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catalyzed allylization of electron-rich arenes and
allyl alcohols†

Hua Zhang,ab Xiao-Yu Zhan,ab Yu Dong,ab Jian Yang,ab Shuai He,c Zhi-Chuan Shi,c

Xiao-Mei Zhang a and Ji-Yu Wang *a

A frustrated Lewis pair (FLP)-catalyzed allylation of allyl alcohols with electron-rich arenes has been developed.

Interestingly, in this reaction, the electron-rich arenes and allyl alcohols are dehydrated in water. What's more,

water was the sole byproduct of the reaction. In this protocol, various allyl alcohols can be converted into allyl

cations and attacked by the electron-rich arenes to form aryl cation intermediates. Finally, the aryl cation

intermediates are deprotonated to give the 1,3-diarylpropenes. In this protocol, indole allyl alcohols can

undergo a bimolecular ring closure reaction, and structurally diverse tetrahydroindolo[3,2-b]carbazoles could

be smoothly obtained. The reaction is not sensitive to oxygen and has been performed on a gram-scale.
Introduction

The Tsuji–Trost allylation reaction1 is an important way to
construct C–C and C–X bonds. In recent years, quite a few break-
throughs have been made in transition metal catalyzed allylation.
Muzart,2 Ma,3 Tunge,4 Bruneau,5 and Zhang6 et al. reviewed the
latest developments in transition metal catalyzed allylation. At
present, the majority of the existing reports are on the reaction of
allyl alcohol derivatives as electrophiles.7 The allylation reaction
with allyl alcohols as electrophiles has also been reported.8 It has
attracted the attention of chemists for its good atom economy. At
present, the directed distal allylation and alkylation of arenes have
been developed.9 In addition, selective para-functionalization of
arenes is also an important research direction.10 The metal-free
catalyzed allylation reaction has attracted much attention due to
its environmental friendliness, low toxicity and low catalyst
loading. Severalmetal-free catalysts suitable for allylation reactions
have been developed, including calix[n]arene sulfonic acids,11

arylboronic acids,12 water,13 1,3-bis(carboxymethyl)imidazolium,14

graphene oxide CO2H,15 and so on.
In recent years, tris(pentauorophenyl)borane has received

widespread attention as an unconventional, non-toxic, air-
stable, water-tolerant, and thermal abiding Lewis acid.16 Piers
reported in 1996 that tris(pentauorophenyl)borane catalyzed
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hydrosilation of aromatic aldehydes, ketones and esters.17

Oestreich demonstrated the mechanism of Piers and conrmed
the stereochemical reversal of silicon using chiral silanes.18

Stephan demonstrated that the new strategy for chemical
storage of hydrogen in macroboranes may involve Lewis acid–
Lewis base synergistic reactivity. This strategy was used to
reduce the imines, nitriles and aziridines.19 Fontaine intro-
duced the concept of a frustrated Lewis pairs into hydrocarbon
activation, and investigated the carbon dioxide hydroboration
of FLP catalysts.20 Repo conducted related research work on the
frustrated Lewis pairs in the intramolecular.21 In addition, the
frustrated Lewis pairs are also used to activate small molecules
such as CO2,22 NO,23 N2O,24 SO2,25 alkenes,26 and alkynes.27

Although many advances have been made in the catalyzed
reaction of frustrated Lewis pairs, there are currently no reports
about allylation of electron-rich arenes by using the frustrated
Lewis pairs as the catalyst.

At present, there are few reports on the reaction of macro-
boranes in water (Fig. 1). Tang's group reported a-aryl a-diazoesters
O–H bond insertion catalyzed by tris(pentauorophenyl)borane
using water as solvent.28 Our group has reported the coupling
reaction of naphthoquinones with indoles in water catalyzed by
(C6F5)3B.29 The use of macroboranes for dehydration in water may
be in line with the concept of green chemistry. Herein, we strived to
expand the application range of the frustrated Lewis pairs. What's
more, we reported the allylation of a catalyzed electron-rich arenes
with allyl alcohols in water by the frustrated Lewis pairs.
Results and discussion

We commenced our investigations by examining the allylation
reaction between N,N-dimethylaniline (1a) and 1,3-diphenylallyl
alcohol (2a) under various reaction conditions (Table 1). Initially
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 The reaction of macroboranes in water.
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the reaction was carried out under conditions in which (C6F5)3B
was used as a catalyst and triphenylphosphine was used as a base.
Gratifyingly, a 1,3-diarylpropene product 3a was observed and
isolated in 71% yield (entry 1). Tris(1,3,5-triuorophenyl)borane
and tris(2,4,6-triuorophenyl)borane had a small amount of
product formation as a catalyst (entries 2–3). Unfortunately, when
the reaction was carried out in the absence of a base, the yield of
the reaction was lowered (entries 4 and 8). It was demonstrated
that the base could promote the reaction. Gratifyingly, when the
reaction was carried out in water, the product could be obtained in
a comparable yield to that in acetonitrile (entry 5).We attempted to
Table 1 Optimization of the reaction conditionsa,b

Entry Catalyst Base Solvent T (�C)
Yield of 3a
(%)

1 (C6F5)3B Ph3P CH3CN 80 71
2 (1,3,5-C6H2F3)3B Ph3P CH3CN 80 Trace
3 (2,4,6-C6H2F3)3B Ph3P CH3CN 80 Trace
4 (C6F5)3B — CH3CN 80 58
5 (C6F5)3B Ph3P H2O 80 74
6 — — H2O 80 3
7 — Ph3P H2O 80 5
8 (C6F5)3B — H2O 80 59
9 (C6F5)3B Morpholine H2O 80 71
10 (C6F5)3B 2,6-Lutidine H2O 80 90
11 (C6F5)3B DABCO H2O 80 88
12 (C6F5)3B Me3P H2O 80 78
13 (C6F5)3B P(OPh)3 H2O 80 86
14 (C6F5)3B PHPh2 H2O 80 86
15 (C6F5)3B Na2CO3 H2O 100 38
16 (C6F5)3B 2,6-Lutidine H2O 60 0
17 (C6F5)3B 2,6-Lutidine H2O 100 92
18 — 2,6-Lutidine H2O 100 Trace
19b (C6F5)3B 2,6-Lutidine H2O 100 79

a Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), catalyst (3 mol%),
base (3 mol%), solvent (1.5 ml), 6 h; yield refers to isolated product.
b (C6F5)3B (1 mol%) and 2,6-lutidine (1 mol%) was used.

This journal is © The Royal Society of Chemistry 2020
carry out the reaction without the addition of a catalyst and a base,
but the yield of the product was greatly reduced (entry 6). In
addition, when the catalyst was omitted, only a small amount of
product was formed (entry 7). It was demonstrated that the coor-
dination of the catalyst and the base was more favourable for the
occurrence of allylation. Subsequently, we examined the effects of
a series of bases on the reaction (entries 9–15). When the reaction
was carried out under organic bases, the product was able to be
obtained in moderate to excellent yields. But when we used inor-
ganic base, the yield would be greatly reduced. This phenomenon
indicated that the inorganic base could not form frustrated Lewis
pairs with (C6F5)3B to catalyze the reaction. To our surprise, when
the reaction was conducted in 2,6-lutidine as a base, we were
pleased to nd that the yield of 3a could be dramatically improved
to 90% (entry 10). What's more, when the temperature was
adjusted to 60 �C, the expected product could not be observed and
a lot of the starting materials remained (entry 16). Interestingly,
when the temperature was raised to 100 �C, the yield of the product
could be increased to 92% (entry 17). Unfortunately, when we
performed the reaction using only 2,6-lutidine as a catalyst, we only
got trace product (entry 18). In addition, we also tried to decrease
the amount of (C6F5)3B and 2,6-lutidine to 1 mol% but the yield
was lower (entry 19). At last, the optimal conditions were
conrmed: 1a (0.3 mmol), 2a (0.3 mmol), (C6F5)3B (3 mol%), 2,6-
lutidine (3 mol%), H2O (1.5 ml), 6 h.

With the optimized reaction conditions in hand, we next set out
to explore the universality of this method (Scheme 1). Therefore,
a series of electron-rich arenes with signicant structural diversity,
including anilines and phenyl ether, were subjected to this
process. When the reaction was carried out with N,N,2-trimethy-
laniline, we obtained 1,3-diarylpropene in moderate yield (3b).
When we carried out the reaction with ameta-substitution or a 2,6-
disubstitutedN,N-dimethylaniline as a substrate, we were also able
Scheme 1 Substrate scope of electron-rich arenesa,b. aReaction
conditions: 1 (0.3 mmol), 2a (0.3 mmol), (C6F5)3B (3 mol%), 2,6-lutidine
(3 mol%), H2O (0.2 M), 100 �C, 6 h. bIsolated yields.

RSC Adv., 2020, 10, 16942–16948 | 16943
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Scheme 2 Substrate scope of allyl alcoholsa,b,c,d. aReaction condi-
tions: 1 (0.3 mmol), 2a (0.3 mmol), (C6F5)3B (3 mol%), 2,6-lutidine
(3 mol%), H2O (0.2 M), 100 �C, 6 h. bIsolated yields. cMixture ratio
determined by NMR. dAcetonitrile as solvent (seal).
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to obtain an allylated product, albeit at a low yields (3c–3d). It was
possible that the steric hindrance effect of the ortho and meta
positions prevented the attack of allyl cations and led to a decrease
in yield. Further, this protocol could be suitably applied aer the
methyl group on N was replaced by n-butyl group, and the allyla-
tion product was obtained in a moderate yield (3e). Interestingly,
the cyclic aniline compounds were capable of obtaining the ally-
lation products in good to excellent yields (3f–3g). What's more,
when a largely hindered benzyl group was attached to the N of the
aniline, the product was obtained in excellent yield (3h). The
exciting thing was that this protocol showed good compatibility
with carbon–carbon double bonds and carbon–carbon triple
bonds (3i–3j). Moreover, naphthylamine compound could also be
used in this process and gave allylation product in good yield (3k).
Furthermore, the 1,2,3-trimethoxybenzene was used, and the 1,3-
diarylpropene product could also be formed, albeit at a low yield
(3l, 33%). It might be due to the common steric hindrance effect of
ortho and meta positions, which greatly reduced the yield. This is
consistent with the previous results (3c–3d).

We next explored the scope of allyl alcohols (Scheme 2).
Firstly, we focused our attention on the changes in the allyl
alcohol A ring substituent. Unfortunately, the allyl alcohol
double bond was shied and we got a mixture of double bond
migrations. TLC showed as only one point that cannot be
separated. The ratio of the double bond migration product to
non-migrated product was about 1 : 1 by NMR. The possible
reason was that the aromatic rings at the ends of allyl cations
had almost the same ability to stabilize the positive charge.
When the para position of the phenyl group was bonded to an
electron-donating substituted group, the product was able to be
obtained in excellent yield (3m). In addition, the para position
of the phenyl group was attached to an electron withdrawing
group such as uorine, bromine or cyano, and we could also
obtain the products in moderate to good yields (3n–3p). In
particular, the cyano group of the strong electron withdrawing
group caused the uneven distribution of the allyl cation charge,
resulting in a product ratio of 5 : 2. In addition, the meta-
substituted benzene ring could also give the products in
a moderate yields (3q–3r). Excitingly, this reaction also showed
good compatibility with heterocycles (3s–3t). When the ring A
was the naphthalene, we could also carry out the reaction in
good yield (3u). When the reaction was carried out with (2E,4E)-
1,5-diphenylpenta-2,4-dien-1-ol, the product was able to be ob-
tained in good yield (3v). Next, we would explore the effect of
substituent on the B ring on the reaction. When the B ring was
attached to an electron donating substituent, we were able to
carry out the reaction in moderate to good yields (3w–3x). In
addition, when the B ring was connected to the electron-
withdrawing group, the product was also able to be obtained
product in moderate yield (3y). Unfortunately, alkyl allyl alcohol
and polysubstituted allyl alcohol did not perform the reaction
smoothly in water, but the product could be obtained in
acetonitrile in moderate yields (3z–3aa).

The 3 position of indoles is electron-rich, and allylization of
indoles have been reported more.30 Herein, we focused our
attention to the scope of indoles (Scheme 3). Gratifyingly,
various indoles were well applicable in this protocol and were
16944 | RSC Adv., 2020, 10, 16942–16948
regioselectively allylated to the 3 position of the indoles. In
addition, the single-crystal structure of 3af, 3al further
conrmed the allylation reaction.31 As an example, when N1
position of indoles was not attached to a substituent or attached
to an electron-donating substituted group such as methyl, allyl,
we could proceed smoothly in this process to deliver corre-
sponding allylated products in good to excellent yields (3ab–
3ad). When N1 position of indoles was substituted by electron-
withdrawing groups such as acetyl and pyrimidine we were also
able to obtain the products although the yields were slightly
reduced (3ae–3af). It was possible that the electron-withdrawing
group lowered the density of the electrons at the 3-position
electrons, thereby reducing the attack activity of the allyl
cations. Interestingly, when the C2 position of the indoles was
substituted by a methyl group or a phenyl group, we could also
obtain the products in a good to excellent yields, demonstrating
that the steric hindrance at the C2 position had little effect on
the reaction (3ag–3ah). In addition, when the C5- or C6-position
of the indoles were separately substituted for the substituent,
we could obtain the 3-allylated indoles at a good yields (3ai–3aj).
Excitingly, when the C5 and C6 positions were substituted, we
were able to obtain allylated indole in a superior yield (3ak).

Surprisingly, (E)-3-(1-methyl-1H-indol-2-yl)-1-phenylprop-2-
en-1-ol (2q) and (E)-1-(4-bromophenyl)-3-(1-methyl-1H-indol-2-
This journal is © The Royal Society of Chemistry 2020
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Scheme 3 Substrate scope of indolesa,b. aReaction conditions: 1 (0.3
mmol), 2a (0.3 mmol), (C6F5)3B (3 mol%), 2,6-lutidine (3 mol%), H2O
(0.2 M), 100 �C, 6 h. bIsolated yields.

Scheme 5 Proposed mechanism.
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yl)prop-2-en-1-ol (2r) were capable of bimolecular ring-closure
reaction to obtain tetrahydroindolo[3,2-b]carbazoles (3al–
3am). In order to reveal the potential application of this
protocol, an amplication scale reaction was implemented. A
1.2 g scale reaction was carried out for N,N-dimethylaniline 1a
and (E)-3-(1-hydroxy-3-phenylallyl)benzene-1-ylium 2a, and the
product 3a was isolated in 89% yield (Scheme 4). The result
showed that the product yield was not affected aer the reaction
was scaled up, further indicating that the reaction has great
potential for application.

Based on others previously reported in literature,19,28,32,33

a plausible mechanism was proposed in Scheme 5. Initially,
tris(pentauorophenyl)borane and 2,6-lutidine formed a frus-
trated Lewis pairs A. A interacted with allyl alcohol to form
Scheme 4 Bimolecular ring closure and scale-up reaction.

This journal is © The Royal Society of Chemistry 2020
[(C6F5)3B(OH)]� and an allyl cation stabilized by base. The
electron-rich aromatic ring attacked the allyl cation to form
aromatic cation intermediate B. B deprotonated and reacted
with [(C6F5)3B(OH)]� to produce water and target products,
while the catalyst and base were circulated. In addition, when
there was no base, (C6F5)3B could also convert allyl alcohol to
allyl cation, thereby completing the reaction process. However,
in the absence of a base, the yield of the reaction product was
only moderate (Table 1 entries 5 and 8). It might be that the
base helped stabilize the allyl cation and improved the yield.
Conclusions

In summary, a FLP-catalyzed allylization of allyl alcohols with
electron-rich arenes in water has been reported for the prepa-
ration of 1,3-diarylpropenes. In this protocol, the electron-rich
aromatics and allyl alcohols are dehydrated in water. What's
more, the reaction has very good atom economy and water is the
sole byproduct. This protocol is not only featured with mild
conditions and broad scope, but also reveals FLP-catalyzed
allylization of electron-rich aromatic rings in water, which
would offer a new insight for synthesis of 1,3-diarylpropenes
and dihydrocarbazoloindoles.
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