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spiroannulation of 3-
arylquinoxalin-2(1H)-ones with alkynes: practical
access to spiroquinoxalinones†

Yuanfei Zhang, ab Ting Huang,a Xinghua Li,a Min Zhang, b Ying Song,a

Kelin Huang*c and Weiping Su *b

The Rh(III)-catalyzed synthesis of spiroquinoxalinone derivatives from 3-arylquinoxalin-2(1H)-ones and alkynes

via a C–H functionalization/[3 + 2] annulation sequence has been developed. This method, featuring low

catalyst loading, was amenable to Gram scale synthesis and tolerated a variety of functional groups and

substitution patterns on the aryl rings, providing the target products in good to excellent yields.
Introduction

Quinoxalinone derivatives are privileged structural motifs
found to have a broad spectrum of biological activities and
among them spiro-1,20-quinoxalin-30-ones are of particular
importance (Fig. 1).1,2 A handful of rst-in-class entities with
spiroquinoxalinone scaffolds have been employed as potential
antibacterial and antiviral reagents.2a–c They are also drug
candidates for preventing aging2d and inhibiting BET proteins
to treat cancers.2e Conventionally, two approaches for the
synthesis of spiroquinoxalinones are available: one is the
nucleophilic aromatic substitution reaction of ortho-uoro
substituted nitrobenzenes with cyclic amino acids followed by
reductive cyclization amide bond formation;2 the other is the
use of aryl 1,2-diamines as substrates via Bargellini reaction.3

However, these procedures are either of poor atom and step
economy or lack of regioselectivity, and therefore the develop-
ment of methods providing practical access to complex spi-
roquinoxalinone frameworks that are otherwise difficult to be
prepared by the established routes would be highly desirable.

On the other hand, transition metal catalyzed functionaliza-
tion of C–H bond has been proved to be a practical tool for the
construction and modication of valuable molecules with high
efficiency and regioselectivity.4 In this regard, the development of
tandem C–H functionalization/[3 + 2] annulation reactions are of
intense interest to the synthetic communities especially for the
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synthesis of N-containing spirocycles, and considerable prog-
resses have been made.5 Such [3 + 2] annulation processes mainly
stem from the pioneer works of Takai, Zhao, Cramer and others
who respectively employed Re(I),6a,b Ru(II)6c and Rh(I)6d,e as the
catalyst and ketimines as the directing groups to effect the cas-
cade.6f–i In 2013, Nishimura and co-workers successfully extended
the [3 + 2] annulation prototype to access spirocyclic sultams via
Ir(I)-catalysis (Scheme 1a).7a Since then, a number of transition
metal catalyzed C–H metalation followed by nucleophilic inser-
tion cyclization of cyclic N-sulfonyl ketimines with alkynes or
activated olens for the construction of spirocyclic sultam cores
have been successively reported.7b–f In addition, cyclic ketimines
activated by electron-withdrawing groups are available to the [3 +
2] spirocyclization reactions as well (Scheme 1b).8Duo to the weak
nucleophilicity of cyclometalation intermediates generated from
C–H activation, activated cyclic ketimines are commonly used to
facilitate the intramolecular nucleophilic insertion, and spiro-
cycles bearing cyclic amides on the other rings are generally
formed. Taking into account that spirocycles tethered by cyclic
amines are also of signicant importance,2 it would be tremen-
dously valuable yet challenging to uncover transition metal cata-
lyzed [3 + 2] spiroannulation reactions in which imines are able to
Fig. 1 Selected examples of bioactive spiroquinoxalinones.

This journal is © The Royal Society of Chemistry 2020
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Table 1 Optimization of the reaction conditionsa

Entry AgSbF6 (mol%) Solvent Additive Yieldb (%)

1 4 DCE — <10
2 4 Dioxane — <10
3 4 CH3CN — 62
4c 4 CH3CN PivOH 86
5 5 CH3CN PivOH 91
6 6 CH3CN PivOH 97
7 0 CH3CN PivOH 0
8c 3 CH3CN PivOH 76
9d 1.5 CH3CN PivOH 60
10c,e 3 CH3CN PivOH 78
11d,e 1.5 CH3CN PivOH 65
12f 6 CH3CN PivOH 0

a Reaction conditions: 1a (0.2 mmol), 2a (0.22 mmol), [Cp*RhCl2]2
(1 mol%), AgSbF6 (4 mol%), additive (1 equiv.), 2 mL of solvent,
100 �C, 24 h. b Isolated yields. c 0.5 mmol scale, 0.5 mol% of
[Cp*RhCl2]2 was used. d 0.5 mmol scale, 0.25 mol% of [Cp*RhCl2]2
was used. e The reaction ran at 120 �C for 24 h. f In the absence of

Scheme 1 Synthesis of spirocycles from activated cyclic imines.7,8 (a)
Cyclic N-sulfonylketimine. (b) N‑Acyl ketimines.
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participate with concomitant formation of amine rings.9 Herein,
we describe a new approach to the synthesis of spiro-1,20-qui-
noxalin-30-ones via the Rh(III) catalyzed C–H activation/[3 + 2]
annulation reactions utilizing imine to trap the cyclorhodation
species via a nucleophilic insertion. With only 1 mol%
[Cp*RhCl2]2 as the catalyst, we have accomplished the spi-
roannulation reactions, which was amenable on Gram-scale, of 3-
phenylquinoxalinones with alkynes. This protocol is compatible
with a broad variety of functional groups and furnishes the
desired products in good to excellent yields.
[Cp*RhCl2]2.

Table 2 Substrate scope of quinoxalinonesa
Results and discussion
Reaction development

Having the assumption of achieving spiroannulation reactions of
cyclic imines in mind, the reaction of 1-methyl-3-phenyl-
quinoxalin-2(1H)-one (1a)10 and 1,2-diphenylethyne (2a) catalyzed
by Rh(III) was selected to verify our hypothesis. Initially, we
investigated the effect of solvents on the reaction outcomes using
1 mol% [Cp*RhCl2]2 in combination of 4 mol% AgSbF6 as the
catalytic system, and gratifyingly obtained the target product with
62% isolated yield when conducted in acetonitrile (Table 1, entry
3). Other solvents, such as DCE, dioxane etc., were inferior (Table
1, entries 1 and 2, see ESI† for more details). Intrigued by those
primary results, PivOH was added to the reaction system as
additive considering that PivOH might accelerate the C–H acti-
vation process and therefore increase the overall yield.2d,11 As ex-
pected, the introduction of one equivalent of PivOH resulted in
the improvement of the yield to 86% (Table 1, entry 4). Other
proton sources, such as phenol, MsOH and TFA are inferior (see
ESI† for more details). The amount of AgSbF6 impacted the
transformation dramatically, which did not take place without the
addition of AgSbF6 and 6 mol% turned out to be the best
furnishing the product in 97% yield (Table 1, entries 5–7).
Lowering the catalyst loading to 0.5 mol% and 0.25 mol%
decreased the yield even with elevated reaction temperature
(Table 1, entries 8–11). Control experiment showed that
[Cp*RhCl2]2 was indispensable for the reaction (Table 1, entry 12).
a Reaction conditions: 1 (0.2 mmol), 2a (0.22 mmol), [Cp*RhCl2]2
(1 mol%), AgSbF6 (6 mol%), PivOH (1 equiv.), CH3CN (2 mL), 100 �C,
24 h. Isolated yields. b [Cp*RhCl2]2 (2 mol%) and AgSbF6 (12 mol%)
were used.
Substrate scope

With the optimized reaction conditions established, 3-phenyl-
quinoxalinones with different substituents or substitution
patterns on the aryl rings were used to evaluate the substrate
This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 22216–22221 | 22217
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Table 3 Substrate scope of alkynesa

a Reaction conditions: 1 (0.2 mmol), 2 (0.22 mmol), [Cp*RhCl2]2
(1 mol%), AgSbF6 (6 mol%), PivOH (1 equiv.), CH3CN (2 mL), 100 �C,
24 h. Isolated yields. b Major isomer.

Scheme 3 Primary mechanistic observations. aH/D exchange
experiments. bCompetition between quinoxalin-2(1H)-ones 1. cCompetition
between alkynes 2. dDetermined by NMR. eNMR yield using 1,3,5-trime-
thoxybenzene as the internal standard.
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scope of the reaction. As depicted in Table 2, methyl, isopropyl
and methoxyl-substituted quinoxalinones as well as 3-
(naphthalen-2-yl)quinoxalinone were all suitable substrates for
the transformation and the desired products were generally
obtained with satisfying yields (3b–3f). The reaction preferred to
occur at the less hindered site since 3c and 3f were exclusively
formed. The reaction was also compatible with chloro, bromo
and electron-withdrawing substituents, such as triuoromethyl,
nitrile and ester groups, and delivered the corresponding
products in good yields (3g–3k). The structure of 3g was
unambiguously determined by X-ray diffraction analysis.12 3-
Phenylquinoxalinones bearing ester and cyclopropyl groups on
the amide moiety could be easily transformed into the target
products with yields of 89% and 92% respectively (3l and 3m).
Methyl, uoro and chloro substituents on the quinoxalinone
rings did not affect the reaction much (3n–3p). Conversion of 3-
phenyl-2H-benzo[b][1,4]oxazin-2-one to the spirocyclization
Scheme 2 Gram scale synthesis and product derivations. (a) Gram
scale synthesis of 3a and 3h. (b) Derivations of 3h.

22218 | RSC Adv., 2020, 10, 22216–22221
product was achieved as well (3q). The reaction conditions are
generally compatible with electron-donating and electron-
withdrawing substituents on both aryl rings, and electron-
donating groups tend to lower the reaction yields. Further-
more, because of the coordination of nitrile group to the active
Rh centre impeded the catalytic cycle, only 30% yield of 3j was
obtained when 1 mol% of [Cp*RhCl2]2 was used.

Subsequently, we investigated the substrate scope with
respect to the internal alkynes (Table 3). Symmetrical alkynes
having both electron-donating and electron-withdrawing
groups on the aryl rings reacted smoothly with 1a, giving
yields ranging from 71% to 97% (4a–4h). The chloro and bromo
substitutes within 4e and 4f provide the possibility for further
derivations. 1,2-Di(thiophen-2-yl)ethyne was found to be able to
participate in the reaction even if Rh(III) catalyst has been re-
ported by several research groups to activate the a-position of
thiophenes (4i).13 Similarly, other kind of symmetrical alkynes
were appropriate reaction partners too (4j–4k). Under the opti-
mized conditions, prop-1-yn-1-ylbenzene, an unsymmetrical
alkyne, afforded two separable isomers in excellent yield with
moderate selectivity (4l). Although both symmetrical and
unsymmetrical internal alkynes are suitable substrates,
terminal alkynes, such as phenylacetylene and ethyl propiolate,
failed to deliver the desired products.
Synthetic utilities

To demonstrate the synthetic utility of the transformation, the
reactions of 1a and 1h with 2a were then conducted on Gram
scale using the standard reaction conditions and satisfying
yields, namely 95% and 68%, were acquired (Scheme 2a).
Moreover, subsequent conversions of the spirocyclic products
were viable. For example, 3h could undergo Suzuki-coupling
This journal is © The Royal Society of Chemistry 2020
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Scheme 4 Plausible mechanism for the Rh(III)-catalyzed spi-
roquinoxalinone synthesis.
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with phenylboronic acid yielding the biaryl product (4m) with
high efficiency (Scheme 2b). The reduction of amide group in 3h
with DIBAL-H at 0 �C was realized bringing about spirote-
trahydroquinoxaline derivative 4n in 87% yield.

Mechanistic studies

To gain insights into the reaction mechanism, an H/D exchange
experiment was rstly carried out. Interestingly, we observed 34%
of H/D exchange upon the addition of PivOH, which is in sharp
contrast to the result when PivOH was absent (Scheme 3a). This
phenomenon indicates that PivOH might help to accelerate the
chelation-directed C–H activation process.2d,11 Intermolecular
competition experiment between 1b and 1i disclosed that the
electron-rich quinoxalinones were more reactive, suggesting
a PivOH-assisted electrophilic substitution mechanism for C–H
cyclorhodation (Scheme 3b).14 Additional competition experiment
with regard to alkynes revealed that the reaction favored to
convert electron-rich alkynes to spirocyclic product (Scheme 3c),
which can be explained by a kinetic coordination of alkyne to
metal center and is consistent with the previous reports on Rh(III)-
catalyzed annulation reactions.7e,14a,15

Proposed reaction mechanism

Based on the observations and considerations above, a plau-
sible mechanism was proposed and depicted in Scheme 4.
Cationic rhodium A coordinated with quinoxalinone 1 followed
by the electrophilic substitution of rhodium to the aryl ring to
generate rhodacycle B with the assistance of PivO�. Subse-
quently, a seven-membered metallacycle complex C came into
being via the insertion of alkyne, and intramolecular addition of
nucleophilic Rh–C bond to imine within C simultaneously
occurred affording intermediate D. On protonation by PivOH,
the spirocyclic products 3 were formed with the concomitant
releasing of the Rh(III) catalyst. PivOH acted as proton shuttle in
the catalytic cycle thus beneted the overall yield.11b

Conclusions

In conclusion, we have devised a practical access to spi-
roquinoxalinone derivatives from cyclic imines and alkynes via
This journal is © The Royal Society of Chemistry 2020
a tandem Rh(III)-catalyzed C–H functionalization/[3 + 2] annu-
lation sequence. By employing only 1 mol% of Rh(III) catalyst,
spiroquinoxalinones bearing a broad range of functional
groups and substitution types could be efficiently synthesized
on Gram scale with good to excellent yields. Key mechanistic
ndings illustrated the reason why PivOH was of benecial
effect on the reaction yield. Further studies on the annulation
reaction of unactivated cyclic imines affording complex mole-
cules of important biological applications are in progress.
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