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As a critical enzyme for the uric acid production, xanthine oxidase (XO) has emerged as a primary drug
target for antihyperuricemic therapy. A hierarchical virtual screening integrating both ligand-based and
structure-based approaches was applied herein to identify potent XO inhibitors. Four compounds, which
were previously reported as XO inhibitors, were recognized through the virtual screening protocol, and
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Accepted 17th July 2020 compound H3, which is distinct from the structures of known XO inhibitors, was identified as a new

chemotype inhibitor with ICsq of 2.6 uM. The binding mode of H3 was further investigated by molecular
DOI-10.1039/d0ra031439 docking and molecular dynamics (MD) simulation. The results suggested the feasibility to discover new
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Introduction

Gout is a heterogeneous disease characterized by hyperuricemia
and deposition of monosodium urate (MSU) crystals in joints
and soft tissues. The main goal for the management of gout is to
normalize the serum uric acid (SUA) level so as to prevent the
formation of MSU crystals."” According to the guidelines by the
European League Against Rheumatism (EULAR), a target SUA
level of less than 6 mg dL ' is recommended and for those with
severe gout, an even stricter requirement of less than 5 mg dL ™"
is suggested.® In addition to its close association with gout,
hyperuricemia may also contribute to the pathogenesis of
a series of other metabolic disorders."* Therefore, maintaining
an SUA level below the required threshold is critical for
handling hyperuricemia-related health problems. As a result,
urate-lowering therapies (ULT) to either reduce the production
or increase the excretion of uric acid have been actively pursued
in the recent decades.*®

As a vital enzyme for uric acid production, xanthine oxidase
(XO) has been regarded as a primary target for ULT and XO
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inhibitors have been used as the first-line anti-hyperuricemia
drugs in clinic.*® Currently, only three XO inhibitors, allopu-
rinol, febuxostat and topiroxostat, are clinically available, yet
their therapeutic uses are hampered by their adverse effects.*®
The purine derivative allopurinol is the first XO inhibitor
approved by FDA and has been globally prescribed for the
treatment of gout and hyperuricemia since 1966. However,
adverse drug hypersensitivity reactions related to allopurinol
have been a major concern for its therapeutic use, especially the
occurrence of rare yet life-threatening serious cutaneous
adverse events (SCARs).’ Febuxostat is a non-purine XO
inhibitor more potent and safer than allopurinol. As an alter-
native to allopurinol, it has been widely used for allopurinol-
intolerant patients and asymptomatic hyperuricemia.
However, adverse effects, including hypersensitivity reactions,
a higher incidence of hepatotoxicity and higher cardiovascular
risks, have also been reported for febuxostat.'>** In particular,
due to increased mortality risks and heart-related deaths, US
FDA has required a “black box” warning for febuxostat since
2019. Another non-purine XO inhibitor, topiroxostat, was
approved exclusively in Japan in 2013. Because of its short
duration and confined clinical application, the adverse effects
of topiroxostat are still to be fully explored.® Obviously, there are
still unmet clinical needs for effective and safe treatment of
hyperuricemia and gout. Therefore, intense efforts have been
devoted to the search for novel therapeutic agents targeting XO,
the primary enzyme responsible for uric acid production.*¢
To identify new chemotypes of XO inhibitors, a hierarchical
virtual screening integrating both ligand-based and structure-
based approaches was reported herein and when applied to
a commercially available chemical database, potent non-purine
XO inhibitors were successfully recognized. Briefly, a predictive
3D-QSAR pharmacophore model was initially generated based
on non-purine XO inhibitors collected from the literature. After
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rigorous validation, the model was subsequently combined with
2D-fingerprint similarity and molecular docking to screen the
Specs chemical database. Notably, not only known XO inhibi-
tors were effectively identified from the database, but also
a potent XO inhibitor with a scaffold distinct from reported XO
inhibitors was discovered.

Results and discussion
Analysis of XO inhibitors

Eighty-nine structurally diverse non-purine XO inhibitors with
ICs, values ranging from 0.02 nM to 32 pM were gathered from
the literature.””** The diversity sampling method described
previously were utilized to rationally divide the dataset into
training and test sets.>® Accordingly, a training set of twenty-six
compounds was generated, and the remaining sixty-three
compounds were classified into a test set. Each molecule in
the whole data set was then plotted as a discrete point in a three-
dimensional space by PCA (Fig. 1). It was observed that the
training set adequately and evenly covers the chemical space
occupied by the entire dataset, which supports the appropriate
representativeness of the training set. The chemical structures
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and activity data of the training set molecules are listed in Fig. 2,
and structures (Fig. S11) and activities (Table S17) of the test set
molecules are provided in the ESL

Generation of predictive pharmacophore models

For the above training set selected, ten hypotheses were generated
by the HypoGen algorithm.”” As shown in Table 1, all the ten
models recognized the same four features, including three
hydrogen bond acceptors (A) and one hydrophobic center (Y), yet
the number of excluded volumes (E) in each model varied from
zero to five. According to the statistical parameters of cost differ-
ence, correlation square and RMS value, Hypo 1 was chosen as
a representative model for further validation and application. The
composition of Hypo 1 as well as the distances between pharma-
cophoric features in Hypo 1 are illustrated in Fig. 3.

Validation of Hypo 1

The validity of Hypo 1 was initially evaluated by the statistical
parameters shown in Table 1. The parameters, including
a configuration cost under 17, a cost difference with the confi-
dence level higher than 90%, a total cost close to the fixed cost
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Fig. 1 The 3D space coverage of the training and test set compounds
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illustrated by principal components analysis.
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yet significantly different from the null cost value, an RMS value
lower than 1.2 and a correlation square value as high as 0.86,
reflected the reliability and predictive capability of Hypo 1.

crystallized

COOH COOH COOH

o Wo@ Y©*

2

CI
1.1Csp = 0.02 "M 2.1Csp = 0.32 nM 3.1Csp = 0.38 nM
N/ ]
COOH COOH
3 s&
S
o N
N\/\O
cl
5. 1Csp = 0.7 M 6. 1Csp = 0.94 nM 7.1Cs0=2.2nM
Q
COOH N7 |
S S
\J\>\ NC " CooH i\
N N
N
HOOC o) —
CN
9.1C5=3.2nM 10.1C50 = 4.2 1M 11.1C5 = 5.7 nM
o /I o/ o [/
0] (0] o]
S = S
" D—CF, N A
N N
O*NO\N
CN
13.1C50 =6 nM 14.1C5p = 6.2 1M 15.1Cgo = 7 nM

o)
17.1Cs0 = 10 nM 18.1C50 = 10 M 19. ICsp = 24 nM
s)_ N
-N — HN-~
NN~ HNT N / N
- \ /N y =N \
N
7 ) |
Nx N
N CN
21. 1Csp = 37 M 22.1C5) =53 M 23.1Csp = 160 NM
o—
F3C

o“

25. 1C50 =29.2 uM 26. IC50 = 31.64 uM

structures

COOH

N7 H NC
] N
X
Ne " cooH O>\<N‘N /J FaC N 1
4
FaC —0 N’J ~° = 7/
o

Hypo 1 was then validated by mapping with the co-
of febuxostat and
(Fig. S21t), as well as a series of potent non-purine XO inhibitors

8.1Cs0 = 2.4 nM

COOH

SN

oo

(@)

12.1Cs0 = 6 "M

16.1C50 = 9.3 nM

[ )
OZNKJ/kN N
cl

20. IC5 = 30 nM

\__o Nﬁ

\

24.ICsg = 3.94 M

Fig. 2 Chemical structures and inhibitory activities against XO of the twenty-six compounds in the training set.
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Table 1 Results of the ten pharmacophore models
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Correlation Maximum

Hypo no. Features” Total cost Fixed cost Null cost Cost diff.” Conf. cost square (%) RMS fit

1 AAAYE; 119.69 101.35 198.81 79.12 12.77 0.86 1.09 10.93
2 AAAYE, 128.26 101.35 198.81 70.55 12.77 0.78 1.39 10.35
3 AAAYE 129.96 101.35 198.81 68.84 12.77 0.75 1.46 9.55
4 AAAYE; 131.94 101.35 198.81 66.87 12.77 0.73 1.53 9.02
5 AAAYE 132.68 101.35 198.81 66.13 12.77 0.73 1.53 9.51
6 AAAYE, 134.23 101.35 198.81 64.58 12.77 0.72 1.55 10.08
7 AAAY 135.23 101.35 198.81 63.58 12.77 0.70 1.60 9.12
8 AAAYE; 135.42 101.35 198.81 63.39 12.77 0.71 1.59 9.88
9 AAAYE, 135.48 101.35 198.81 63.33 12.77 0.73 1.53 11.30
10 AAAYE, 136.82 101.35 198.81 62.00 12.77 0.69 1.63 9.47

“ A: hydrogen-bond acceptor; Y: hydrophobic or hydrophobic aromatic center; E: excluded volume. ? Cost diff. = Null cost — Total cost. All cost units

are in bits.

with diverse scaffolds (Fig. S31). All the four pharmacophoric
features in Hypo 1 could match perfectly well with all the
inhibitor structures investigated. In particular, the atoms/
groups identified by Hypo 1 in febuxostat and topiroxostat
were in good consistency with the key interactions revealed by
the co-crystal structures. These observations further supported
the soundness of Hypo 1.

Both internal and external predictive capabilities of Hypo 1
were subsequently checked. As plotted in Fig. 4, the predictive
R® for the training and test sets were 0.86 and 0.85, respectively,
and most of the compounds were confined to the one log unit
error range. The discriminative power of Hypo 1 to differentiate
the activity subsets was further examined. For the training set,
Hypo 1 could generally classify the molecules in the right subset
(Fig. 4A). When applied to the test set (Fig. 4B), molecules in the
least active subset could generally be correctly categorized.
However, several compounds in the most active subset were
underestimated, and for the moderately active subset, which
has a relatively narrow activity scope, a portion of the subset was
mis-grouped to either the most or the least active subset.
Considering the relatively rough resolution of a pharmacophore
model, it might be unrealistic to expect Hypo 1 to precisely
discern the boundary between the subsets, especially when
minor structural differences could result in apparent activity

variances. Therefore, it is imperative to combine Hypo 1 with
complementary methods such as molecular docking to improve
the discriminative power.

Randomization test was also performed to check whether
Hypo 1 was derived from chance correlation,> and thirty
random pharmacophore models were generated accordingly. As
shown in Fig. 5, the total cost values of the thirty random
models were obviously higher than that of Hypo 1, and thus
indicated the statistical reliability of Hypo 1.

A decoy set with 1500 compounds was constructed. Among
them, one hundred compounds were collected from the litera-
ture, including sixty active non-purine XO inhibitors and forty
inactive similar structures,”->*?*%* and 1400 presumably inac-
tive compounds were taken from ACD-3D database. This decoy
set was applied to inspect the capability of Hypo 1 to distinguish
the active from inactive ones, and the enrichment rate (EF) as
well as the hit rate (HR) at various screening percentage were
calculated to assess the model. The red line in Fig. 6A illustrated
that fifty-six active compounds were identified in the top 10% of
the decoy set with a 93.3% hit rate. The blue line indicated that
all the sixty active compounds were identified from the top 17%
screened decoy set (255 compounds). When the percentages of
the data set screened were set to 2% and 5%, twenty-five and
forty-seven active compounds were recognized, respectively

Fig. 3 The representative model Hypo 1 with the distances between pharmacophoric features.
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Fig.4 Theinternal (A) and external (B) prediction by Hypol. The ICsq values are represented in uM and the dotted lines represent the one log unit
error margin. The red, blue and green points represent subsets of the most active (ICsq < 0.01 uM), the moderately active (0.01 uM = IC50 = 0.1

uM) and the least active (ICsg > 0.1 uM), respectively.
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Fig. 5 The total cost values of Hypo 1 and random pharmacophore
models.

(representing as grey dashed lines). Therefore, for screened
percentages of 2%, 5% and 10%, the EF values reached 20.8,
15.7 and 9.3, which are close to the corresponding theoretical
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values of 50, 20 and 10. Under the same percentages, the HR
values were 41.7%, 78.3% and 93.3%, respectively. Moreover,
the true positive rate and the false positive rate were monitored
in the screening process, which were plotted as the ROC
(receiver operating characteristic) curve (Fig. 6B). The area
under the ROC curve (AUC) was determined as 0.948 for Hypo 1,
which demonstrated the excellent capability of Hypo 1 to clas-
sify the active and the inactive.

Interestingly, all of the most active compounds (with ICs,
values ranging from 0.01 nM to 0.1 uM) in the decoy set were
successfully recognized when only 10.3% of the decoy set was
screened. Under the same screening percentage, only two of the
five marginally active compounds (with ICs, values ranging
from 1 and 10 pM) were identified and the rest three could not
be discerned until the screening percentage increased to 17%.
Such observations indicated that the discriminative power of
Hypo 1 was relatively weaker when applied to the boundary
compounds, which was consistent with what was previously
noticed in the test set prediction.

1 AUC=0.948
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Fig. 6 Validation of Hypol by screening the decoy set. (A) Relationship between the number of hits and the number of screened compounds. (B)

The ROC curve derived from Hypo 1.
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Fig. 7 Flowchart for the hierarchical virtual screening with the threshold for each layer.

Virtual screening

A hierarchical virtual screening approach was applied to screen
the Specs database for potential XO inhibitors (Fig. 7). Firstly,
the database containing 184 922 compounds was filtered by
ADMET properties, the Lipinski and Veber rules successively.
The remaining compounds were subsequently subjected to
similarity search based on the highly active reference
compounds and Hypo 1 was then used to narrow the number of
compounds down to 3904. To further refine the screening
results, LibDock was carried out to rank the binding affinity of
the 3904 compounds with XO, and 390 compounds in the top
10% were kept. Post-docking optimization was subsequently
performed by CDOCKER. Ten scoring functions were evaluated
for their capability to distinguish the active from the inactive

(0]
HN I N
2
N N
ki=1.lpyM IC50=2.6p M

ones in the decoy set, and the five scoring functions performed
best were combined with the fit value based on Hypo 1 to form
the consensus score (please refer to Fig. S41), which was used to
select seventy-four compounds as potential hits for further
investigation.

Analysis of the 74 potential hits

The 74 potential hits identified from virtual screening were
classified into sixteen subgroups based on their core skeletons
(¢f Fig. S5T). Among them, some subgroups possess core scaf-
folds found in known XO inhibitors,**** and four compounds
are XO inhibitors reported previously (Fig. 8).***° The rest
subgroups were distinct from the structures of known XO

OH
HOO O

OH O

ICso=7p M

IC50 =24 H M

Fig. 8 Structures of the four known XO inhibitors identified by virtual screening.
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inhibitors, which might lead to the identification of new che-
motypes of XO inhibitors.

Biological evaluation

Six hits were then prioritized for biological evaluation against
X0, which were selected from subgroups either similar to or
distinct from known XO inhibitors. As shown in Table 2, three
of the six compounds showed a percentage inhibition above
50% at the tested concentration of 10 pM. The most potent
compound H3 (please refer to Fig. S6% for its structural char-
acterization) showed an ICs, value of 2.6 uM. It is worth noting

Table 2 The XO-inhibitory activities of the seven selected compounds

View Article Online

Paper

that though H3 is distinct from the structures of known XO
inhibitors and might represent for a new chemotype for XO
inhibitors, compounds bearing a thiobarbituric ring have been
previously identified as XO-URAT1 (urate-anion transporter 1)
dual inhibitors.”

Binding mode of H3

As shown in Fig. 9, molecular docking revealed that the key
interactions between H3 and XO were similar to that of
febuxostat (Fig. S2At). The 2-thiobarbituric acid moiety seemed
to have significant contribution to the inhibitory activity as it

Compound Structures Inhibition? (%) I1C50”
/—@COOH
o
s—
H1 0 78.7 —
OJ\,Y\\ (0] \
OH  HN N, ~
N
H2 29.4 —
ow/go S
N
HO
o
N o
H3 SYN 0 N 93.8 2.6 4+ 0.2 (M)
11
HN. A o\©\
e
g o)
COOH
N _
H4 N<y 62.9
FsC- /Ej
®o
0._0
O =
Hs o 173 .
N O
H
\
0
o 0]
H6 o. / = 27.2 -
o) S NH,
NJ\/N\(
H
F 0
COOH
L
NC S,
Febuxostat N 95.6 2.74 £ 0.18 (nM)
Y\O

“ The inhibitory activities of the compounds at the concentration of 10 uM. ? The ICs, values were calculated from three independent measures.
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Fig. 9 The binding mode of H3 at the active site of XO revealed by molecular docking.

could form = hydrophobic interactions with Phe914 and
Phe1009, as well as hydrogen bond interactions with Glu802,
Thr1010, which were the most important interactions in
febuxostat. Additional interaction between the sulfur atom in
the thiobarbituric moiety and Ala1079 was also observed.
Furthermore, the thiobarbituric ring of H3 protruded to the
molybdenum cofactor (S---O distance = 2.839 A), which implied
that H3 might have inhibitory mechanisms different from
febuxostat.

To explore the binding stability of compound H3 to the
active site of XO, the docking pose of H3 was used as the initial
structure for a 10 ns molecular dynamics (MD) simulation. The
root-mean-square deviation (RMSD) values for the backbone
atoms of the protein and the active site, as well as the heavy
atoms of the ligand H3 were plotted against the simulation
duration (Fig. 10). The backbone atoms include the carboxylic
C, Ca, and the amino N of the amino acids, and the active site
was defined by the residues within a distance of 6.5 A to the
centroid of the ligand. As illustrated in Fig. 10, the average
fluctuations in the RMSD values for the protein, the active site
and the ligand were 1.361 A, 1.346 A and 1.725 A, respectively.
Based on the RMSD fluctuation of H3, the conformational
variation could be roughly divided in three phases (0-3 ns, 3-7.5

4.0
—— backbone of protein

—— backbone of active site
35 -
—— heavy atoms of ligand

RMSD (A)

T T T T T T T T
2000 3000 4000 5000 6000 7000 8000 9000

T
0 1000

10000
Time (ps)

Fig. 10 The variation in RMSD values for the backbone atoms (C, Ca,

and N) of the protein, the backbone atoms of the active site (defined by

residues within 6.5 A to the centroid of the ligand), and the heavy
atoms of the ligand H3 during the simulation period.

This journal is © The Royal Society of Chemistry 2020

ns and 7.5-10 ns). Accordingly, three representative snapshots
of the XO-H3 complex were then extracted from the MD
trajectory (Fig. 11A, C and E). During the simulation period, H3
was tightly bound to the enzyme via hydrogen bonds and
hydrophobic interactions. When sampled at 1 ns, 5 ns and 10
ns, the hydrogen bond between H3 and Glu802 was consistently
presented, and its occupancy percentage was higher than 91%
during the 10 ns simulation period. However, hydrogen
bonding with both Thr1010 and Ala1079, which was detected by
molecular docking, was not monitored in the snapshots.
Instead, additional hydrogen bonding interactions with Arg880,
Lys771, Phe798, Glu1261, Phe911 and Ser876 were perceived.
The sampled conformations were then superimposed with the
docking pose of H3 (Fig. 11B, D and F), and it could be observed
that during MD simulation, the thiobarbituric ring of H3 was in
closer proximity to the molybdenum cofactor.

Conclusion

A hierarchical virtual screening approach was applied to iden-
tify new chemotypes of XO inhibitors from a commercially
available database. The predictive quantitative pharmacophore
model generated from known non-purine XO inhibitors was
combined with fingerprint similarity search, docking refine-
ment and consensus scoring strategy. As a result, seventy-four
potential hits were selected, and four of them were known XO
inhibitors. Six hits were prioritized for biological test and
a potent XO inhibitor H3 with ICs, of 2.6 uM was identified. The
binding mode of H3 was explored by molecular docking and
MD simulation. The results demonstrated the feasibility to
discover potential XO inhibitors through virtual screening.

Materials and methods
Selection of data set

Eighty-nine structurally diverse non-purine XO inhibitors were
collected from literatures and their biological activities were
represented as ICs,, which range from 0.02 nM to 32 pM.""*
The 3D chemical structures of all the compounds were built and
prepared in Discovery Studio 4.1 software package (DS 4.1,
Accelrys, San Diego, USA),” which generated reasonable

RSC Adv, 2020, 10, 27752-27763 | 27759


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra03143g

View Article Online

RSC Advances Paper

\ PHE1009

ARG880

LEU873
PHE911

I
ALA1079

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 24 July 2020. Downloaded on 10/16/2025 3:19:43 PM.

LYS771
A\
ARG880
o -
= | N oheena
LEU1014 LEU8T3 ’ Molybdenum
; ALA1079
< \
: \ - ALA910
\ =0 . N
4 - / S~
e - ‘
\ .
\ GLUB02
PHE798
LYS771
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molybdenum atom were measured.

conformers of all the compounds with the “Poling” algorithm. training sets rationally,’® and the rest compounds in the data set
To guarantee sufficient chemical and biological diversity of the were taken as test set. The distribution of training set
training set, a diversity sampling method was applied to select compounds in the three-dimensional space was examined by
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principal component analysis (PCA) to ensure the training set
was representative enough.

Generation and validation of pharmacophore model

For the selected training set, 3D-QSAR pharmacophore models
were generated with HypoGen algorithm in DS 4.1.*” The
features of hydrogen bond acceptor (A), hydrogen bond donor
(D), hydrophobic or hydrophobic aromatic center (Y), and
excluded volumes (E) were defined as pharmacophore charac-
teristics. The “maximum conformations” was set to 400 and the
energy threshold was set to 40 kcal mol™" to generate a set of
low-energy conformations for each molecule. Ten hypotheses
could be generated by default and ranked by the total cost
subsequently. The resultant pharmacophore model was
assessed by cost value analysis, training and test sets prediction,
randomization test, and was further validated by enrichment
factor (EF) and hit rate (HR) in the virtual screening of the decoy
set.”® Receiver operating characteristic (ROC) analysis was con-
ducted to further examine the performance of the model.*

Construction of decoy set

The decoy set was composed of 100 known compounds reported
in the literature>***3® and 1400 presumably inactive
compounds from ACD-3D database. Among the known
compounds, fifty are non-purine XO inhibitors with ICs,
ranging from 0.01 nM to 1 nM, five with IC5, from 10 to 100 nM,
five with I1C5o from 1 to 10 uM, and the rest are 40 inactive
compounds with structures similar to the 60 active inhibitors.

Virtual screening of database

The validated model was used to conduct virtual screening as
a 3D-search query. A hierarchical virtual screening approach
combined ligand-based and structure-based virtual screening
methods was used to screen the Specs chemical database.
Firstly, the database was prepared and duplicates were
removed. The 184 922 compounds obtained were filtered by
ADMET properties, the principle of Lipinski and Veber rules
subsequently. Then compounds with ICs, better than 1 nM were
set as reference compounds, and those with fingerprint simi-
larity below 0.5 to the reference compounds were removed. The
pharmacophore-based virtual screening was then performed by
using the “Ligand Pharmacophore Mapping” protocol. The
“Maximum Omitted Features” was set to zero. The hit
compounds obtained were then ranked according to their fit
values and a threshold of 3.5 was set to select compounds for
the followed docking steps.

The crystal structure of xanthine oxidase (XO) in complex
with febuxostat (PDB: 1N5X) was acquired from the protein data
bank.*” The protein structure was prepared, and co-crystal
ligand was redocked into the active site successfully by Lib-
Dock with a RMSD of 0.577 A (LibDockScore = 120.991).* For
the first round, the top 10% compounds ranked by LibDock-
Score were remained for further refinement by using CDOCKER
protocol.* Then the docking poses were then scored with ten
different scoring functions (LigScorel, LigScore2, —PLP1,
—PLP2, Jain, —PMF, —PMF04, LibdockScore,

This journal is © The Royal Society of Chemistry 2020
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—CDOCKER_INTERACTION_ENERGY, and
—CDOCKER_ENERGY), and the performance of various scoring
functions was compared by their capability to distinguish the
active from the inactive ones in the decoy set (Fig. S41). A
consensus score was generated by combining the fit values-
based Hypo 1 and the five scoring functions performed best
(LigScore2, —PLP2, —PMF04, LibdockScore and
—CDOCKER_INTERACTION_ENERGY), which was used for the
final refinement of the virtual screening results and 74 potential
hit were selected accordingly. The consensus score was defined
as the number of scores that were in the top rank 20 percent.

Molecular dynamics simulations

The docked complex of XO with H3 was used as the initial
structure for MD simulation in AMBER12 software package. The
methodology is well described previously.** Briefly, the Amber
03 force field was applied to the protein and the general AMBER
force field (GAFF) was used to generate parameters for the
ligand. The partial atomic charges of H3 optimized by Gaussian
03 at HF/6-31G* level of quantum mechanical (QM) calculation
were assigned using the RESP protocol. The XO-H3 complex
was neutralized by counter ions and solvated in TIP3P water box
of 10 A. The particle mesh Ewald (PME) method and the SHAKE
algorithm were employed at a time step of 2 fs. Periodic
boundary conditions were applied to avoid edge effects.
Following the minimization for 10 000 steps by steepest descent
method and equilibrated in NVT ensemble for 1 ns, an unre-
strained 10 ns production run was performed at 300 K under 1.0
atm pressure in NPT ensemble. Coordinate trajectories were
recorded every 10 ps for the whole MD run.

Biological assays

The effects on the XO-catalyzed xanthine (XAN) hydrolysis was
determined at 37 °C and pH 7.4 in a 96-well plate. The reaction
system contained (final concentrations) 3 U L™ XO, 50 uM XAN,
and 10 pM compound in a buffer (containing 3.5 mM KH,PO,,
15.2 mM K,HPO,, 0.25 mM EDTA, pH 7.4). The XO-catalyzed
hydrolysis of XAN was measured by monitoring the absor-
bance at the wavelength of 293 nm with a spectrophotometer
(Molecular Devices). All tests were performed in triplicate. The
ICs, value was calculated by plotting relative XO activity versus
different concentrations of compound using Prisma 5.0.
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