angle of rotation.** The second method consists of
investigating the LTT in graphene under 3D high pressure.®*
This opens exciting opportunities for inducing and exploring the
Lifshitz topological transitions in graphene.
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