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Poly(amidoamine) (PAMAM) dendrimers are of the highest
interest to general medicinal chemistry."” These dendrimers
show beneficial physicochemical or biological properties in
comparison with the respective polyamine polymers, e.g., pol-
yethylenimine (PEI). In general, the cytotoxicity of PAMAM
dendrimers is lower in comparison to that of PEI, which is an
important factor in terms of the development of non-viral drugs
or gene delivery vectors. The unique shape of PAMAM den-
drimers as well as the presence of highly reactive amino groups
imply interesting possibilities towards the construction of novel
systems dedicated to modern therapies in humans.

In recent years, the chemistry and application of PAMAM
dendrimer nanoconjugates with cyclodextrins (CDs) has drawn
an unflagging interest.*” CDs are the supramolecules formed of
six, seven or eight p-glucose units, which are coupled via o-1,4-
glycosidic bonds.?® CDs form cup-shaped molecules. Their
cavity is hydrophobic, whilst the exterior is hydrophilic. As
a result, CDs show unique properties towards the formation of
host-guest complexes with hydrophobic compounds, including
drugs.'®** From the point of view of applied medicinal chem-
istry, the presence of CDs in the therapeutic system provides the
possibility to release a drug in a controlled way. It is associated
with the strategy of stepwise release of a drug from the inner
cavity of CD. Furthermore, CDs increase the water solubility
and/or biocompatibility of the drug delivery vector. The above-
mentioned features make CDs promising candidates for the
decoration of PAMAM dendrimers. PAMAM dendrimers grafted
with CD moieties can be used as versatile delivery agents. The
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a controlled drug release profile and high cytotoxicity against breast cancer cells (MCF-7), as elucidated
by the in vitro biological studies performed with an innovative cell-on-a-chip microfluidic system.

uses of such macromolecular species cover the binding and
release of various therapeutic species, including nucleic acids
(e.g., siRNA or DNA)"“*™* or drugs (e.g., doxorubicin or sodium
methotrexate).*'”** These dendrimeric structures showed
encouraging biological properties towards their use in medic-
inal chemistry, especially in terms of the design of novel anti-
cancer agents. In some cases, additional structural motifs were
introduced to these vectors, such as poly(ethylene glycol) (PEG)
residues, towards providing specific biological or physico-
chemical properties.'®'® The studies dealing with the applica-
tion of PAMAM-CD architectures towards the construction of
biosensors were also reported.”*** Furthermore, interesting
studies on the solubilisation of highly hydrophobic fullerenes
with PAMAM-CD-PEG vectors™ or cobaltocene-bridged PAMAM-
CD dendrimers were also reported. These examples clearly
elucidate the capabilities of PAMAM-CD nanoconjugates
towards their use in modern applied chemistry, including
nanomedicine.

The use of ferrocene (Fc) in medicinal chemistry has been
studied over the years.”*?' Some of the reports deal with the
synthesis of Fe-templated drugs*** or prodrugs.>*' The latter
concept is especially interesting from the point of view of
applied medicinal chemistry, since prodrug technology may
improve the biocompatibility and/or bioaccessibility of
a drug.**** However, the reports dealing with the formation of
Fc-based prodrugs are still sparse; they cover, e.g., the synthesis
of Fe-functionalized nucleobases® or synthesis and biological
evaluation of the prodrugs bearing Fc and boronic acid moie-
ties.”>?¢ Interestingly, Fc is known for the formation of stable
host-guest inclusion complexes with CD.?”*® Fc is not soluble in
water, thus, it is not released from its complex with CD in an
aqueous medium. Fc release can be only achieved via a redox
process (ferrocenyl cation does not form stable inclusion
complexes) and the employment of this concept can be indeed

This journal is © The Royal Society of Chemistry 2020
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found in the literature.>**° Thus, Fc can also be employed as the
building block for macromolecular therapeutic systems,
including self-assembling drug delivery systems.*** An inter-
esting example is the formation of a pH-responsive supramo-
lecular system for controlled drug release, which is based on the
self-assembly of the Fc-PEG conjugate and B-cyclodextrin-
functionalized doxorubicin hydrochloride.*® The drug in this
system, that is doxorubicin hydrochloride (DOX*HCI), was
released by means of an oxidant-dependent process. This
system showed promising biological features towards cancer
treatments. In fact, DOX*HCI is commonly the first and/or best
choice drug for the treatment of various cancers, including
breast or lung cancer.****

In pursuit of the design of novel anticancer agents, herein,
we present efficient and facile methods for the preparation of
the first PAMAM G1.0 dendrimer octa-substituted with o-
cyclodextrin (octa-aCD-PAMAM) and a novel DOX*HCI prodrug,
namely ferrocenyl ester of doxorubicin hydrochloride (Fe-COO-
DOX*HCI). Octa-o.CD-PAMAM is non-toxic and has the property
to bind Fc-COO-DOX*HCI. The in vitro studies revealed
encouraging biological features of the designed nanoconjugate,
namely controlled drug release behavior and high cytotoxicity
against breast cancer cell line (MCF-7). In vitro biological assays
were performed with an innovative cell-on-a-chip microfluidic
system. We anticipate our findings will further stimulate the
progress in medicinal chemistry with the use of macromolec-
ular therapeutic systems exhibiting a controlled drug release
profile.

The procedure for the synthesis of octa-oCD-PAMAM (3) is
presented in Fig. 1. In general, this derivative of PAMAM G1.0
(1) was obtained in good yield (80%) by means of a reductive
amination approach with the use of a-cyclodextrin mono-
aldehyde («CD-CHO; 2). The reaction occurred between each of
the eight terminals, primary amino groups of 1, and formyl
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Fig. 1 Synthesis of octa-aCD-PAMAM (3).
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moieties of 2. In the first step of the reaction, imine-bonds were
formed and then they were reduced to CH,NH, linkages by
means of the treatment with sodium triacetoxyborohydride.**
The obtained octa-aCD-PAMAM (3) was characterized with NMR
and FT-IR spectroscopies, as well as with ESI-MS.* It is note-
worthy that elemental analysis and ESI-MS experiment ulti-
mately confirmed the introduction of eight aCD residues to one
molecule of PAMAM G1.0; the calculated and found data were
highly consistent. It means that the herein developed method-
ology enables the full functionalization of PAMAM's terminal
amino groups with biocompatible, aCD residues.

The ferrocenyl ester of DOX*HCI (Fc-COO-DOX*HCI; 5) was
obtained by means of the treatment of DOX*HCI with ferroce-
necarboxylic acid (Fc-COOH; 4). The synthetic scheme is pre-
sented in Fig. 2. This process was based on the carbodiimide-
mediated ester bond formation reaction (Steglich esterifica-
tion) with the inclusion of a carboxyl group of 4 and the
terminal CH,OH moiety of DOX*HCL* It is worth noting that
no reaction occurred between the amino group of DOX*HCI
since this moiety remained in the form of hydrochloride during
all the reaction and purification steps (no alkaline conditions
were applied in our synthesis). Thus, in our methodology native
DOX*HCI can be used, without the need for amino group
protection** or use of enzymatic process.** Combination of NMR
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Fig. 2 Synthesis of Fc—COO-DOX*HCL (5).
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Fig. 3 Synthesis of Fc—COO-DOX*HCIL (5). For the structures of 3 and 5, see Fig. 1 and 2.

and FT-IR spectroscopies, as well as high-resolution mass
spectrometry (HRMS) confirmed the formation of pure Fc-
COO-DOX*HCI (5), a novel DOX*HCI prodrug, which bears the
ferrocenyl moiety.**

With both octa-aCD-PAMAM (3) and Fc-COO-DOX*HCI (5)
at hand, we began to merge their chemistries (Fig. 3). Our
concept originated from the following facts. Fc is known for its
capability to form very stable complexes with aCD.*”*®* aCD can
accommodate one Fc residue, since the width of the inner cavity
of aCD equals to 5.7 A, whilst its depth is 7.8 A. On the other
hand, DOX*HCI molecule is too big to be effectively complexed
inside the inner cavity of aCD; for this purpose, a larger CD
should be used, such as B-cyclodextrin (width of inner cavity 7.8
A) or y-cyclodextrin (width of inner cavity 8.8 A).**® Therefore,
in our system, Fc-mediated complexation with Fc-COO-
DOX*HCI (5) and aCD units of octa-aCD-PAMAM (3) occurs. We
have successfully obtained the desired nanoconjugate {Fc-
COO-DOX*HCl}@{octa-aCD-PAMAM} (6) in quantitative yields
using a combination of solution and lyophilisation method-
ology.*” FT-IR spectroscopy suggested the anticipated Fc-
oriented complexation for this nanoconjugate, since no
absorption bands coming from Fc moiety of 5 were observed in
the spectrum of nanoconjugate 6, whilst absorption bands
coming from DOX*HCI were found.* Importantly, ESI-MS and
elemental analysis confirmed the formation of the desired
nanoconjugate 6; the calculated and obtained data were highly
consistent.”® Additionally, we further studied the complex
formation phenomenon with NMR techniques. At first, the Fc-
oriented complexation was tracked with "H-"H ROESY NMR.?
The 'H-'H ROESY NMR spectrum of 6 featured the cross-
correlations between Fc's cyclopentadienyl signals (Hcp) and
H-3, H-5 inner protons of a-CD (Fig. 4). It was ascribed to the
inclusion of Fc inside a-CD's inner cavity. It stands for the
successful formation of inclusion complexes between guest 5
and o-CD units of 3. Secondly, the results of "H DOSY NMR
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analysis suggested the formation of a single host-guest system.
'H DOSY NMR technique involves the measurement of the
diffusion coefficient of the compounds forming a sample and is
a powerful and versatile NMR method for the analyses of the

PAMAM dendrimer core
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Fig.4 The 4.30-3.45 ppm inset of the *H-H ROESY NMR (DMSO-dg:
D,O = 1:1 v/v, 500 MHz) spectrum of nanoconjugate {Fc-COO-
DOX*HCl}@{octa-aCD-PAMAM} (6) presenting the crucial cross-
correlations standing for the inclusion phenomenon (these cross-
correlations are marked in blue). The graphical representation of the
complex is also shown.
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supramolecular systems, including host-guest complexes.>*>**
The "H DOSY NMR spectrum of nanoconjugate 6 showed one
diffusion coefficient value (0.358 10~'° m”* s~ ").%®» Thus, we
hypothesized that a single host-guest system might have been
formed. In other words, we claim that neither unbound 5 nor
other dendrimeric structures (i.e., bearing less than eight
complexed molecules of 5) were found in the sample. To further
support this hypothesis, '"H DOSY NMR spectra in the same
solvent were acquired for native host 3 and guest 5.>>* Both of
these showed higher diffusion coefficient values than the
resultant nanoconjugate 6. As expected, the diffusion coefficient
value for 5 (3.699 10 ' m* s~ ') was found to be higher than that
for 3 (0.746 10~ m” s ; this is because 3 is much bigger than
5). This clear difference in the diffusion coefficient values
between the molecules forming the system (3, 5) and their
resultant inclusion complex 6 support our claim on the host-
guest chemistry behaviour for the studied system.** Finally, UV-
Vis spectroscopy was applied to provide an insight into the
stoichiometry of the host-guest complexes of 3 and 5.>® The UV-
Vis spectra of guest 5 featured an increase in the absorbance in
the presence of host 3, as well as some slight blue shift behav-
iour.*®” These features were ascribed to the inclusion phenom-
enon. This change differed between the samples that enabled
the estimation of complex stoichiometry. The complex stoichi-
ometry was estimated on the basis of Job's plot analysis.”® The
estimated stoichiometry was found to be 1 : 8 (host : guest);**
this conclusion supported the outcomes from the ESI-MS
experiment and is highly consistent with other above-
presented supramolecular analyses. All these important
features mentioned above mean that the herein developed
methodology enables full “blocking” of aCD's cavities with
ferrocenyl units of DOX*HCl prodrug 5 by means of the
formation of Fc-oriented complexes.

We envision that DOX*HCI might be released from nano-
conjugate 6 under acidic conditions. Our hypothesis was based
on two facts. Firstly, DOX*HCI is bound to this nanoconjugate
in the form of its ferrocenyl prodrug (ester bond) by means of
Fc-oriented complexation. Ester bonds are known for their
prospective use in prodrug technologies.>*>* Secondly, the pH
of cancer cells was found to be acidic (pH 4-6).%*° It gives the
possibility of a controlled drug release at the therapeutic target
(cancer cell environment). In order to examine the possibility of
DOX*HCI release from nanoconjugate 6 and the profile of this
release, in vitro controlled drug release trials at pH 4.7 were
performed.* The DOX*HCl release curve is presented in Fig. 5a,
blue curve. This curve resembles the characteristic controlled
drug release profile. It means that DOX*HCI release from
nanoconjugate 6 was stepwise. This controlled release was
ascribed to the hydrolysis of ester bonds between Fc and
DOX*HCI parts of compound 5 complexed inside aCD units
within nanoconjugate 6. The cumulative release of DOX*HCI
after 24 hours equalled to ca. 78% and the final cumulative
release (after 72 hours) was found to be ca. 87%. The first,
relatively fast, DOX*HCI release segment up to ca. 12 h was
ascribed to the release of DOX*HCI molecules that were close to
the dendrimer-buffer interface.>” Subsequently, the cumulative
release of DOX*HCI increased gradually with the contact time.

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 (a) DOX*HCl release curves from nanoconjugate 6 at pH 4.7
and pH 7.4; (b) MCF-7 cell viability after treatment during long-term
spheroid culture.

The plateau segment was achieved between 48 h and 72 h. This
high total cumulative release value at a rationally short time
constitutes a good starting point for the design of novel
macromolecular therapeutics exhibiting a controlled drug
release profile. For comparison, drug release trials were also
performed at pH 7.4 (physiological pH; Fig. 5a, red curve). No
significant drug release was found in this environment
(cumulative DOX release was lower than ca. 1.5%, which means
that in practise no compound, neither 5 nor any of its subpart
(e.g., DOX), was released from 6). This finding means that (i) for
our system simple equilibrium displacement during the dialysis
did not take place, which confirms that the release of the drug is
driven by acidic pH (hydrolysis of an ester bond), (ii) no
unbound 5 was present in nanoconjugate 6.

Encouraged by the above-presented results, we estimated the
cytotoxicity profile of the designed nanoconjugate 6 against
breast cancer (MCF-7) spheroids. These studies were performed
using an innovative cell-on-a-chip microfluidic system. Cell-on-
a-chip are miniature, microfluidic devices that contain in vitro
cell cultures under flow conditions that simulate physiology at
the tissue level.®® Unlike conventional in vitro cell culture
methods, microfluidic-based cell cultures to a greater extent
reproduce the in vivo conditions. It is associated with the
combination of surfaces mimicking extracellular matrix geom-
etries and microfluidic channels that regulate fluid transport
(nutrients important for cells).” In our research, we used the
innovative microfluidic device for long-term three-dimensional
(3D) spheroid cell culture.®® The use of three-dimensional cell
contact and the flow conditions in a single device allowed more

RSC Adv, 2020, 10, 23440-23445 | 23443
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than standard two-dimensional cell cultures to reproduce the in
vivo environment of breast cancer. Moreover, this device
allowed us to perform quick and precise microscopic and
fluorescence analysis after the drug treatment. The microscopic
analysis involved the observation of morphological spheroid
changes (in single, always the same spheroid) while fluores-
cence analysis involved the evaluation of the metabolic activity
of spheroids (their viability). The results of biological assays are
shown in Fig. 5b.°* At first, the cytotoxicity profile of octa-aCD-
PAMAM (3) was estimated. This dendrimeric vector in each
tested concentration was found to be non-toxic, which is
beneficial in terms of its use as a drug delivery vector. The same
situation was observed with free DOX*HCI. On the other hand,
nanoconjugate 6 showed different cytotoxicity profiles; nano-
conjugate 6 was found to be highly toxic to breast cancer cells.
Cell viability after 72 h equated to ca. 40%. In comparison, this
viability for octa-oCD-PAMAM (3) and free DOX*HCI (50 pg
mL™", 72 h) was ca. 95% and ca. 81%, respectively. During our
studies, we also observed that higher concentrations of the
tested substances were less toxic to breast cancer cells. This can
be related to the defense mechanism of cancer tumors; cancer
tumors recognize higher concentrations of toxic substances and
do not absorb them from the external environment.®* In addi-
tion, higher cell viability may be associated with the stimulation
of cell proliferation after using higher concentrations of octa-
aCD-PAMAM. We observed that the free drug carrier at higher
concentrations increases the viability of MCF-7 cells (Fig. 5b).
Similarly, the MCF-7 viability after treatment with a higher
concentration of nanoconjugate 6 was also higher.

Conclusions

In conclusion, we present an efficient and facile method for the
synthesis of the first PAMAM G1.0 dendrimer octa-substituted
with aCD (octa-aCD-PAMAM), as well as its application for
binding the newly synthesized ferrocenyl ester of DOX*HCI (Fc-
COO-DOX*HCI). The release profile of DOX*HCI from the
designed nanoconjugate at pH 4.7 resembled the characteristic
controlled drug release curve. Dendrimeric octa-oCD-PAMAM is
biocompatible and non-toxic, whilst its nanoconjugate with Fc-
COO-DOX*HC(I is highly toxic against breast cancer cells (MCF-
7; the biological assays were performed with an innovative cell-
on-a-chip microfluidic system). This manuscript sheds light on
the design of new therapeutic, macromolecular systems
featuring a controlled drug release profile, opening new
avenues in medicinal chemistry.
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