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Metals are essential cofactors that play a crucial role in heart function at the cell and tissue level. Information
regarding the role of metals in the pericardial fluid and its ionome in ischemic heart disease (IHD) is limited.
We aimed to determine the association of elements in pericardial fluid and serum samples of IHD patients
and their correlation with systolic and diastolic function. IHD patients have been studied with systolic and
diastolic dysfunction categorized on the basis of echocardiographic parameters. We measured
concentrations of sixteen elements in the pericardial fluid and serum of 46 patients obtained during
open heart surgery with IHD by ICP-MS. The levels of chromium and nickel in pericardial fluid were
significantly higher as compared with serum samples of IHD patients (p < 0.05). The chromium, nickel
and manganese levels in pericardial fluid were lower in patients with ejection fraction (EF) < 45% as
compared to EF > 45% (p < 0.05). There was no significant difference in pericardial concentrations of
elements in diastolic dysfunction grade 0-1 with 2 in IHD patients. We also found that decreased
concentration of these elements in pericardial fluid is associated with decreased systolic function. These
results suggest that pericardial fluid concentrations of these metals may reflect the extent of ischemic
heart disease. These findings are hypothesis generating with regards to a role in the pathogenesis of the

rsc.li/rsc-advances disorder.

Introduction

Micronutrients are essential cofactors needed only in small
amounts for energy transfer in cells and thus play a crucial role
in heart function at the cell and tissue level." These metals play
role as regulators of oxidative stress, as antioxidants and as
regulators of inflammatory response and immune cell activity.>
There is emerging evidence suggesting an important role of
trace elements like chromium, zinc, cobalt, selenium, manga-
nese and nickel in the heart and that their homeostasis
imbalance may lead to an increase in the risk of cardiac
remodelling in heart failure.* Studies have shown that these
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micronutrients are intricately linked to Ischemic Heart Disease
(IHD).*” 1t is well established that IHD is a global health issue
and the major cause of mortality and morbidity worldwide.*®

IHD is an important risk factor for the development of
systolic and diastolic dysfunction of the heart and is intricately
linked to their pathophysiology.'*** Systolic dysfunction refers
to the impaired pump function of the heart, whereas diastolic
dysfunction refers to the increased resistance to filling of the
heart with increased filling pressures.'> Echocardiography is
a non-invasive method to assess the systolic as well as diastolic
function or dysfunction.”® Systolic dysfunction is assessed by
estimation of the ejection fraction (EF) and regional wall
motion, whereas diastolic dysfunction can be diagnosed indi-
rectly by means of a normal or nearly normal EF and changes of
the mitral filling pattern.'® Several studies have shown that
systolic or diastolic dysfunction, even if asymptomatic, may be
a precursor to symptomatic heart failure which is linked to
increased mortality.***> Recent guidelines also place special
emphasis on the detection of subclinical left ventricular systolic
and diastolic dysfunction and timely identification of risk
factors."®

Pericardial fluid (PCF) is a dynamic and composite bio-
logical serous fluid, present within the pericardial cavity
surrounding the heart fluids.””*® This fluid is derived by
plasma ultrafiltration through the epicardial capillaries and
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interstitial fluid from the underlying myocardium during the
cardiac cycle.” PCF is therefore in a strategic position to
provide important information regarding the pathologies that
distress the pericardial space as well as the heart itself. Studies
in greyhounds have shown that the concentrations of sodium,
chloride, calcium and magnesium were lower in the pericar-
dial fluid than in the plasma. On the contrary, the concen-
tration of potassium was higher than the plasma, which was
attributed to the potassium leakage from the myocardial
interstitium toward the pericardial cavity, during systole.>**!
The current research work on the redox nanomaterial was
done on the ischemia heart disease, such as cerium oxide
nanoparticles (nCe) have been used extensively, possess
oxygen-modulating properties which have shown therapeutic
utility in various disease models.?**

Ben-Horin et al.>* had studied the composition of pericar-
dial fluid in patients with elective open heart surgery but there
is no study which reported the in-depth analysis of the PCF
ionome particularly in IHD patients. This study is aimed to
identify ionomic profiles of PCF and their paired serum
samples in IHD patients with systolic and diastolic dysfunc-
tion. Identification and quantification of common and differ-
ential elements in these two biological fluids may be helpful in
understanding the mechanism of disease development and
thus ultimately prove helpful in devising interventions to delay
the progression of IHD to heart failure by its early
characterization.

Table 1 Clinical characteristics of study patients with IHD*
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Material and methods
Patient's selection and classification

Patients with confirmed IHD were admitted for coronary artery
bypass grafting (CABG); and were selected for this study after
informed consent. The study was approved by the Institutional
Review Board (IRB) of ICCBS and the Ethics Review Committee
(ERC) of the Aga Khan University. Pericardial fluid and blood
samples were collected at the time of CABG procedure. Echo-
cardiographic assessment of systolic and diastolic function and
left ventricular (LV) morphology was done before start of the
procedure and reported according to the American Society of
Echocardiography (ASE) 2009 guidelines.

Patients were classified into different categories according to
ejection fraction (EF < 45% and EF > 45%) for systolic function
assessment; and in grades (0-1 and 2) for diastolic dysfunction
as depicted in Table 1. In normal heart, EF is between 50 and
70%. In our study, EF < 45% is referred to as reduced ejection
fraction and EF > 45% indicates preserved ejection fraction.

Diastolic dysfunction grades were of three types which
include grade I (impaired relaxation of LV with or without
increased in filling pressure), grade II (moderate increase in LV
filling pressure with pseudo-normalization of LV) and grade III
(marked increase in filling pressure with restrictive LV
filling).>>** Patients with malignancy, constrictive pericarditis
and infiltrative, established pulmonary disease, renal insuffi-
ciency, moderate to severe valvular disease, hypertrophic

Patient characteristics

Serum samples PCF samples

Number of samples
Gender (male/female)
Age male (years; u + o)
Age female (years; u & o)
Height (cm)

Body weight (kg)

BMI (kg m ™2

SBP (mm Hg)

DBP (mm Hg)

Medical history

Diabetes/non-diabetes
Hypertension/non-hypertension

Chest pain/non-chest pain

Current smoker/non-smokers
Hypercholesterolemia/non-hypercholesterolemia

Echocardiographic parameters
Ejection fraction (N; <45%/>45%)
Diastolic dysfunction grade (N; 0-1/2)

Biochemical parameters
Creatinine (mg dL™%)

BUN (mg dL ™)

Random blood glucose (mg dL. ™)
Fasting blood glucose (mg dL ™)

62 46

54/8 44/2
59+8 587
58 &£ 10 65 £ 11
164 £ 9 166 £ 6
72 £12 75 £ 12
27 £5 27 £4
129 £ 19 130 £ 21
76 £ 9.69 77 £11
Frequency

37/25 25/21
41/21 29/17
48/14 32/14
11/51 6/40
6/56 5/41
12/50 12/34
45/9 36/5
0.99 £+ 0.26 1.06 £ 0.26
18+ 8 177
184 £ 65 199 + 61
165 + 58 169 * 56

“ u; mean, o; standard deviation, BMI; body mass index, SBP; systolic blood pressure, DBP; diastolic blood pressure, BUN; blood urea nitrogen.
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cardiomyopathies and metabolic bone diseases were excluded
from the study.

Sample collection and processing

The approved protocol from review board was followed for
collection and storage of blood and PCF samples. 4 mL of blood
sample was collected by the help of BD® Vacutainer tubes based
on gel (BD Franklin Lakes NJ, USA, ref: 367381) from the
patient. The serum samples were separated immediately by
centrifugation at 2000 rpm for 10 min at 4 °C. After centrifu-
gation, serum was aliquoted into locking Eppendorf tube stored
at —80 °C until processing. Pericardial fluid was collected in
clean and sterile falcon tubes. These tubes were centrifuged for
about 15 min at 3500 rpm. The clear supernatant was collected
and stored at —80 °C until further processing.

Reagents and standards

Extremely pure de-ionized water (resistivity 18.2 MQ cm) was
obtained from a Milli-Q water purification system (Thermo
Fisher Scientific, MA USA). All reagents used during the study
were of analytical grade. Trace metal grade = 30% (v/v)
concentrated H,0, was obtained from Merck KGaA Company
(Darmstadt, Germany). 70% (v/v) concentrated HNO; (RCI
Labscan Ltd, Bangkok, Thailand) was used during analysis after
purification with NanoPure acid purification system (Nanonex,
USA). Multi-element calibration standard (part number: 8500-
6940) with concentration (10 pg mL™') of each element, the
tuning solution (1 pg L™ ") concentration of Mg, Li, Tl, Y, Co and
Ce in 2% (v/v) HNO; and internal standard (Sc, Bi, Ir, Lu, Ge, Rh
and Tb) of concentration (100 ug mL™") were acquired from
Agilent Analytical Technologies Company (Santa Clara, CA,
USA). The optimization of ICP-MS was carried out by using
tuning solution. All glassware, polypropylene tubes and bottles
were acquired from Agilent Technologies (Santa Clara, CA,
USA). All tubes and bottles were immersed overnight in 10% (v/
v) HNO; and cleaned by rinsing three times with high purity
deionized water and kept in laminar-flow hood (Airstream®
ESCO, Singapore) to dry. All operations were in a clean hood
and working table to avoid of air contaminant postulate.

Preparation of standard solutions

To prepare all solutions, 5% (v/v) nitric acid was used as matrix.
A total of sixteen points calibration curves (0.0076-1000 ug L")
were prepared. A blank was also prepared with same matrix. The
sensitivity was measure by least-square regression equation.
The standard solution was also used for the validation of
current study by calculating LOD, LOQ and -correlation
coefficient.

Preparation of the standard reference material

Certified reference material Seronorm™ serum L-1 (Sero, Bill-
ingstad, Norway) was use for validation of method. The valida-
tion was accomplished by precision and accuracy. The certified
reference material (CRM) was prepared as per the manufacturer
protocol. Briefly, the contents vial were completely dissolved by

This journal is © The Royal Society of Chemistry 2020
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the addition of 3 mL of high purity de-ionized water. The vial
content was smoothly rolled for 30 min so that all the contents
were mixed entirely. The total quantity of material was trans-
ferred to polypropylene tubes and further diluted with sterile
deionized water. The diluted solution was finally analyzed for
each trace and ultra trace element through ICP-MS. The CRM is
most used for serum but there is no standard reference material
available for pericardial fluid to check the concentration of
metals.

Sample preparation for ICP-MS

The digestion of serum and pericardial fluid were carried out in
a closed vessel sealed microwave system equipped with 64MG5-
T64 rotor (Anton Paar GmbH, Austria). In the microwave
system, the program with multiwave ECO software (version
1.51) was setup. The standard apparatus such as polytetra-
fluoroethylene (PTFE) lip seal tube and screw cap (Wheaton® 15
x 45 mm, cap 13-425) were used during analysis.

For digestion of samples, a total of 50 uL aliquot of every
sample was taken (serum and pericardial fluid), added in the
MGS5 vials (Anton Paar, Hungary). 50 pL of =30% (v/v) H,0, and
150 pL of 70% (v/v) HNO; were also added, mixed, and kept in
laminar fuming hood for 10 minutes so that fumes were evolve.
Vials were sealed with the PTFE lip and screw cap. Sealed vials
were placed in microwave digestion system. The samples were
digested in two steps via regulating same parameters in Anton
Paar microwave digestion system with same fan (1), ramp (10.0
min), hold (30.0 min), power (850 W), stir rate (medium) but the
temperature set 90 °C for step 1 while 150 °C for step 2. After the
completion of digestion all sample vials were kept in laminar
hood and allowed to cool at room temperature. Then gently
pierced the septa by steal pin to release pressure of gas in vials,
the resultant samples were took into 15 mL of polypropylene
tubes and diluted with 3 mL of high purity deionized water. All
samples were analyzed in triplicate on ICP-MS instrument.

Inductive coupled plasma-mass spectrometry (ICP-MS)
analysis

The quantification of trace and ultra-trace elements were
carried by Agilent 7700x ICP-MS system (version B.01.01) (Santa
Clara, CA USA). The 7700x ICP-MS was improved with 1600 W
power and it was operated at 27 MHz radio frequency (RF). To
remove contamination from ICP-MS, washing solution con-
taining ultra-pure water, 2% (v/v) HNO; and 0.1% (v/v) HCl was
analyzed after each sample. The Mass Hunter software was used
for the operation of ICP-MS data. The acquisition parameter of
Agilent 7700x ICP-MS are given in the ESI Table S1.t

ICP-MS data pre-processing and statistical analysis

The fully licenced Mass Profiler Professional (MMP) software
were purchased form Agilent (Santa Clara, CA, USA) and used
for data pre-treatment and statistical analysis. Filtering of the
data involved using all available data and minimum absolute
abundance of 10 000 counts with 3 number of ions/fragments
minimum. Match factor 0.3, retention time tolerance 0.05 and
delta MZ (low resolution) 0.2 were set as alignment parameters.

RSC Adv, 2020, 10, 36439-36451 | 36441
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External scalar was used for normalization of data. In this
method of normalization, for /; samples an external scalar
value “S;” is subtracted from the abundance value “M;” using
the formula: normalized abundance = log, M; — log, S;. Z
transform was selected as base lining option treating all the
compounds equally irrespective of their intensity. After align-
ment of the data, entities were filtered by frequency (i.e.
compounds appearing in more than 50% of samples in at least
one group of samples).

Statistical analyses were carried out on PCF and serum
samples of ischemic heart disease patients which were catego-
rized on the basis of ejection fraction (<45% and >45%) as
diastolic dysfunction and different grades (0-1 and 2) as systolic
dysfunction. The statistical analysis was done by Mann-Whit-
ney unpaired test for comparing two different groups. The p-
value computation was done by asymptotically method and
multiple test correction by Benjamini-Hochberg FDR. The
analyzed variables with corrected p-value cut-off < 0.05 and fold
change (FC) > 1.5 were selected as significant variables
throughout the analysis.

SIMCA MKS Umetrics AB (version 14.1) software was used for
multivariate analyses such as principal component analysis
(PCA), partial least squares discriminant analysis (PLS-DA) and
orthogonal partial least squares discriminant analysis (OPLS-
DA) and their loading plots, which show overview, relation
between the two groups of variables, class discrimination and
variable correlation, respectively.

Method validation and data quality assessment

The concentration range 0.0076-1000 pg L™ was selected for all
elements to obtain linear calibration curve plot. The plot
between concentration and count per seconds for each element
was analysed by regression methods. The method of quantifi-
cation was validated by limit of quantification (LOQ), correla-
tion coefficients (R*) and limit of detection (LOD). The obtained
correlation coefficients (R?) for all the element were in range of
0.993 and 1.000, shows good linear relationship. The formula of
LOQ = 100/S and LOD = 3.34/S were used, where (S) is the slope
and (o) is standard deviation of the regression line. The range
0.002-9.551 pg L™ and 0.006-28.941 ug L~ were obtained for
the optimized method for LOD and LOQ, respectively. The R?,
LOD, LOQ values and regression equations are shown in ESI
Table S2.t

The developed method was also validated externally to check
the accuracy and precision for elements analysis in biological
fluid by using Seronorm™ trace elements serum L-1 as certified
reference material (CRM). The obtained data was found with
nonsignificant variation and calculated value agrees with the
theoretical certified values. The range of 81.879-113.779% were
obtained for the percent recovery as shown in ESI Table S3.1

The spiking experiment were performed in real samples of
serum and pericardial fluid for the validation of current method
in order to check the precisions (RSD, %) and reliability. The
precision of the developed method was calculated by RSD, % =
[SD/CM] x 100, whereas SD and CM stands for standard devi-
ation and measured mean concentration of elements. The
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percent RSD was found to be below 10%. The obtained coeffi-
cient of variation (% RSD) for the present method was in range
of 0.052-7.580 and 0.076-5.733 for serum and pericardial fluid,
respectively as given in the ESI Table S4.7 This result shows the
accuracy with good precision and sensitivity of our method.

Results

Ionomic profilling of pericardial fluid and serum for IHD
patients

In this study element analysis was carried out through the ICP-
MS for pericardial fluid and serum samples of the IHD patients.
Significance testing was conducted on a total of 16 elements.
From these, 14 elements were found to show significant
differences at a probability level of <0.05. Out of these 14
elements, the concentration of twelve elements (copper, zinc,
aluminum, manganese, lithium, cobalt, calcium, lead, silver,
cadmium, selenium and arsenic) were higher while chromium
and nickel were lower in serum samples in comparison to PCF
samples of IHD patients as listed in Table 2. The heatmap of all
significant elements with averaged normalized intensity of two
groups is mentioned in ESI Fig. S1.T

For further data mining, multivariate analysis was per-
formed. The PCA was first performed in order to obtain a trend
of separation of samples (Fig. 1A). This plot showed two
components with value of R*X 0.376 and 0.167 on x-axis and y-
axis, respectively. The score plot showed the outliers with
confidence limit of 95% by Hotelling's T>-test, hence outliers
were removed before further analyses. There are clear differ-
ences related to serum and PCF samples of IHD patients
observed in PCA analysis. For classification analysis on groups,
PLS-DA and OPLS-DA models were also generated by using
normalized concentrations of significant elements. Both 3D
score plot showed strong separation between two different
biofluids (Fig. 1B and C).

Table 2 List of elements in pericardial fluid of IHD patients that are
significantly different from serum of IHD patients. Mann—-Whitney
unpaired t-test was used with Benjamini—-Hochberg FDR p-value
correction method. Elements with p-value < 0.05 and fold change (FC)
> 1.5 were referred as significant variables

log FC
Elements p (corr) (PCF IHD/SR IHD)
50N 1.23 x 1073 —0.6289
52Cr 2.24 x 1072 —0.4514
%3Cu 7.71 x 10°* 0.6560
%67n 2.45 x 107° 0.7132
27l 3.79 x 10°° 0.7945
5*Mn 8.78 x 1077 0.9292
Li 6.02 x 1077 0.9446
%9Co 8.08 x 108 1.0070
4Ca 5.10 x 1078 1.4472
208p, 1.00 x 10™** 1.5683
107pg 1.00 x 10~ % 1.6657
Mcd 1.59 x 10728 1.6806
78Se 3.39 x 1073 1.7604
73As 0.00 x 10° 1.9128

This journal is © The Royal Society of Chemistry 2020
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Fig.1 Scores scatter plots (A) PCA, (B) 3D PLS-DA, (C) 3D OPLS-DA and (D) OPLS-DA loadings plot colored as a function of VIP of serum (SR)
(green) and pericardial fluid (PCF) from ischemic heart disease (IHD) (blue).

The sensitivity and specificity for the generated models were
calculated as the number of diseases samples predicted as true
positive divided by total number of disease samples and
number of referents predicted as true negative divided by total
number of referents, respectively. The models of PLSDA and
OPLSDA shows 100% specificity, sensitivity and classification
rate.

The model of OPLSDA was validated by ROC plot (ESI
Fig. S21) and permutation (ESI Fig. S37); which showed least
difference between predictive ability and goodness of fit of
model with good area under the curve. In the OPLSDA loading

Table 3 List of elements in PCF of patients with EF > 45% and EF < 45%
that are significantly different. Mann—Whitney unpaired t-test was used
with Benjamini—Hochberg FDR p-value correction method. Elements
with p-value < 0.05 and fold change (FC) > 1.5 were referred as
significant variables

log FC
Elements p (corr) (PCF EF < 45%/PCF EF > 45%)
>2Cr 0.026399003 0.1544
**Mn 0.026399003 0.1691
6ONi 0.016587258 0.2560

This journal is © The Royal Society of Chemistry 2020

plot (Fig. 1D), it is observed that elements like arsenic, silver,

cadmium and lead is most responsible for group

discrimination.

Ionomic profilling of pericardial fluid and serum for IHD
patients with systolic dysfunction

The element concentrations studied in the pericardial fluid of
patients with systolic dysfunction is based on the two groups,
EF < 45% and EF > 45%. Table 3 shows significant metals in
pericardial fluid based on groups EF < 45% and EF > 45%. It was
found that only three metals, that are chromium, manganese
and nickel, are statistically significant. These three metals are
higher level in group EF > 45% as compared to EF < 45%. It
seems that level of these metals is decreased as the ejection
fraction reduces.

Based on the normalized concentration of elements, PCA
score plot in Fig. 2A did not show clear separation on the basis
of ejection fraction. However, at 95% confidence limit from
Hotelling's T>-test resulted in few outliers. The first component
at x-axis gave more variance with the value of R*X 0.245 while
the second component is 0.198. For class discrimination, all
variables were used to perform PLSDA as shown in Fig. 2B. It
was found that 3D-PLSDA score plot showed that samples were

RSC Adv, 2020, 10, 36439-36451 | 36443
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Fig. 2 Scores scatter plots (A) PCA, (B) 3D PLS-DA, (C) 3D OPLS-DA and (D) OPLS-DA loadings plot of pericardial fluid in patients with EF > 45%

(green) and EF < 45% (blue).

widely scattered and clear trend of separation in IHD patient
with EF > 45% and < 45%. Addition of another orthogonal
projection to the above model (Fig. 2C) did not affect the
sensitivity and specificity of OPLS-DA model considerably. In
loading plot, variables were arranged according to their
performance for discrimination among the groups in the OPLS-
DA model. Fig. 2D showed that nickel and manganese are
mainly responsible for group separation.

The statistical analyses of two different biofluids (PCF and
serum) of IHD patients were carried out. We have also
compared the data of paired samples of EF > 45% of IHD
patients. It was found that out of sixteen elements, list of 14 was
generated at probability of <0.05 in EF > 45% of pericardial fluid
and serum samples of IHD. Out of fourteen elements zinc,
copper, manganese, aluminum, cobalt, lithium, calcium, lead,
cadmium, silver, selenium and arsenic were higher in concen-
tration, while chromium and nickel were lower in PCF as
compared to serum of IHD patients with EF > 45% as listed in
Table 4.

The plots were drawn on the basis of normalized concen-
tration of elements in serum and pericardial fluid of IHD

36444 | RSC Adv, 2020, 10, 36439-3645]

Table 4 List of elements in pericardial fluid that are significantly
different from serum of IHD patients with EF > 45%. Mann—Whitney
unpaired t-test was used with Benjamini—-Hochberg FDR p-value
correction method. Elements with p-value < 0.05 and fold change (FC)
> 1.5 were referred as significant variables

log FC
Elements p (corr) (PCF EF > 45%/SR EF > 45%)
5ONi 1.06 x 10°* —0.6999
52Cr 0.0093986 —0.6493
56Zn 0.002758518 0.5061
%3Cu 5.19 x 10" 0.5391
5*Mn 0.005190234 0.6625
27Al 1.16 x 107* 0.8279
*Co 4.02 x 107° 0.9176
Li 5.68 x 10~ 0.9890
*Ca 3.68 x 107° 1.3989
208pp 3.03 x 107 1.6140
Med 5.68 x 10 ** 1.6268
17Ag 4.08 x 107" 1.6297
785e 5.16 x 107" 1.7894
7PAs 5.68 x 107 1.9070

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra03977b

Open Access Article. Published on 02 October 2020. Downloaded on 2/20/2026 11:04:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

- 2

~

-6 T T T T

-8 -6 -4 -2 0 2 4 6

1
R2X[2] = 0.188

R2X[1] = 0.368 Ellipse: Hotelling's T2 (95%)

117111 * to[1
PR it

W SREF>45%
B PCFEF>45%

- "
", 1.00198 * t{1]

-3

34 34

R2X[11 = 0.347 R2Xo[ 1] = 0.18

C

W SREF>45%
B PCFEF>45%

View Article Online

RSC Advances

W SR EF>45%
B PCFEF>45%

R2XI11 = 0.364 R2X[21 = 0.163

B

[Wo463118- 06326
06326 - 0.802082
002082 - 0971564
[Wo971564 - 1.14105
[ 114105 - 131053
131053 - 1.48001

0.84451 * pq(1]

7 Li

T
35
v
m
©

24 Mg
27 Al
55 Mn |
60 Ni—|
66 Zn-|
107 Ag
111 cd
208 Pb

Var D (Coi
R2X[1]

pound Name)
0.347

T
o}
(¥}
o
n
m

D

Fig.3 Scores scatter plots (A) PCA, (B) 3D PLS-DA, (C) 3D OPLS-DA and (D) OPLS-DA loadings plot colored as a function of VIP of serum (SR) EF >
45% (green) and pericardial fluid (PCF) EF > 45% from ischemic heart disease (IHD) (blue).

patients with EF > 45%. The overview of samples can easily be
seen with outliers at 95% confidence limit that generated from
Hotelling's T>-test in PCA score plot (Fig. 3A). It was observed
that component on x-axis R*X [1] 0.368 gave more variance as
compared to R°X [2] 0.188. 3D PLSDA (Fig. 3B) and OPLSDA
(Fig. 3C) score plots for showed clear trend of separation,
distinction and discrimination between the EF > 45% groups.
For the PLSDA and OPLSDA the sensitivity, specificity and
classification rate were found to be 100%. Four elements, lead,
cadmium, silver and arsenic were mainly accountable for group
differentiation as shown in the VIP loading plot of OPLSDA
(Fig. 3D).

This type of comparison was performed as paired samples of
EF < 45% of IHD patients were available. Out of 16 elements
analyses, eleven elements (lithium, cobalt, copper, lead, zinc,
selenium, calcium, manganese, silver, arsenic and cadmium)
showed statistical significance. These elements were higher in
serum as compared to PCF in patients with EF < 45% (Table 5).

PCA (Fig. 4A) showed outliers in samples and data was more
scattered. PLSDA (Fig. 4B) and OPLSDA (Fig. 4C) 3D score plot
were also produce and it shows serum and PCF EF < 45% were
clearly separated and differentiated with each other. However,

This journal is © The Royal Society of Chemistry 2020

the sensitivity, specificity and classification rate of the model
are 100% for all. Lead, cadmium, silver, arsenic, calcium and
manganese are most responsible elements in discrimination of
serum and PCF EF < 45% (Fig. 4D).

Table 5 List of elements that are significantly different in serum as
compared to pericardial fluid in patients with EF < 45%. Mann—Whitney
unpaired t-test was used with Benjamini—-Hochberg FDR p-value
correction method. Elements with p-value < 0.05 and fold change (FC)
> 1.5 were referred as significant variables

log FC
Elements p (corr) (PCF EF < 45%/SR EF < 45%)
Li 1.09 x 1074 0.7856
%Co 2.20 x 10* 1.2880
%3Cu 0.0015 1.3165
208pp 2.98 x 107° 1.4221
%6Zn 3.23 x 10°° 1.6478
78Se 1.07 x 107* 1.6500
*Ca 6.78 x 10° 1.6740
5*Mn 3.23 x 10° 1.6763
17Ag 3.23 x 107° 1.7608
7PAs 3.21 x 10° 1.9190
Med 3.20 x 107° 1.9306
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Fig. 4 Scores scatter plots (A) PCA, (B) 3D PLS-DA, (C) 3D OPLS-DA and (D) OPLS-DA loadings plot colored as a function of VIP of serum (SR) EF
< 45% (green) and pericardial fluid (PCF) EF < 45% from ischemic heart disease (IHD) (blue).

Ionomic profilling of pericardial fluid and serum for IHD
patients with diastolic dysfunction (grade 0-1 and grade 2)

Diastolic dysfunction (DD) was determined by echocardiog-
raphy according to defined criteria in American Society of
Echocardiography (ASE) 2009 guidelines. In the PCA chemo-
metric model of PCF grades, no separation trend in PCA was
observed. This could possibly due to less number of samples
in higher grades (Fig. 5A). The PLSDA and OPLSDA (Fig. 5B
and C, respectively) models do not show visual separation of
PCF grades of IHD patients. Due to less number of samples at
higher grades of disease, it is unable to generate a specific
model as required. It was found that PLSDA model showed
100% sensitivity and 40% specificity. In the loading plot of
OPLSDA three elements were responsible for group discrimi-
nation, which were iron, manganese and cadmium (Fig. 5D).
No element was found to be statistically significant while
comparing grades of PCF with serum grades. Hence, further
analyses related to parallel grades of PCF and serum were not
performed.

36446 | RSC Adv, 2020, 10, 36439-36451

Discussion

Our study is reporting quantification of metals (trace elements)
in pericardial fluid and their comparison with serum levels in
samples of patients with ischemic heart disease its correlation
with severity of disease categorized on the basis of their systole
function (i.e. EF < 45% and EF > 45%) and diastolic function
(DD grades 0-1 and 2).

The results show clear image of elements that are differently
regulated in IHD patients with systolic and diastolic dysfunc-
tions. Our results describe the comparison of paired samples of
pericardial fluid and serum of IHD patients.

We demonstrated that the level of chromium and nickel
were higher in pericardial fluid, whereas, copper, zinc,
aluminum, manganese, lithium, cobalt, calcium, lead, silver,
cadmium, selenium and arsenic were lower in PCF of IHD
patients when compared with their serum. Like other serosal
fluids, pericardial fluid is believed to be a transudate created as
a result of net hydrostatic pressure and osmotic gradient
between pericardial fluid and plasma,* but there is paucity of

This journal is © The Royal Society of Chemistry 2020
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and DD grade 2 (blue) of diastolic dysfunctions.

data regarding the concentration of these micronutrients in the
pericardial fluid.

Our study found that the level of chromium, nickel and
manganese are higher in the PCF of patients with EF > 45 as
compared to EF < 45. When the pericardial fluid was analyzed
for diastolic dysfunction grades, the results were not conclusive.

Chromium is important for various functions in the body,
a major role is in the metabolism of lipid and carbohydrate.”
Chromium is involved in insulin signaling and promotes
enhancement of insulin sensitivity, a role well recognized in
reducing the risk of cardiovascular diseases and type 2 dia-
betes.”® It is also important in the maintenance of glucose
tolerance and redox reaction in the cell.**** It has been
demonstrated that chromium inhibits the glycosylation of
proteins and oxidative stress in erythrocytes,* both risk factors
in the development of cardiovascular diseases. Studies have
shown that chromium reduced systolic blood pressure and
ameliorated insulin resistance in both animals and human
subjects.?*** It has been reported that chromium concentra-
tions in the blood stream are lower in patients with coronary

This journal is © The Royal Society of Chemistry 2020

artery disease than in subjects with normal arteries** which
suggested that a risk factor for cardiovascular disease might be
chromium deficiency.*

The essential role of nickel consists of the action or forma-
tion of cyclic guanosine monophosphate, a signaling agent that
regulates various physiological processes including blood
pressure control, sperm physiology, sodium metabolism among
many others.*® In animals, nickel deficiency inhibits growth,
reduces reproductive rates, and alters glucose and lipid
metabolism that are associated with anemia, hemoglobin
reduction, alternations of metal ion contents, and reduced
activity of several enzymes. Toxic exposure to nickel,
however, can cause cardiac dysfunction due to reactive oxygen
and free radical cellular damage.*® Ni ions have been reported to
induce vasoconstriction and early after depolarization in iso-
lated rat heart and canine coronary artery by enhancing Ca ion

37,38

influx into vascular smooth muscle cells.***>

Chromium and nickel were found as significant element in
this study, however, from the bio-inorganic chemistry field
there is no clear evidence of the biological role of these elements

RSC Adv, 2020, 10, 36439-36451 | 36447
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in humans (or mammals), although for nickel the biological
role in bacteria, archaea, fungi and plants is well established as
mentioned in the above paragraphs. Obviously, these elements
are present in the environment and will occur in biological
samples as contaminants. Furthermore, it is clear that various
ions of chromium or nickel have toxic (and allergic) effects that
are well described.**™** Hence it suggests that these elements in
IHD patients might be a source of contamination.

Manganese was also found to be significantly higher in PCF
of patients with EF > 45%. Manganese, another trace element,
is a vital and an essential part of many enzyme systems*® e.g.,
superoxide dismutase, succinate dehydrogenase, glutamine
synthetase, diamine oxidase, arginase, pyruvate carboxylate
and phosphoglucomutase.”’” Manganese is particularly
important in superoxide dismutase and adenylyl cyclase, the
two antioxidant enzymes fighting oxidative stress in the
body.*® It plays a crucial role in the vascular contractility and
low level of manganese resulted in decreased superoxide dis-
mutase effect.* Manganese plays important role in the
cholesterol metabolism, oxidative phosphorylation, fatty
acids, urea cycle and mucopolysaccharide metabolism.*® Many
metabolic processes are carried by metalloprotein and metal
binding proteins; the metals, manganese, nickel, iron,
magnesium and zinc work as cofactors.*®** Studies have
shown that the serum levels of manganese are lower in
patients with atherosclerosis and it decreases with the severity
of the disease,” however, some conflicting reports indicate
that high level of manganese was observed in coronary artery
disease as compared to healthy subjects.*® A study done on the
aortic tissue of normal as well as atherosclerotic patients,
showed low level of manganese, however there was no infor-
mation related to cause and effect.>*

This is interesting to note that in the group of IHD patients
with EF > 45% the PCF had higher levels of chromium, nickel
and manganese as compared to the group with EF < 45%
(Fig. 2). If PCF of EF > 45% was compared with serum of EF >
45% we found higher levels of manganese and lower levels of
chromium and nickel in the PCF compared to serum of patients
with EF > 45% (Fig. 3). If PCF of EF < 45% is compared with
serum of patients with EF < 45%, we found that only manganese
was lower in PCF, the other two metals failed to show any
significant association (Fig. 4).

We do not know why pericardial fluid levels and serum levels
are showing different trends of up and down regulation of these
metals. The only link we seem to find which is substantiated by
previous work is that pericardial fluid chromium, nickel and
manganese levels fall with decreasing ejection fraction which
corresponds to the severity of the disease. We also found that
the concentration of chromium and nickel were lower in serum
as compared to PCF of IHD patients with EF > 45% and chro-
mium and nickel were not picked up in the analysis of PCF and
serum of patients with EF < 45% (Fig. 5).

We can say that chromium and nickel together are present in
significantly higher levels in patients with EF > 45% as
compared to EF < 45% and this is reflected in the PCF more
strongly than serum.
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Conclusion

Our study has shown that pericardial concentrations of essen-
tial trace element chromium, nickel and manganese were
significantly higher in the IHD group than in the serum of IHD
patients. We also found that concentration of these elements in
pericardial fluid is associated with decreased systolic function.
These results suggest that pericardial fluid concentrations of
these metals may reflect the extent of ischemic heart disease
and may also play a role in the pathogenesis of the disorder. As
the pericardial fluid cannot be obtained from normal subjects,
hence no information is available for the physiological
concentrations of these metals. We only had a few cases of
advanced diastolic dysfunction so it may be postulated that our
study lacked the power to detect a difference in ionome in
diastolic dysfunction. However, the present results indicate that
pericardial fluid, once it is obtained, maybe a useful source for
examining the severity and extent of coronary artery disease.
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