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kinetic method for the
determination of mercury(II) in water samples

Abhinav Agarwal, a Amit Kumar Verma, a Masafumi Yoshida,b

Radhey Mohan Naik *a and Surendra Prasad *c

Mercury(II) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(II) by pyrazine (Pz) in

an acidic medium. This property of Hg(II) has been utilized for its determination in aqueous solutions. The

progress of reaction was followed spectrophotometrically by measuring the increase in absorbance of the

yellow colour product, [Ru(CN)5Pz]
3� at 370 nm (lmax, 3 ¼ 4.2 � 103 M�1 s�1) under the optimized reaction

conditions; 5.0 � 10�5 M [Ru(CN)6
4�], 7.5 � 10�4 M [Pz], pH 4.00 � 0.02, ionic strength (I) ¼ 0.05 M (KCl)

and temp. 45.0 � 0.1 �C. The proposed method is based on the fixed time procedure under optimum

reaction conditions. The linear regression (calibration) equations between the absorbance at fixed times

(t ¼ 15, 20 and 25 min) and [Hg(II)] were established in the range of 1.0 to 30.0 � 10�6 M. The detection

limit was found to be 1.5 � 10�7 M of Hg(II). The effect of various foreign ions on the proposed method

was also studied and discussed. The method was applied for the determination of Hg(II) in different

wastewater samples. The present method is simple, rapid and sensitive for the determination of Hg(II) in

trace amount in the environmental samples.
1. Introduction

Mercury (Hg) occurs naturally in the earth's crust.1 Its concen-
tration increases in the environment and water bodies due to
the natural processes but mostly accelerated by the anthropo-
genic activities from pesticides, paints, batteries, industrial
waste and land application of industrial or domestic sludge.1,2

Thus, it gradually concentrates and moves away through the
surface run-off transporting to the aquatic systems as rivers,
lakes, seas and oceans.2,3 Antagonistically to the organic
contaminants, heavy metals such as Hg does not undergo
microbial or chemical degradation and thus persist for a long
time in the environment.3,4 Therefore, heavy metals including
Hg are the most hazardous pollutants to the environment
because of the rapid industrialization and urbanization.4 Thus,
there has been continuous considerable emphasis on the Hg
analysis in different type of samples.5 Among the various heavy
metals, particularly Hg has been listed as a priority pollutant by
the international environmental and health agencies because of
its persistence, bioaccumulation and toxicity (PBT) in the
environment.6 It not only causes serious health problems but
also poses a great challenge to the environmental protection.7,8
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Among other pollutants, Hg is of major concern in aquatic
environments. Thus, Hg is considered as a global and recalci-
trant pollutant due to its biogeochemical properties and its
toxicity that can affect the health of human and ecosystems.4

Though metallic Hg is an insoluble element, it is easily
oxidized to the soluble ionic form Hg2+ in the freshwater
reservoirs and constitute a serious threat through the process of
biomagnication.9,10 Thus, mercury is of major concern in
aquatic environments.11 The consumption of contaminated
sh, sea mammals and ground water are the prominent envi-
ronmental sources of Hg exposure in humans.11,12 It forms quite
stable complexes with sulydryl (–SH) groups in the human
body forming mercaptides having mobility through the
tissues,13 which lead to the inactivation of numerous enzyme
reactions, amino acids and sulfur containing antioxidants such
as N-acetyl cysteine (NAC), alpha-lipoic acid (ALA), and gluta-
thione (GSH) and makes it quite toxic to the human being (cf.
following general reaction).14

2R–SH + Hg2+ / (R–S)2Hg + 2H+

The accumulation of Hg in the body is associated with
hazardous health effects, such as gastrointestinal and nervous
system disorders, respiratory and acute renal failures, hyper-
tension, coronary heart disease (CHD), and cardiovascular
disease (CVD).15 Thus, even a small amount of Hg can have
adverse effects on the human health.16 One of the most stable
forms of Hg is the highly toxic, water-soluble, divalent mercuric
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 UV-visible absorption spectra of reactants and products under
the conditions: (A) [Pz] ¼ 2.5 � 10�6 M, (B) [Ru(CN)6

4�] ¼ 1.25 �
10�5 M, (C) product [Ru(CN)5Pz

3�] formed bymixing [Ru(CN)6
4�]¼ 5.0

� 10�5 M, [Pz] ¼ 7.5 � 10�4 M, [Hg(II)] ¼ 1.5 � 10�4 M, I ¼ 0.05 M (KCl),
pH ¼ 4.00 � 0.02 and temp. ¼ 45.0 � 0.1 �C, (D) [Hg(II)] ¼ 1.0 �
10�4 M.
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ion (Hg2+), which is widely distributed in soil, air and aquatic
environments as a result of illegal waste release from various
anthropogenic and industrial activities. Hg2+ can cause serious
environmental pollution and result in permanent damage to
the biological organisms due to its acute and/or chronic
toxicity.17 Thus, the health and environmental issues associated
with Hg2+ has stimulated researchers to develop inexpensive,
effective and reliable methods for the detection and determi-
nation of Hg2+ sensitively and selectively.5,7,8,17,18

Attempts have been made to determine Hg in the environ-
mental,18 geological,19 food20,21 and biomedical22,23 samples.
Majority of the analytical methods proposed for the determi-
nation of Hg are based on the sophisticated techniques viz. cold
vapor atomic absorption spectrometry (CV-AAS),23–25 inductively
coupled plasma mass spectrometry (ICP-MS),26,27 atomic uo-
rescence spectrometry (AFS),28,29 anodic stripping voltammetry
(ASV),30–32 high performance liquid chromatography (HPLC),33,34

etc. All these techniques require expensive instrumentation,
pre-concentration for the enrichment of analyte and its sepa-
ration from the other constituents of the sample to minimize
the matrix effect prior to their application. In addition, skilled
operators, high cost, long time for running per sample, etc.,
have been other disadvantages. To overcome these problems,
attempts have been made to develop analytical methods based
on the kinetics and catalysis,5,18,35–38 formation of colored
complexes of Hg(II) with other compounds,39,40 etc.We have also
been interested in developing analytical methods for the
determination as well as removal of various analytes and toxic
species of environmental, biological and medicinal
interest.5,18,35–38,41,42 Keeping the above explained backgrounds in
mind, in the present communication, a successful attempt has
been made to develop a novel, simple and precise catalytic
kinetic method (CKM) for the trace level determination of Hg(II)
in the aqueous samples which is based on the Hg(II) catalyzed
substitution of (CN�) in the [Ru(CN)6]

4� by pyrazine (Pz). The
kinetics and mechanism of this reaction has already been re-
ported by us43 and has now been exploited as an indicator
reaction system for the CKM in the determination of Hg(II). The
developed CKM has successfully been utilized for the determi-
nation of Hg(II) in the wastewater samples.

2. Experimental
2.1 Reagents and instrumentation

All the reagents used were of analytical grade and deionized
distilled water (DDW) was used throughout the study for prep-
aration of all the solutions. The stock solutions (1.0 � 10�2 M)
of K4[Ru(CN)6]$3H2O, Pz and HgCl2 were prepared by dissolving
their appropriate amounts in DDW. K4[Ru(CN)6]$3H2O solution
was kept in a dark amber colour volumetric ask to prevent its
photodecomposition. The working solutions of these reagents
were prepared by their appropriate dilution from the respective
stock solutions as required. Potassium hydrogen phthalate
(PHP)–HCl buffer of pH 4.00 � 0.02 was prepared according to
the literature reported method.44

Kinetic measurements and recording of various spectral
scans were carried out in 10 mmmatched quartz cuvettes using
This journal is © The Royal Society of Chemistry 2020
a Shimadzu UV-240 double beam spectrophotometer equipped
with a self-designed thermostatic cell compartment. A remi
ultra-cryostat was used to maintain the temperature of the
reaction system. All the pH measurements were made on
a Toshniwal digital pH meter model CL46. A certied ‘A’ grade
volumetric apparatus were used throughout the work.
2.2 Procedure

All the required solutions were rst placed in the thermostat
maintained at 45.0 � 0.1 �C for 30 min prior to their use to
attain thermal equilibrium. 2.0 mL each of the solutions of Pz,
buffer, HgCl2 and K4[Ru(CN)6] was pipetted out and mixed in
a 10 mL volumetric ask, which was also placed in the same
thermostat, shaken quickly and transferred immediately into
a 10 mm spectrophotometric cuvette placed in the cell
compartment of the spectrophotometer at 45.0 � 0.1 �C. The
progress of the reaction was monitored spectrophotometrically
by measuring the increase in absorbance due to the formation
of the product [Ru(CN)5Pz]

3� at its lmax of 370 nm. A xed time
procedure was used to record the absorbance as a function of
the concentration of Hg(II).The cuvettes were cleaned with
acetone aer few kinetic runs in order to remove the deposited
intense yellow-colored [Ru(CN)5Pz]

3� complex.
3. Results & discussion
3.1 The indicator reaction

The detailed kinetics and mechanism of Hg(II) catalyzed
substitution of CN� in the [Ru(CN)6]

4� by Pz have been studied
RSC Adv., 2020, 10, 25100–25106 | 25101
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and reported by us earlier.43 The reaction product, [Ru(CN)5-
Pz]3� complex has strong absorption band at 370 nm and molar
extinction coefficient 3 ¼ 4.2 � 103 M�1 s�1. The UV-visible
spectra of the reactants and the product shown in Fig. 1
clearly shows no interference between the absorbance of the
product and reactants i.e. [Ru(CN)6]

4� and Pz. Hence, the
progress of the reaction was easily followed spectrophotomet-
rically by measuring the increase in absorbance at 370 nm i.e.
lmax of [Ru(CN)5Pz]

3� without making any corrections for the
absorbance due to the reactants [Ru(CN)6]

4� and Pz.
3.2 The rate law and its analytical application

Based on the kinetic andmechanistic studies,43 the overall rate of
the indicator reaction comprises of the sum of the rate of the
uncatalyzed as well as catalyzed reactions and is given by eqn (1).

d
�
RuðCNÞ5Pz3�

�
dt

¼ k1

h
RuðCNÞ64�

i

þ
k2K

h
RuðCNÞ64�

i
½Hg2þ�½H2O�

1þK
h
RuðCNÞ64�

i (1)

If K[Ru(CN)6
4�] [ 1, eqn (1) reduces to eqn (2) as follows:

d
�
RuðCNÞ5Pz3�

�
dt

¼ k1

h
RuðCNÞ64�

i
þ k

0
2

�
Hg2þ

�
(2)

In eqn (2), rst term on the right hand side corresponds to
the rate of the uncatalyzed path and k

0
2 involves the rate

constant for the slow decomposition of the activated complex
(formed between [Ru(CN)6]

4�, Hg2+ and H2O) and some other
concentration terms.43 Eqn (2) clearly shows a direct correla-
tion between the rate of the indicator reaction and the
concentration of Hg(II) and envisages for the accurate deter-
mination of Hg(II). In the present study, the rate of the unca-
talyzed reaction is almost negligible. Thus, the catalytic kinetic
method (CKM) for the determination of Hg(II) based on the
[Ru(CN)6

4�]–Pz indicator reaction will be more accurate in
Table 1 Evaluation of percentage error in the determination of Hg(II) un
4.00 � 0.02, I ¼ 0.05 M (KCl), temp. ¼ 45.0 � 1.0 �C

[Hg2+] � 106 M
(taken)

A15 A20

[Hg2+] � 106 M (found)b � SDa Error (%) [Hg2+] � 106

1.00 0.94 � 0.08 �6.00 0.94 � 0.02
2.00 2.25 � 0.06 +12.50 2.00 � 0.06
3.00 3.00 � 0.08 0.00 3.05 � 0.02
4.00 4.02 � 0.02 +0.50 4.05 � 0.01
5.00 5.05 � 0.05 +1.00 5.05 � 0.02
10.00 10.00 � 0.07 0.00 10.05 � 0.06
15.00 15.25 � 0.02 +1.70 15.25 � 0.03
20.00 20.00 � 0.03 0.00 20.02 � 0.03
30.00 29.80 � 0.05 �0.67 29.50 � 0.04

a The �SD values represent the % relative standard deviation of the mean

25102 | RSC Adv., 2020, 10, 25100–25106
comparison to the other CKM involving the [Fe(CN)6
4�] –

ligand indicator reactions.35–38

The increase in absorbance (At) at different time t (t ¼ 15, 20
and 25 min) aer mixing the reactants was recorded as
a measure of the initial rate under the optimized reaction
condition as 5.0 � 10�5 M [Ru(CN)5

4�], 7.5 � 10�4 M [Pz], pH
4.00� 0.02, ionic strength (I) 0.05 M (KCl) and temperature 45.0
� 0.1 �C,43 using xed time procedure. The calibration curves
were obtained by plotting the values of At against different Hg(II)
concentrations where the corresponding linear regression
equations correlating At to the [Hg(II)] obtained are shown in
eqn (3)–(5).

A15 ¼ 3.1 � 103[Hg2+] + 0.009 (3)

A20 ¼ 4.0 � 103[Hg2+] + 0.012 (4)

A25 ¼ 6.36 � 103[Hg2+] + 0.016 (5)

3.3 Quantitative determination of Hg(II)

In order to validate the analytical applicability of the proposed
CKM, recovery experiments were performed in various water
samples spiked with Hg(II) and the results obtained for the three
xed times along with the standard deviations and the
percentage errors are shown in Table 1. From Table 1, it is clear
that the calibration curve corresponding to the A15 is a closer
measure to the initial rate with the minimal percentage error as
compared to A20 and A25. Time less than 15 min and more than
25 min were not taken to minimize the experimental error.
Based on this observation, the A15 calibration curve is recom-
mended for the Hg(II) determination in the aqueous samples.

The detection limit (Xd), dened as three times standard
deviation of the blank, was evaluated using Tanaka's method45

using eqn (6), where Xb is the average of the blank values, (SD)b
is the standard deviation of blank and equal to R/d2, R is blank
kmax � blank kmin and 1/d2 is a factor for obtaining (SD)b from
the range R of n replicates whose value is recommended as
0.5908 for the use in three blank measurements.
der conditions: [Ru(CN)6
4�] ¼ 5.0 � 10�5 M, [Pz] ¼ 7.5 � 10�4 M, pH ¼

A25

M (found)b � SDa Error (%) [Hg2+] � 106 M (found)b � SDa Error (%)

�6.00 1.06 � 0.05 +6.00
0.00 1.88 � 0.03 +6.00

+1.67 3.06 � 0.06 +2.00
+0.80 4.06 � 0.05 +1.50
+1.00 5.03 � 0.09 +6.00
+0.50 10.05 � 0.06 +0.50
+1.70 15.13 � 0.04 +0.87
+0.10 20.25 � 0.04 +1.25
�1.70 30.25 � 0.02 +0.83

for three determinations. b Mean of three determinations.

This journal is © The Royal Society of Chemistry 2020
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Table 2 Effect of different foreign ions on the determination of Hg(II)
under the conditions: [Ru(CN)6

4�]¼ 5.0� 10�5 M, [Pz]¼ 7.5� 10�4 M,
[Hg2+] ¼ 4.0 � 10�6 M, pH ¼ 4.00 � 0.02, I ¼ 0.05 M (KCl), temp. ¼
45.0 � 1.0 �C

Foreign ion
[Foreign ion]
(added), M [Hg2+] (found), M Error (%) Inference

Mn2+ 2 � 10�4 4.1� 10�6 +2.50 No inference
Ni2+ 4 � 10�4 3.9 � 10�6 �2.50 No inference
Ag+ 8 � 10�4 4.0 � 10�6 0.00 No inference
Sn2+ 8 � 10�4 4.1 � 10�6 +2.50 No inference
Pb2+ 4 � 10�4 3.8 � 10�6 �5.00 No inference
Mg2+ 4 � 10�4 4.1 � 10�6 +2.50 No inference
Ca2+ 4 � 10�4 3.9 � 10�6 �2.50 No inference
Cd2+ 4 � 10�4 4.0 � 10�6 0.00 No inference
Cu2+ 8 � 10�4 3.8 � 10�6 �5.00 No inference
Al3+ 4 � 10�4 4.0 � 10�6 0.00 No inference
Fe3+ 8 � 10�4 3.9 � 10�6 �2.50 No inference
Li+ 8 � 10�5 1.2 � 10�6 �70.00 Interfered
Co2+ 2 � 10�5 1.6 � 10�6 �60.00 Interfered
Zn2+ 4 � 10�5 1.9 � 10�6 �52.50 Interfered
Br� 4 � 10�4 4.1 � 10�6 +2.50 No inference
I� 8 � 10�4 3.9 � 10�6 �2.50 No inference
NO3

� 8 � 10�4 4.0 � 10�6 0.00 No inference
CO3

2� 8 � 10�4 3.9 � 10�6 �2.50 No inference
C2O4

2� 4 � 10�4 4.0 � 10�6 0.00 No inference
SO4

2� 4 � 10�4 4.1 � 10�6 +2.50 No inference
NTA 2 � 10�4 2.4 � 10�6 �40.00 Interfered
IDA 2 � 10�4 2.2 � 10�6 �45.00 Interfered
EDTA 2 � 10�4 1.9 � 10�6 �52.50 Interfered
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Xd ¼ Xb þ t
ffiffiffi
2

p
ðSDÞb (6)

The detection limit for the present method corresponding to
the A15 calibration curve under the optimized experimental
conditions was found to be 1.5 � 10�7 M.
3.4 Interference study

The general precision and accuracy for the determination of
Hg(II) by the proposed CKMwas tested in the presence of several
cations, anions and complexing agents. For this purpose, the
Table 3 Determination of Hg(II) in synthetic mixtures under optimized r
[Hg2+] ¼ 4.0 � 10�6 M, pH ¼ 4.00 � 0.02, I ¼ 0.05 M (KCl), temp. ¼ 45
method

Synthetic mixtures (SM)
Composition
of SM (ng mL�1)

[Hg2+] fou
(ng mL�1)

SM-1 Hg 1086.0 + Ca 4202.0 1086.2 �
Cu 5006.0 + Cd 4808.0

SM-2 Hg 1086.0 + Ag 1206.5 1085.9 �
Mg 4024.0 + Ni 1435.0

SM-3 Hg 1086.0 + Mn 3264.0 1086.6 �
Ba 2244.0 + Cr 206.0

SM-4 Hg 1086.0 + Pd 2206.5 1085.2 �
Al 1188.0 + Ag 608.0

SM-5 Hg 1086.0 + Ca 1224.0 1086.1 �
Mg 1108.0 + Fe 906.0

a The �SD values represent the % relative standard deviation of the mean

This journal is © The Royal Society of Chemistry 2020
recovery i.e. the determination of Hg(II) was performed using
a xed concentration of Hg(II), 4.0 � 10�6 M, in the presence of
different known concentrations of individual cations, anions
and complexing agents. The concentration of Hg(II) was deter-
mined using the A15 calibration eqn (3). The recovery results on
the determination of 4.0 � 10�6 M Hg(II) in the presence of
different individual cations, anions and complexing agents
along with their concentrations have been presented in Table 2.
Based on the results of Hg(II) recovered, it was conrmed that
Mn2+, Ni2+, Ag+, Sn2+, Pb2+, Mg2+, Ca2+, Cd2+, Cu2+, Al3+, Fe3+,
Br�, I�, NO3

�, CO3
2�, C2O4

2�, SO4
2� ions did not interfere in

the determination of Hg(II) but Li+, Co2+, Zn2+, NTA, IDA, EDTA
interfered signicantly at their concentrations reported in
Table 2. Metal hexacyanoferrates are very efficient sorbents for
the recovery of alkali metal ions and especially Li+, which leads
to the formation of the corresponding lithium hexacyanor-
uthenate(II) complex as its Fe(II) counterpart in the solution.46

Hence, a low recovery of Hg(II) is very much expected in the
presence of Li+ ions in the aqueous medium. The interference
by NTA, IDA, EDTA may be attributed to the possible ligand
substitution between the monodentate cyanide ligand in
[Ru(CN)6]

4� and the ligands viz. NTA, IDA, EDTA. Interference
by Co2+, Cu2+, Zn2+ is probably due to the complex formation
between these metal ions and [Ru(CN)6]

4� or Pz.

3.5 Validation and analytical application of CKM

In order to validate the proposed method, ve water spiked
synthetic mixtures (SMs) were prepared, which contained other
metal ions along with the catalyst Hg(II). This was followed by
the determination of Hg(II) in ve different synthetic mixtures
(SM-1 to SM-5) using the proposed CKM. The results were
further conrmed by atomic absorption spectrophotometry
(AAS), as shown in Table 3. The results obtained by CKM are in
close agreement with those determined by AAS (Table 3).

Aer validation, the method was successfully applied for the
determination of Hg(II) in the wastewater. For this, six waste-
water samples (WWS-1 to WWS-6) were collected from our
laboratory on different days and Hg(II) was determined using
the proposed CKM. The results obtained for different WWS are
eaction conditions: [Ru(CN)6
4�] ¼ 5.0 � 10�5 M, [Pz] ¼ 7.5 � 10�4 M,

.0 � 1.0 �C and its comparison atomic absorption spectrometry (AAS)

ndb � SDa by CKM
Recovery (%)

[Hg2+] foundb � SDa by
AAS (ng mL�1)

1.1 100.02 1086.1 � 4.3

1.2 99.99 1085.9 � 5.2

1.6 100.05 1086.1 � 3.6

1.8 99.93 1086.3 � 3.6

1.1 100.01 1085.9 � 5.5

for three determinations. b Mean of three determinations.

RSC Adv., 2020, 10, 25100–25106 | 25103
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Table 4 Determination of Hg(II) in wastewater samples (WWS) under optimized reaction conditions: [Ru(CN)6
4�] ¼ 5.0 � 10�5 M, [Pz] ¼ 7.5 �

10�4 M, pH ¼ 4.00 � 0.02, I ¼ 0.05 M (KCl), temp. ¼ 45.0 � 1.0 �C and its comparison with the (AAS) method

Wastewater sample
(WWS)

[Hg2+] foundb � SDa by CKM (ng
mL�1)

[Hg2+] foundb � SDa by AAS (ng
mL�1)

Error in CKM
versus AAS (%)

WWS-1 224.06 � 2.50 228.70 � 3.26 +2.07
WWS-2 329.64 � 4.35 331.65 � 2.35 +1.44
WWS-3 244.16 � 3.84 237.45 � 4.50 �2.75
WWS-4 402.25 � 4.36 408.24 � 3.45 +1.50
WWS-5 398.17 � 5.50 390.75 � 3.60 �1.86
WWS-6 389.07 � 5.50 407.08 � 4.60 +4.63

a The �SD values represent % relative standard deviation of the mean for three determinations. b Mean of three determinations.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 3
:1

2:
35

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
shown in Table 4. The results obtained by CKM were also vali-
dated by AAS and were in excellent agreement with those
determined by CKM (Table 3). The maximum error in the
proposed CKMwith respect to AAS is less than 5%, which is well
accepted in the environmental analysis.
4. Conclusions

Though there are many sophisticated methods available for the
Hg(II) determination but the present CKM based on the indicator
reaction between [Ru(CN)6]

4�–Pz offers a number of advantages
over them, such as the unanalyzed reaction rate is negligible
under specied reaction conditions and only 15 min is required
for the Hg(II) determination without using any costly solvents and
instruments. In addition, the method can be successfully applied
for the determination of Hg(II) in the presence of a number of
cations, anions and complexing agents with very good sensitivity.
In conclusion, the proposed CKM is quite sensitive, quick,
economical and superior to few known methods including
CKM.35–38 It can selectively be applied for the Hg(II) determination
at micro-level in environmental water samples.
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