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Enantioselective organocatalytic Michael reactions
using chiral (R,R)-1,2-diphenylethylenediamine-
derived thioureasy
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Although the Michael addition is a very well-known and widely applied reaction, cost-effective, metal-free,
readily prepared organic catalysts rare. A chiral, bifunctional, (R,R)-1.2-
diphenylethylenediamine-derived thiourea organic catalyst was developed and applied to asymmetric
Michael additions of nitroalkenes under neutral conditions. Generally, fluorine-substituted thiourea
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reactions were tolerant of many functional groups and afforded good-to-excellent yields, as well as high
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Introduction

Numerous studies on metal-free stereoselective organic cata-
lysts have been reported over the past century.' Although ster-
eoselective metal-catalyzed reactions generally provide more
reliable results than those catalyzed by organic compounds,
metal catalysts are disadvantageous in several respects. They are
typically expensive, which leads to higher production costs.?
Moreover, the metal waste remaining after completion of the
reaction can contaminate both the product and/or the envi-
ronment.®> To overcome these drawbacks, stereoselective
syntheses using metal-free organic catalysts are becoming
increasingly important. With this in mind, our group has been
motivated to examine organic catalysts from a variety of
perspectives, and we previously reported the application of
a thiourea catalyst derived from (R,R)-1,2-diphenylethane-1,2-
diamine (DPEN)* in several reactions.

Compounds with adjacent quaternary and tertiary stereo-
centers can be prepared by Michael additions to electron-
deficient olefins, as exemplified by the reactions of trisubsti-
tuted carbon nucleophiles with nitroalkenes; these products
can serve as building blocks for the syntheses of complex
natural materials. In this regard, the Michael reaction is one of
the most important C-C bond-forming reactions. However,
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despite its high synthetic potential, the number of highly ster-
eoselective Michael-addition-based synthetic methods is
limited.*” Nitro-group-containing Michael acceptors are very
attractive due to their highly electron-deficient properties and
because the nitro group is easily converted into other functional
groups, including ketones, esters, amine, and carboxylic acids
(Fig. 1).°

The Takemoto group reported high enantioselectivity in
a Michael reaction involving a malonate and nitroalkene using
an (R,R)-1,2-cyclohexyldiamine-thiourea-based catalyst.®* In
another study, they obtained high enantio- and diaster-
eoselectivities using a thiourea-derived catalyst in a Michael
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Fig. 1 Transformations of nitro compounds.
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reaction involving a B-ketoester and nitroalkene.” Cavallo and
co-workers recently explored the use of hexafluorobenzene
(CeFe) as the solvent in a study into the asymmetric Michael
reaction of a B-ketoester and nitroalkene.' Conventionally,
hydrogen-bond-forming noncovalent catalysts afford good
stereoselectivities in nonpolar solvents such as toluene. On the
other hand, hexa-fluorobenzene (¢ = 2.05) stabilizes the enol
form of the B-keto ester through m-stacking, which may lead to
good reactivity and stereoselectivity.

Herein, we report on the catalytic activities of new chiral
organocatalysts based on (R,R)-DPEN-derived thioureas' in the
asymmetric Michael addition reactions of nitroalkenes.

Results and discussion

The Michael addition reaction of trans-p-nitrostyrene 3a with 2-
carboxyethylcyclopentanone 2a was first screened with catalyst
1a under neutral conditions. This catalyst is a highly basic N-
monosubstituted thiourea that lacks an alkyl group (R' = H) on
the amine of the DPEN unit (Table 1). Catalyst effectiveness was
initially investigated at room temperature in CH,Cl,, affording
the desired product with 29% ee (Table 1, entry 1). This result
suggests that the catalyst can impart stereoselectivity to some
extent even without an alkyl group (R') on the terminal amine.
Subsequent reactions were performed with 3-pentyl-substituted
thiourea catalysts 1b-1h.

To increase the potential for hydrogen bonding via the
hydrogen atoms of the thiourea, we adjusted their acidities by
introducing different groups (R*) on the urea moiety. Catalyst 1e

Table 1 Catalyst and temperature optimization

1aR'=H, R? = CgHs
1b R" = 3-pentyl, R? = 4-NO,-CgHy4

1f R" = 3-pentyl, R? = 4-CN-CgHy4

s
H i H
ph._N—L-N-r2 1g R" = 3-pentyl, R? = 4-CF3-CgH,

I 1c R" = 3-pentyl, R? = 4-F-CgH, 1h R' = 3-pentyl, R? = C¢Fs
Ph™ “NH 1d R" = 3-pentyl, R? = 3,5-di-CF3-CgHg 1i R' = 3-pentyl, R? = 2,6-di-F-CgH3
R 1e R" = 3-pentyl, R? = p-tolyl
o % o 9
o . xNO, cat. (10 mol%) o
Ej/V CHoCly, temp, 12 h o NO,
Ph
(0.40 mmol) (1.2 equiv) 4c
Entry Cat. Temp (°C) Yield® (%) dr? ee’ (%)
1 1a Ambient 98 87:13 29
2 1b Ambient 90 66 : 44 67
3 1c Ambient 94 70: 30 78
4 1d Ambient 94 93:7 73
5 1e Ambient 83 92:8 60
6 1f Ambient 89 96:4 68
7 1g Ambient 88 74:26 50
8 1h Ambient 99 95:5 93
9 1i Ambient 91 96:4 15
10 1h 0 96 97:3 83
11 1h —-30 96 98:2 91

“ Isolated yield. ? Determined by chiral-phase HPLC using an OD-H
column.
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bearing an electron-donating p-tolyl substituent gave product 4c
with slightly lower enantioselectivity (60%) than 1b-1d, which
contained electron-withdrawing groups (entries 2-5). However,
the use of catalyst 1g, which also contained an electron-
withdrawing group, led to much lower enantio-selectivity than
that of 1e (entry 5), which indicates that the electronic nature of
the R* group does not necessarily determine the outcome of the
reaction. Overall, the catalysts bearing electron-withdrawing
substituents provide higher enantioselectivities than those
with electron-donating groups. After securing the highest
enantioselectivity with pentafluorophenyl-substituted catalyst
1h (Table 1, entry 8), Again, the 3-pentyl-substituted catalyst
provided the highest enantioselectivity among the catalysts
investigated.

We next probed the effect of lower reaction temperatures
using catalyst 1h; unfortunately, lower enantioselectivities were
obtained than at room temperature (entries 10-11). Based on
the results summarized in Table 1, we conclude that the optimal
reaction conditions involve the use of the pentafluorophenyl-
substituted catalyst 1h at room temperature (Table 1, entry 8).

With the optimal catalyst and temperature conditions in
hand, we examined the effect of solvent on reactivity and
enantioselectivity (Table 2). Other than hexane, good overall
enantioselectivities were obtained in all the solvents examined.
Although the best diastereoselectivity was observed in tri-
fluorotoluene (Table 1, entry 5), the catalyst was less enantio-
selective in this solvent than in toluene, and the reaction took
longer for a lower yield (Table 1, entry 2). Therefore, we selected
the optimal solvent as toluene with a reaction time of 12 h.

The Michael addition reactions of a variety of B-ketoesters
with trans-B-nitrostyrene mediated by catalyst 1h were surveyed
(Scheme 1). Good overall enantioselectivities were observed
regardless of the substituent on the B-keto ester; however, the
product yields were poor when cyclohexanone 2e, cyclo-
heptanone 2f, and a-tetralone 2h were used as substrates. The
results also show that 4a was produced from ethyl acetoacetate 2a
with low diastereoselectivity, which is ascribed to epimerization.

Table 2 Solvent optimization

o Jg~ . eNo: _thomom) }j%&/@
CHCly, 1t, 12 h Ty 02
Ph
(0.40 mmol) (1.2 equiv) 4c
Entry  Solvent Time (h)  Yield® (%) dr® ee? (%)
1 Hexane 12 74 95:5 62
2 Toluene 12 87 98:2 97
3 Et,O 12 75 97:3 95
4 THF 96 67 95:5 92
5 Trifluorotoluene 72 76 99:1 94
6 CH,Cl, 12 99 95:5 93

“ Isolated yields. ” Determined by chiral-phase HPLC using an OD-H
column.
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Scheme 1 Asymmetric Michael additions of B-ketoesters to trans--
nitrostyrene. “lsolated yield. °Determined by HPLC using a chiral
column.

Various nitroalkenes 3 were reacted with methyl 2-oxo-
cyclopentanecarboxylate (2d) and methyl 2-oxocyclohexane-
carboxylate (2e) (Table 3). Good enantioselectivities were
observed when nitroalkenes 3 were reacted with 2d, regardless
of whether the substituent was electron-withdrawing or
electron-donating. However, lower yields were obtained when
trans-nitroolefins bearing ortho-substituted aromatic substitu-
ents or aliphatic substituents were used. Good enantioselectiv-
ities were observed when 2e was reacted with nitroalkenes
bearing both electron-withdrawing and electron-donating
substituents. As previously observed, lower yields of 4 were
obtained with 2e than with 2d.

Finally, to fully explore substituent effects in these reactions,
variously substituted malonates and nitroalkenes were sub-
jected to the reaction. In these cases, we used catalyst 1d

Table 3 Asymmetric Michael additions of cyclic B-ketoesters to nitro-
olefins

Q o]
o) e p N, 1h (10 mol%) WNO
%\ 3] toluene, rt, 12 h Ty 2
n R

2d : n=1 3am 4

(20e.A;Onr:§wol) (12 equiv)
Entry 2 R' 4 vield® (%)  dr® ee’ (%)
1 2d Ph 4ad 92 96 : 4 99
2 2d  p-Tolyl 4i 85 88:12 90
3 2d 4-Cl-Ph 4j 85 96:4 98
4 2d 4-Br-Ph 14k 88 96 : 4 98
5 2d 4-MeO-Ph 41 92 93:7 96
6 2d 2-MeO-Ph 4m 25 98:2 92
7 2d Bu 4n 60 99:1 98
8 2d Cyclohexyl 40 42 99:1 98
9 2d i-Pr 4p 41 99:1 98
10 2e Ph 4e 25 98:2 92
11 2e  p-Tolyl 41q 24 95:5 98
12 2e 4-Cl-Ph 4r 50 99:1 98
13 2e 4-Br-Ph 4s 26 99:1 94
14 2e 4-OMe-Ph 4t 19 99:1 80

“ Isolated yields. ? Determined by HPLC using a chiral column.
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Table 4 Michael reactions using catalyst 1d (R* = 3-pentyl; R? = 3,5-
di-CF5-CgHs)

R'0,C._CO.R' R NO2 1d (10 mol%) R'0,C_CO.R'
¥ toluene, rt, 96 h R2 NO,
(2 equiv) 0.4 mmol 5
Enty R R Product  Yield“[%]  ee”[%]
1 Me Ph 5a 89 80
2 Et Ph 5b 85 90
3¢ Et Ph 5b 86 78
4 i-Pr Ph 5¢ 49 99
5 n-Pr Ph 5d 45 98
6¢ n-Pr Ph 5d 98 99
7 Bu Ph 5e 41 94
8 Et 4-Br-Ph 5f 77 88
9 Et 4-Cl-Ph 5g 72 89
10 Et 4-Me-Ph 5h 60 84
11 Et 4-MeO-Ph 5i 40 89
12 Et 2-MeO-Ph 5j 51 70
13 Et 4-HO-Ph 5k 40 89
14 Et Furyl 51 78 72

“ Isolated dyield. b Determined by chiral HPLC. ¢ Using the 1h catalyst for
reaction.  In CH,CI, for 12 h heated at reflux.

because when use 1h catalyst in this reactions, it give more
lower ee than 1d catalyst. Although good overall yields and
enantioselectivities were obtained, the yields decreased with the
increasing size and length of the malonate ester groups (R")
(Table 4, entries 1-6). These results suggest that the reaction
rate decreases with increasing steric bulk of the malonate
substituent. Further experiments were performed using diethyl
malonate and various B-nitrostyrenes.” The product and ee
yields were generally lower than those obtained using the
parent B-nitrostyrene (Table 4, entries 7-13); however, good
yields and enantioselectivities were obtained for B-nitrostyrenes
with electron-withdrawing 4-bromo and 4-chloro substituents.
In contrast, lower yields and enantioselectivities were observed
for B-nitrostyrenes substituted with electron-donating 4- and 2-
methoxy groups. These results indicate that B-nitrostyrenes
bearing electron-withdrawing groups are better Michael accep-
tors toward the nucleophile because the double bond is more
electron-deficient, which facilitates nucleophilic attack. We
tested recycling of the catalysts 1h (Fig. 2, ESI Table 17). In these

100

©
<

Percentage (%)
3
1

40- I yield

[ catalyst recovery
20 M ee
0_-_ - - -

1st 2nd 3rd 4th

Fig. 2 Recycling test for asymmetric Michael addition using chiral
(R,R)-1,2-diphenylethylenediamine-derived thiourea catalyst (1d).
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2nd 97% yield, 99% ee
' HO. 3rd 97% yield, 99% ee
N :“A'fg;e:zg'hNaBH“ NH2#HCI 4th 97% yield, 99% ee
b 1L O
2) 6N HCI, 100 ° C, 12h
6a
(R)-Phenibut,
yield: 92%

Scheme 2 Synthesis of the inhibitory neurotransmitter Phenibut.

four times test, we obtained data for the (R,R)-1,2-
diphenylethylenediamine-derived thiourea catalyst (1d) could
be recyclable (Scheme 2).

Based on the foregoing results, we envisioned that these
Michael addition products would provide access to bioactive
compounds such as the inhibitory neurotransmitter and anti-
depressant, (R)-Phenibut® (6a, Scheme 2).">'* To achieve this
objective, we used previously prepared adduct 5d from the
reaction of n-propyl malonate with B-nitrostyrene.

The nitro group of 5d was reduced with NiCl,-6H,0 and
NaBH, (Scheme 2), which resulted in formation of a cyclic
amide, i.e., an ester-bearing pyrrolidinone. Pyrrolidinone ring
opening and decarboxylation were achieved by treatment with
HCI, which afforded B-phenyl-y-aminobutanoic acid (GABA)
derivative 6a."

The experimental results obtained for the stereoselective
Michael addition reactions using malonate derivatives and
nitroalkenes provide insight into the reaction mechanism and

Transition State
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Fig. 3 (a, b) Proposed transition state for asymmetric Michael addition
using chiral (R,R)-1,2-diphenylethylenediamine-derived thiourea and
difference of relative free energy. (c, d) B3LYP/6-31G(d,p)-calculated
transition state of the DPEN-thiourea-catalyzed enantioselective
Michael reaction. Transition state structures for the C-C bond
formation, through which the main product (R) is possibly formed, are
also shown.
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make it possible to infer the role of the catalyst in enabling the
reaction (Fig. 3).

In the transition state involved in the present catalytic
reaction, the nitro atoms of the thiourea group of the catalyst
form hydrogen bonds with the oxygen atoms of the nitroalkene,
fixing its position and increasing the reactivity of the electro-
philic double bond. Additionally, the enol form of the malonate
interacts via hydrogen bonding with the free amino group of the
catalyst, situating it for attack of the nitroalkene from behind to
form the (R)-product.

Conclusions

The Michael additions of 1,3-dicarbonyl compounds to nitro-
alkenes catalyzed by N-monosubstituted thiourea derivatives of
DPEN provided products with good-to-excellent enantio- and
diastereoselectivities. These catalysts are cost-effective because
they are more readily prepared than conventional organic
catalysts. The Michael adducts possessed adjacent quaternary
and tertiary stereocenters and were obtained in relatively good
yields. Furthermore, since the y-lactone intermediate prepared
by this reaction can be used as an intermediate for the prepa-
ration of anti-depressant drugs, further studies on its medical
applications must be conducted, due to the increasing need for
investigations of the medical and biological applications of
such compounds.

Experimental

General procedure for the asymmetric Michael reaction (4a-
4t)

The B-nitrostyrene (1.2 equiv.), B-ketoester (2.0 equiv.), and 1d
(10 mol%) were mixed in toluene (0.4 M) and the reaction
mixture was stirred at ambient temperature. The reaction
conversion was monitored by TLC. After completion, ethyl
acetate (0.2 mL) was added in the reaction mixture. This solu-
tion was washed twice with water (2 x 1.0 mL), dried over
magnesium sulfate, and concentrated to yield the desired
product. The product was purified by chromatography on
a silica-gel column (hexanes/ethyl acetate 5 : 1).

Ethyl 2-acetyl-4-nitro-3-phenylbutanoate (4a). Colorless oil;
[a]B = —196.3 (c = 0.0575, CH,Cl,); "H NMR (300 MHz, CDCI;)
6 7.30 (m, 3H), 7.21 (d, J = 6.6 Hz, 2H), 4.80 (m, 2H), 4.22 (m,
1.8H), 4.12 (d,J = 10.1 Hz, 0.6H), 4.03 (d,J = 9.0 Hz, 0.4H), 3.96
(q, ] = 15 Hz, 1.2H), 2.30 (s, 1.6H), 2.06 (s, 1.4H), 1.28 (t, ] =
15.0 Hz, 1.2H), 1.00 (t, J = 12.0 Hz, 1.8H); >C NMR (100 MHz,
CDCl;) 6 201.3, 200.5, 167.7, 167.0, 136.6, 136.5, 129.3, 129.1,
128.4, 128.1, 78.1, 78.0, 62.4, 62.1, 61.8, 42.7, 42.5, 30.5, 30.3,
14.2,13.8; IR (CHCl;) » 3031, 2987, 1741, 1718, 1556, 1375 cm ™ *;
HRMS (FAB') caled for [C,4,H;gNOs]": 280.1185, found:
280.1187; HPLC [Chiralcel AD-H, hexane/2-propanol = 80/20,
0.8 mL min~ ', A = 210 nm] retention times: (major diaste-
reomer) 10.0, 11.4 min, (minor diastereomer) 8.0, 19.9 min.

Ethyl 2-acetyl-2-methyl-4-nitro-3-phenylbutanoate  (4b).
Colorless solid; mp 73-75 °C; [a]y) = —103.8 (¢ = 0.0115,
CH,CL,); '"H NMR (300 MHz, CDCl;) 6 7.30-7.26 (m, 3H), 7.23-
7.20 (m, 2H), 4.95 (d,J = 9 Hz, 2H), 4.23 (t, ] = 6 Hz, 1H), 4.14-

RSC Adv, 2020, 10, 31808-31814 | 31811
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4.08 (m, 1H), 4.07-4.01 (m, 1H), 2.12 (s, 3H), 1.43 (s, 3H), 1.20 (t,
J=7.5Hz, 3H); "*C NMR (100 MHz, CDCl;) 6 205.6, 171.0, 135.6,
129.4, 128.9, 128.5, 76.9, 62.3, 62.1, 47.5, 27.8, 18.2, 14.0; IR
(CHCI;) » 3031, 1713, 1557 cm '; HRMS (FAB') caled for
[C15H,0NO5]": 294.1341, found: 294.1342; HPLC [Chiralcel OD-
H, hexanes/2-propanol = 90/10, 0.5 mL min~ ', 1 = 210 nm]
retention times: (major diastereomer) 21.4, 30.6 min, (minor
diastereomers) 15.5, 19.2 min.

Ethyl 1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate
(4¢). Colorless oil; [a]y = +10.7 (c = 1.000, CH,Cl,); "H NMR
(300 MHz, CDCl,) 6 7.20-7.27 (m, 5H), 5.15-5.21 (dd, = 4.2 Hz,
3.9 Hz, 1H), 4.98-5.06 (dd, J = 11.2 Hz, 11.0 Hz, 1H), 4.18-4.25
(m, 2H), 4.06-4.11 (dd, J = 3.8 Hz, 3.8 Hz, 1H), 2.30-2.45 (m,
2H), 1.79-2.07 (m, 4H), 1.25-1.30 (t, ] = 7.2 Hz, 3H); '*C NMR
(100 MHz, CDCl;) 6 207.3, 169.8, 135.5, 129.6, 128.6, 128.4, 77.7,
62.17, 47.9, 41.6, 37.2, 28.1, 22.5, 14.2; IR (CHCI;) » 3031, 2957,
1751, 1727, 1556 cm™'; HRMS (FAB") caled for [Cy6H,oNO5]":
306.1341, found: 306.1341; major diastereomer: ee was deter-
mined by HPLC [Chiralpak OD-H column, hexanes/2-propanol
= 93/7, flow rate = 1 mL min~*, A = 220 nm] retention times:
(major enantiomer) 19.4 min, (minor enantiomer) 13.2 min,
(minor diastereomers) 11.3, 15.7 min.

Methyl 1-(2-nitro-1-phenylethyl)-2-
oxocyclopentanecarboxylate (4d). Colorless oil; [¢]p) = —152.9
(¢ = 0.045, CH,Cl,); *H NMR (300 MHz, CDCl;) 6 7.34-7.22 (m,
5H), 5.17 (dd, J = 3.8, 13.5 Hz, 1H), 5.01 (dd, J = 10.7, 13.5 Hz,
1H), 4.08 (dd, J = 3.9, 10.8 Hz, 1H), 3.76 (s, 3H), 2.42-2.30 (m,
2H), 2.09-1.79 (m, 4H); *C NMR for major diastereomer (100
MHz, CDCl;) 6 212.5, 170.0, 135.4, 129.5, 129.0, 128.5, 76.6,
62.6, 53.2, 46.3, 38.1, 31.2, 19.5; IR (CHCI,) » 3031, 2957, 1751,
1727, 1556 cm™'; HRMS (FAB") caled for [Cy5H;oNO;]":
292.1185, found: 292.1180; HPLC [Chiralcel OD-H, hexanes/2-
propanol = 93/7, 0.5 mL min ', A = 210 nm] retention times:
(major enantiomer) 28.8 min, (minor enantiomer) 23.3 min,
(minor diastereomers) 15.7, 18.5 min.

Methyl 1-(2-nitro-1-phenylethyl)-2-
oxocyclohexanecarboxylate (4e). Colorless solid; mp 100-
102 °C; [a]y = +61.7 (¢ = 0.018, CH,Cl,); "H NMR (300 MHz,
CDCl;) 6 7.30-7.27 (m, 3H), 7.17-7.12 (m, 2H), 5.06 (dd, J = 3.1,
13.5 Hz, 0.96H), 4.78 (dd, J = 11.2, 13.2 Hz, 1H), 4.01 (dd, J = 3,
11.3 Hz, 0.96H), 3.75 (s, 2.88H), 3.68 (s, 0.12H), 2.57-2.39 (m,
2H), 2.14-1.98 (m, 2H), 1.77-1.45 (m, 4H); "*C NMR (100 MHz,
CDCl;) 6 207.1, 170.3, 135.4, 129.5, 128.7, 128.4, 77.6, 63.2, 52.7,
47.8, 41.6, 37.1, 28.1, 22.5; IR (CHCl;) » 3027, 2951, 1713,
1556 cm™'; HRMS (FABY) caled for [C;6H,oNOs]™: 306.1341,
found: 306.1340; HPLC [Chiralcel OJ-H, hexanes/2-propanol =
80/20, 0.5 mL min~', 2 = 210 nm] retention times: (major
enantiomer) 50.8 min, (minor enantiomer) 45.6 min, (minor
diastereomers) 71.7, 94.4 min.

Methyl 1-(2-nitro-1-phenylethyl)-2-
oxocycloheptanecarboxylate (4f).**** Colorless oil; [a]f} =
+123.3 (¢ = 0.025, CH,CL,); 'H NMR (300 MHz, CDCl;) 6 7.30-
7.25 (m, 3H), 7.17-7.10 (m, 2H), 4.99-4.89 (m, 2H), 4.07 (dd, J =
5,9.1 Hz, 1H), 3.77 (s, 3H), 2.61-2.53 (m, 2H), 2.16-1.23 (m, 8H);
3C NMR (100 MHz, CDCl;) 6 (major diastereomer) 208.4, 171.5,
135.7, 129.5, 128.9, 128.5, 78.0, 65.7, 52.7, 48.7, 41.6, 33.1, 29.2,
25.3,24.7; IR (CDCl;) » 3030, 2938, 2863, 1736, 1709, 1556 cm ™ *;
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HPLC [Chiralcel AD-H, hexanes/2-propanol = 90/10, 0.5
mL min~", A = 210 nm] retention times: (major enantiomer)
18.7 min, (minor enantiomer) 22.2 min, (minor diastereomers)
17.3, 20.4 min.

Methyl 2-(2-nitro-1-phenylethyl)-1-oxo-2,3-dihydro-1H-
indene-2-carboxylate (4g).*'*“ Yellow amorphous; [a]y = —48.5
(c = 0.064, CH,Cl,); '"H NMR (300 MHz, CDCl;) 6 7.77 (d, J =
7.7 Hz, 0.57H), 7.68 (d, J = 7.4 Hz, 0.43H), 7.58 (t, ] = 7.5 Hz,
0.43H), 7.51 (t, J = 7.5 Hz, 0.57H), 7.42-7.32 (m, 1.43H), 7.29-
7.07 (m, 5.57H), 5.43 (dd, J = 3.9, 13.8 Hz, 0.43H), 5.24-5.14 (m,
1H), 5.06 (dd, J = 3.6, 13.5 Hz, 0.57H), 4.48 (dd, J = 3.5, 10.9 Hz,
0.57H), 4.21 (dd, J = 3.9, 11 Hz, 0.43H), 3.75 (s, 1.29H), 3.70 (s,
1.71H), 3.65 (d,J = 17.9 Hz, 0.43H), 3.49 (d,/ = 17.6 Hz, 0.57H),
3.22 (d, J = 14.3 Hz, 0.43H), 3.16 (d, J = 14.3 Hz, 0.57H); *C
NMR (100 MHz, CDCl;) 6 202.1,200.1,171.4, 170.1, 152.7, 152.6,
136.3, 135.1, 135.0, 135.8, 134.9, 134.2, 129.26, 129.21, 129.03,
128.8, 128.55, 128.52, 128.26, 128.23, 126.3, 125.3, 124.6, 77.6,
77.03, 63.0, 61.9, 53.4, 47.7, 47.2, 36.76, 35.2; IR (CHCI;) » 3035,
2955, 1739, 1711, 1607, 1556 cm'; HPLC [Chiralcel OD-H,
hexanes/2-propanol = 90/10, 1 mL min~ ', A = 210 nm] reten-
tion times: (major enantiomer) 42.1 min, (minor enantiomer)
26.6 min, (minor diastereomers) 54.2, 34.4 min.

Methyl 1,2,3,4-tetrahydro-2-(2-nitro-1-phenylethyl)-1-
oxonaphthalene-2-carboxylate (4h). Colorless solid; mp 101-
103 °C; [o]f} = +51.0 (c = 0.78, CHCl;); "H NMR (300 MHz,
CDCl;) 6 8.04 (d,J = 7.7 Hz, 1H), 7.50 (t, /] = 7.6 Hz, 1H), 7.41-
7.26 (m, 6H), 7.20 (d, J = 7.7 Hz, 1H), 5.16 (dd, J = 3.8, 13.5 Hz,
1H), 5.05 (dd, J = 10.1, 13.4 Hz, 1H), 4.21 (dd, J = 3.8, 10.4 Hz,
1H), 3.72 (s, 0.15H), 3.65 (s, 2.85H), 3.00-2.89 (m, 2H), 2.47-2.37
(m, 1H), 2.10-1.99 (m, 1H); ">*C NMR (100 MHz, CDCl;) 6 194.4,
170.4, 142.7, 136.1, 134.3, 131.7, 130.0, 128.9, 128.8, 128.6,
128.4,127.2, 78.0, 59.9, 52.9, 47.3, 30.9, 25.7; IR (CHCL;) » 3031,
2954, 1736, 1687, 1601, 1556 cm ™ '; HRMS (FAB') caled for
[CooH20NO5]": 354.1341, found: 354.1345; HPLC [Chiralcel OD-
H, hexanes/2-propanol = 90/10, 0.5 mL min ', 1 = 254 nm]
retention times: (major enantiomer) 68.6 min, (minor enan-
tiomer) 14.7 min, (minor diastereomers) 17.0, 37.4 min.

Methyl 1-(2-nitro-1-p-tolylethyl)-2-
oxocyclopentanecarboxylate (4i). Colorless oil; [a]f) = —156.1
(c = 0.049, CH,Cl,); '"H NMR (CDCl;, 300 MHz) 1.80-2.07 (m,
4H), 2.30 (s, 3H), 2.35-2.42 (m, 2H), 3.75 (s, 3H), 4.05 (dd, J =
4.1,11 Hz, 1H), 4.98 (dd, J = 10.7, 13.4 Hz, 1H), 5.13 (dd, ] = 4.1,
13.7 Hz, 1H), 7.08-7.14 (m, 4H); *C NMR (CDCl;, 100 MHz)
212.5, 170.0, 138.2, 132.2, 129.7, 129.3, 76.6, 62.7, 53.2, 46.0,
38.2, 31.2, 21.2, 19.5; IR (CH,Cl,) » 2967, 2935, 1760, 1613,
1556 cm™'; HRMS (FAB") caled for [C;gHoNOs]": 306.1341,
found: 306.1340; HPLC [Chiralcel OD-H, hexanes/2-propanol =
97/3, flow rate = 1 mL min~ ', A = 220 nm] retention times:
(major enantiomer) 25.1 min, (minor enantiomer) 16.4 min,
(minor diastereomers) 13.7, 18.0 min.

Methyl 1-{1-(4-chlorophenyl)-2-nitro}ethyl-2-
oxocyclopentanecarboxylate (4j). Colorless oil; [¢]p’ = —135.8
(¢ = 0.052, CH,CL,); "H NMR (CDCl;, 300 MHz) 1.82-1.98 (m,
3H), 2.00-2.09 (m, 1H), 2.34-2.41 (m, 2H), 3.75 (s, 3H), 4.04 (dd,
J=3.9,14.9 Hz, 1H), 4.98 (dd, J = 11.2, 13.7 Hz, 1H), 5.16 (dd, J
= 3.8, 13.7 Hz, 1H), 7.13-7.29 (m, 4H); *C NMR (CDCl;, 100
MHz) 212.3, 169.9, 134.4, 134.1, 130.9, 129.1, 76.4, 62.4, 53.3,
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45.7, 38.0, 31.4, 19.5; IR (CH,Cl,) v 2957, 2920, 2893, 1760,
1563 cm™'; HRMS (FABY) caled for [Cy5H,,CINO5]": 326.0795,
found: 326.0796; HPLC [Chiralcel OD-H, hexanes/2-propanol =
97/3, flow rate = 1 mL min~', A = 220 nm] retention times:
(major enantiomer) 42.5 min, (minor enantiomer) 28.3 min,
(minor diastereomers) 19.7, 23.7 min.

Methyl 1-{1-(4-bromophenyl)-2-nitroethyl}-2-
oxocyclopentanecarboxylate (4k). Colorless oil; [« = —99.4
(¢ = 0.058, CH,Cl,); "H NMR (CDCl;, 300 MHz) 6 1.85-1.99 (m,
4H), 2.34-2.44 (m, 2H), 3.75 (s, 3H), 4.03 (dd, J = 3.9, 11 Hz, 1H),
4.98 (dd, J = 11, 13.5 Hz, 1H), 5.16 (dd, J = 3.8, 13.7 Hz, 1H),
7.13-7.29 (m, 4H); "*C NMR (CDCl;, 100 MHz) 6 212.3, 169.9,
134.4,134.1, 130.9, 129.1, 76.4, 62.4, 53.3, 45.7, 38.0, 31.4, 19.5;
IR (CH,Cl,) v 2956, 2920, 2892, 1754, 1562 cm ™ '; HRMS (FAB")
caled for [C;5H,,BrNO;]": 370.0290, found: 370.0288; HPLC
[Chiralcel OD-H, hexanes/2-propanol = 97/3, flow rate = 1
mL min~ %, 1 = 220 nm] retention times: (major enantiomer)
38.3 min, (minor enantiomer) 28.0 min, (minor diastereomers)
21.5, 27.1 min.

Methyl 1-{1-(4-methoxyphenyl)-2-nitroethyl}-2-
oxocyclopentane-carboxylate (4l). Colorless oil; [a]f} = —177.6
(¢ = 0.05, CH,Cl,); "H NMR (CDCl;, 300 MHz) 6 1.79-2.05 (m,
4H), 2.31-2.43 (m, 2H), 3.75 (s, 3H), 3.77 (s, 3H), 4.06 (dd, J =
4.1, 11 Hz, 1H), 4.98 (dd, J = 11, 13.2 Hz, 1H), 5.11 (dd, J = 4.1,
13.4 Hz, 1H), 6.83 (d,J = 8.7 Hz, 2H), 7.17 (d, ] = 8.7 Hz, 2H); *C
NMR (CDCl;, 100 MHz) § 212.6, 170.1, 159.5, 130.6, 127.1, 114.3,
76.7, 62.8, 55.3, 53.2, 45.7, 38.2, 31.1, 19.5; IR (CH,Cl,) » 2952,
1711, 1553 cm '; HRMS (FAB") caled for [Cy6H;oNOg]™:
321.1212, found: 321.1210; HPLC [Chiralcel OD-H, hexanes/2-
propanol = 97/3, flow rate = 1 mL min~ ', A = 220 nm] reten-
tion times: (major enantiomer) 87.1 min, (minor enantiomer)
73.4 min, (minor diastereomers) 46.1, 57.4 min.

Methyl 1-{1-(2-methoxyphenyl)-2-nitroethyl}-2-
oxocyclopentane-carboxylate (4m). Colorless oil; [¢]p) = —17.3
(c = 0.04, CH,CL,); '"H NMR (CDCl;, 300 MHz) 6 1.83-2.04 (m,
4H), 2.32-2.42 (m, 2H), 3.75 (s, 3H), 3.80 (s, 3H), 4.33 (dd, J =
2.8,9.9 Hz, 1H), 5.13 (dd,J = 10.4, 13.7 Hz, 1H), 5.39 (dd, = 3.6,
13.8 Hz, 1H), 6.86-6.93 (m, 2H), 7.23-7.27 (m, 2H); *C NMR
(CDCl;, 100 MHz) 6 231.1, 169.5, 157.8, 130.2, 129.6, 124.7,
121.2,111.4, 76.8, 62.4, 55.7, 52.9, 38.0, 32.5, 19.2; IR (CH,Cl,) »
2956, 2841, 1754, 1600, 1556 cm '; LRMS (ESI) caled for
[C16H1oNOGNa]": 344.1110, found: 344.1137; HPLC [Chiralcel
0J-H, hexane/2-propanol = 95/5, flow rate = 1 mL min~*, A =
220 nm] retention times: (major enantiomer) 45.8 min, (minor
enantiomer) 51.6 min, (minor diastereomers) 54.3, 61.1 min.

Methyl 1-(1-nitrohexan-2-yl)-2-oxocyclopentanecarboxylate
(4n). Colorless oil; [a]y) = —152.3 (¢ = 0.024, CH,Cl,); 'H
NMR (CDCl;, 300 MHz) 6 1.29-1.99 (m, 6H), 2.01-2.06 (m, 2H),
2.25-2.37 (m, 1H), 2.40-2.49 (m, 1H), 2.58-2.61 (m, 1H), 2.63—
2.85 (m, 1H), 3.71 (s, 3H), 4.38 (dd,J = 5.5, 14 Hz, 1H), 4.88 (dd, J
= 5, 14.1 Hz, 1H); "*C NMR (CDCl;, 100 MHz) 6 213.51, 170.0,
76.5, 63.1, 53.0, 40.8, 38.4, 31.1, 30.1, 29.9, 22.7, 19.6, 14.0; IR
(CH,CL,) v 2957, 2841, 1751, 1726, 1553 cm ™ *; LRMS (ESI) calcd
for [C13H,;NOsNa]': 294.1317, found: 294.1352; HPLC [Chir-
alcel OD-H, hexane/2-propanol = 95/5, flow rate = 0.5
mL min~!, A = 215 nm] retention times: (major enantiomer)
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23.4 min, (minor enantiomer) 17.1 min, (minor diastereomers)
19.5, 20.5 min.

Methyl 1-(1-cyclohexyl-2-nitroethyl)-2-
oxocyclopentanecarboxylate (40).1¢ Colorless oil; [a]y = —92.4
(c = 0.02, CH,Cl,); 'H NMR (CDCl;, 300 MHz) 6 0.97-1.20 (m,
6H), 1.50-1.73 (m, 5H), 2.03-2.10 (m, 3H), 2.40-2.45 (m, 2H),
2.64-2.77 (m, 2H), 3.69 (s, 3H), 4.57 (dd, J = 6.9, 15.1 Hz, 1H),
5.09 (dd, J = 3.8, 15.1 Hz, 1H); "*C NMR (CDCl;, 100 MHz)
6 213.1, 170.1, 74.0, 62.2, 52.9, 45.2, 39.5, 38.0, 33.0, 32.4, 28.8,
27.0, 26.7, 26.0, 19.4; IR (CH,Cl,) » 2930, 2854, 1752, 1724,
1552 cm™'; HPLC [Chiralcel OD-H, hexane/2-propanol = 95/5,
flow rate = 0.5 mL min ', A = 215 nm] retention times:
(major enantiomer) 19.1 min, (minor enantiomer) 17.5 min,
(minor diastereomers) 12.2, 13.3 min.

Methyl 1-(3-methyl-1-nitrobutan-2-yl)-2-
oxocyclopentanecarboxylate (4p).*** Colorless oil; [a]f =
—152.3 (¢ = 0.024, CH,Cl,); 'H NMR (CDCl;, 300 MHz) 6 0.86 (d,
J = 6.9 Hz, 3H), 0.94 (d, ] = 6.9 Hz, 3H), 1.93-2.06 (m, 4H), 2.39-
2.44 (m, 2H), 2.70-2.74 (m, 1H), 2.79-2.83 (m, 1H), 3.70 (s, 3H),
4.51 (dd, J = 6, 15.1 Hz, 1H), 5.15 (dd, J = 4.1, 15.1 Hz, 1H); **C
NMR (CDCl;, 100 MHz) 6 212.9, 169.9, 73.3, 62.3, 52.9, 45.5,
38.1, 32.4, 28.9, 22.7, 19.4, 18.0; IR (CH,Cl,) v 2965, 1753, 1725,
1552 cm™'; HPLC [Chiralcel OD-H, hexanes/2-propanol = 95/5,
flow rate = 1 mL min~", A = 215 nm] retention times: (major
enantiomer) 11.4 min, (minor enantiomer) 10.2 min, (minor
diastereomers) 19.3, 36.1 min.

Methyl 1-(2-nitro-1-p-tolylethyl)-2-
oxocyclohexanecarboxylate (4q). Slightly yellow oil; [a]f =
+351.0 (c = 0.007, CH,Cl,); "H NMR (300 MHz, CDCl;) 6 7.10-
7.07 (m, 2H), 7.01-6.99 (m, 2H), 5.05 (dd, J = 3.3, 13.4 Hz, 1H),
4.74(dd,J =11.3,13.2 Hz, 1H), 3.98 (dd,J = 3, 11.3 Hz, 1H), 3.76
(s, 3H), 2.53-2.43 (m, 2H), 2.30 (s, 3H), 2.11-1.99 (m, 2H), 1.73-
1.46 (m, 4H); >*C NMR (100 MHz, CDCl;) 6 207.2, 170.4, 138.2,
132.2, 129.4, 129.3, 77.7, 63.2, 52.7, 47.4, 41.6, 37.1, 28.1, 22.5,
21.2; IR (CH,Cl,) v 2950, 1743, 1712, 1554 cm™'; LRMS (ESI)
caled for [Cy;H,NOsNa]™: 342.1317, found: 342.1297; HPLC
[Chiralcel OJ-H, hexane/2-propanol = 80/20, 0.5 mL min™%, A =
210 nm] retention times: (major enantiomer) 41.9 min, (minor
enantiomer) 25.8 min, (minor diastereomers) 23.8, 35.2 min.

Methyl 1-{1-(4-chlorophenyl)-2-nitroethyl}-2-
oxocyclohexanecarboxylate (4r). Colorless oil; [a]y = +61.7 (c
= 0.018, CH,Cl,); 'H NMR (300 MHz, CDCl;) § 7.25-7.28 (m,
2H), 7.09-7.11 (m, 2H), 5.02 (dd, ] = 3.3, 13.4 Hz, 1H), 4.74 (dd, J
= 11.2, 13.4 Hz, 1H), 3.98 (dd, J = 3, 11.3 Hz, 1H), 3.74 (s, 3H),
2.50-2.44 (m, 2H), 2.13-2.00 (m, 2H), 1.75-1.47 (m, 4H); °C
NMR (100 MHz, CDCl;) 6 206.9, 170.2, 134.3, 134.1, 130.9, 128.9,
77.4, 63.1, 52.8, 47.3, 41.6, 37.1, 28.0, 22.5; IR (CH,Cl,) v 2951,
2868, 1712, 1554 cm ™ '; LRMS (ESI) caled for [C;¢H;sCINO;Na]":
362.0771, found: 362.0763; HPLC [Chiralcel OJ-H, hexanes/2-
propanol = 80/20, 0.5 mL min~', A = 210 nm] retention
times: (major enantiomer) 31.2 min, (minor enantiomer)
25.1 min.

Methyl 1-{1-(4-bromophenyl)-2-nitroethyl}-2-
oxocyclohexanecarboxylate (4s). Colorless oil; [a]f’ = +61.7 (c
= 0.018, CH,CL,); "H NMR (300 MHz, CDCl;) 6 7.44-7.41 (m,
2H), 7.05-7.02 (m, 2H), 5.02 (dd, J = 3.3, 13.5 Hz, 1H), 4.74 (dd, J
=11.2, 13.2 Hz, 1H), 3.97 (dd, J = 3.3, 11.3 Hz, 1H), 3.74 (s, 3H),
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2.55-2.44 (m, 2H), 2.13-2.01 (m, 2H), 1.75-1.60 (m, 4H); *C
NMR (100 MHz, CDCl,) 6 206.9, 170.2, 134.6, 131.8, 131.3, 122.6,
77.3, 63.0, 52.9, 47.4, 41.6, 37.1, 28.0, 22.5; IR (CH,Cl,) » 2950,
1711, 1553 cm™'; LRMS (ESI) caled for [Cy¢H;sBrNO;sNa]":
406.0266, found: 408.0255; HPLC [Chiralcel OJ-H, hexane/2-
propanol = 80/20, 0.5 mL min ', A = 210 nm] retention
times: (major enantiomer) 40.5 min, (minor enantiomer)
37.1 min, (minor diastereomers) 17.7, 19.7 min.

Methyl 1-{1-(4-methoxyphenyl)-2-nitroethyl}-2-
oxocyclohexane-carboxylate (4t). Slightly yellow oil; [a]} =
+103.6 (¢ = 0.01, CH,Cl,); "HNMR (300 MHz, CDCl;) 6 7.07-7.04
(m, 2H), 6.82-6.79 (m, 2H), 5.02 (dd, J = 3.3, 13.2 Hz, 1H), 4.74
(dd, J = 11.3, 12.9 Hz, 1H), 3.96 (dd, J = 3, 11.3 Hz, 1H), 3.77 (s,
3H), 3.74 (s, 3H), 2.50-2.42 (m, 2H), 2.14-1.99 (m, 2H), 1.74-1.51
(m, 4H); *C NMR (100 MHz, CDCl;) 4 207.3, 170.4, 159.5, 130.6,
127.2,114.0, 76.9, 63.4, 55.3, 52.7, 47.2, 41.6, 37.1, 28.1, 22.5; IR
(CH,Cl,) » 2952, 1711, 1553, 1514 cm *; LRMS (ESI) caled for
[C17H,,NOgNa]": 358.1267, found: 358.1252; HPLC [Chiralcel
0J-H, hexanes/2-propanol = 80/20, 0.5 mL min ', A = 210 nm]
retention times: (major enantiomer) 92.4 min, (minor enan-
tiomer) 76.7 min, (minor diastereomers) 46.1, 57.4 min.
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